L. Vandenberghe ECE236B (Winter 2024)

2. Convex sets

e affine and convex sets

e some important examples

e operations that preserve convexity
e generalized inequalities

e dual cones

e separating and supporting hyperplanes
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Affine set

Line through points x;, x,: all points
x=0x1+(1-0)x, withd eR

x is a called an affine combination of x; and x»

Affine set: a set that contains the line through any two distinct points in the set

Example: the solution set of linear equations {x | Ax = b} is an affine set

conversely, every affine set can be expressed as solution set of linear equations
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Convex set

Line segment between points x{, x,: all points
x=06x;+(1-0)x, with0<6<1

x is a called a convex combination of x1 and x»

Convex set: a set that contains the line segment between any two points in the set

x1,x0€C, 0<0<1 = 6x;+(1-0)xreC

Examples (one convex, two nonconvex sets)
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Convex cone

Conic (nonnegative) combination of points x{, xy: any point of the form

x=01x1+60x, with6; >0,60, >0

X1

X2

Convex cone: a set that contains all conic combinations of points in the set
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Important common examples of convex sets

e hyperplanes and halfspaces
e Euclidean balls and ellipsoids
e norm balls and norm cones

e polyhedra

e positive semidefinite cone
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Hyperplanes and halfspaces

Hyperplane: set of the form {x | a’x = b} where a # 0

a Xo is a particular element, e.g.,
b
X0 x() - %a
X
alx = b alx=bifandonlyifa L (x —xp)

Halfspace: set of the form {x | a’x < b} where a # 0

hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center x. and radius r:
B(xe,r) ={x | |lx —xclla < r} ={xc+ru| |lull2 < 1}

| - ||» denotes the Euclidean norm

Ellipsoid: set of the form
{x | (x—xC)TP_l(x—xC) <1}

with P symmetric positive definite

other representation: {x. + Au | ||u||p < 1} with A square and nonsingular
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Principal axes
& ={x| (x—xC)TP_l(x—xC) < 1}

Eigendecomposition: P = QAQ” = 3" A;q:q]

=11
e O is orthogonal (Q7 = 0~!) with columns g¢;

e A is diagonal with diagonal elements 41 >4, > --- > 1, >0

Change of variables: y = Q7 (x — x.), x = x. + Qy

e after the change of variables the ellipsoid is described by
yTA_ly = y%//ll + .- +y,%//ln <1

this is an ellipsoid centered at the origin, and aligned with the coordinate axes
e eigenvectors g; of P give the principal axes of &

e the width of & along the principal axis corresponding to g; is 2v4;
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Example in R?

Xc + \//l_ZQ2

xc"‘\//l_IQI

Exercise: give an interpretation of tr(P) as a measure of the size of the ellipsoid

E={x|(x-x)"P(x-xc) <1}
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Norms

Norm: a function || - || that satisfies
e |lx|| > O forallx
o |[x|]|=0ifandonlyifx =0

o |tx|| = |t|||x] fort € R

o llx+yll < x|l +llyll

Notation
e || - || is a general (unspecified) norm
e || - |lsymb is a particular norm
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Common vector norms

forx € R

e Euclidean norm
2 2\1/2
Ixll2 = (xF + - +x2) Y

e p-norm (p > 1)
Xl = (1P + - - - + x| ) 1/P

e Chebyshev norm (co-norm)

[x]|leo = max |xg]
=1,....n

e quadratic norm
Ixll4 = (xTAx)!/2

with A symmetric positive definite
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Common matrix norms

for X € R™x"

e Frobenius norm

e 2-norm (spectral norm, operator norm)

1 Xyll2
||X||2 = Sup = O_max(X)

y20 Iyll2

Tmax(X) = (Amax (X7 X))1/2 is largest singular value of X
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Norm balls and norm cones
Norm ball with center x. and radius r:
{x | llx=xc|l £r}

norm balls are convex sets
Norm cone:

{Ge 1) [xl] <7}

® NOrm CONEs are convex cones
e example: second order cone (norm cone for Euclidean norm)
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Polyhedra

Polyhedron: solution set of finitely many linear inequalities and equalities
Ax < b, Cx=d
< denotes componentwise inequality between vectors

a
1 a

as

as

aq

a polyhedron is the intersection of a finite number of halfspaces and hyperplanes
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Positive semidefinite cone

Notation
e S" is the set of symmetric n X n matrices

o ST ={X eS§S"| X > 0}: the set of positive semidefinite n X n matrices
XeS! & zIXz>0forallz

S’ is a convex cone

o S7. ={X e€S§"| X > 0}: the positive definite n X n matrices

Example
X Y 2
[ v oz ] e S
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Operations that preserve convexity

methods for establishing convexity of a set C
1. apply definition

x,x0€C, 0<0<1 = O6x;+(1-0)xeC

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces,
norm balls, ...) by operations that preserve convexity

intersection

affine functions
perspective function
linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

Example
S={xeR"||p)| < 1for|t| <n/3}

where p(t) = xj cost + xp cos 2t + - - - + X, COS mt

form = 2:

=)
T

p(t)

0 /3 , /3 P
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Convex combination and convex hull

Convex combination of x{, ..., x;: any point x of the form
X=01x1+6x2+---+0rx;p
withf;+---+60,=1,6, >0

Convex hull (of a set )

e conv () is set of all convex combinations of points in §

e conv (S) is the intersection of all convex sets that contain S
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Affine function

suppose f : R” — R is an affine function:
f(x) =Ax+b

with A € R"™" p ¢ R™

e the image of a convex set under f is convex

S € R" convex — f(S)={Ax+b |x €S} isconvex

e the inverse image f~1(C) of a convex set under f is convex

C Cc R" convex — I (C)={xeR"| Ax+b € C} is convex

Convex sets 2.19



Exercise

prove the statements on page 2.19

Solution (image of convex set under f is convex)

e suppose S C R is convex and consider two points yi, y» € f(S5):

vi=Ax;+b, yr)=Axp,+b wherex;,xp €S

e consider convex combination y = 6y + (1 — 0) y,:

y = Oyi+(1-0)y
= 0(Ax1+b)+(1-60)(Ax,+ D)
= A@x1+(1-0)xp)+b
= Ax+b

where x = 6x; + (1 — 0)x»)

e x € S because Sisconvex,soy =Ax+b € f(S)
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Examples

e scaling, translation, projection

e image and inverse image of norm ball under affine transformation

{Ax+0b | Ix[l <1}, {x|[[Ax+ D] < 1}

e hyperbolic cone

{x | xTPx < (cTx)?, ¢Tx >0} with P € S"
+

e solution set of linear matrix inequality

{x|x1A1+---+x,,A;, < B} with A;, B € SP
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Perspective and linear-fractional function

Perspective function P : R™*! — R":
P(x,t) =x/t, domP = {(x,1) | t > 0}

images and inverse images of convex sets under perspective are convex

Linear-fractional function f : R" — R

f(x) = ,  domf={x]|c'x+d>0}
+d

e the composition of the perspective function and an affine function

e image, inverse image of convex sets under linear-fractional function are convex
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Exercise
prove that images/inverse images of convex sets under perspective are convex

Solution (image of convex set under perspective)

e suppose S C R*! is convex and consider two points yi, y» € P(S):

y1 =x1/t1, Y2 =x2/ta Where (x1,71), (x2,22) € Sand 1,2, > 0

e consider convex combination y = 6y + (1 — 8)y, and verify that

pxy + (1= p)xo
pty+ (1 = e

y=0(x1/t1) + (1 =0)(x2/12) =

where
B 0/t { e (1-6)/1
R+ (-0)/n R+ (-0)/n

e this shows that y is the perspective x /¢ of the convex combination

(x,1) = p(x, 1) + (1 = ) (x2, 12)
(x,t) € S by convexity of S, so y = x/t € P(S)
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Example

a linear-fractional function from R? to R?

1
fx) = X, dom f = {(x1,x2) | x1 +x2+1 > 0}
X1+x+1
1 1 —
Sor SO R
-1 \\‘ -1 \
-1 0 1 -1 0 1
X1 X1
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Proper cone

Proper cone: a convex cone K C R” that satisfies three properties

e K is closed (contains its boundary)
e K is solid (has nonempty interior)

e K is pointed (contains no line)

Examples

e nonnegative orthant

K=Rl={xeR"|x;20,i=1,...,n}

e positive semidefinite cone K = S%

e nonnegative polynomials on [0, 1]:

K={xeR"|x +x2t+x3t2+-~+xntn_1 > (0 fort e [0,1]}
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Generalized inequality
Generalized inequality defined by a proper cone K:
x<gy & y—-xeKk, X<gy & y—-xeintkK
Examples
e componentwise inequality (K = R%)

X=RYy < Xi=ZYi i=1,...,n

e matrix inequality (K = S’}
X Z¢nY &= Y - X positive semidefinite

these two types are so common that we drop the subscript in <g

Properties: many properties of <k are similarto < on R, e.g.,

XKy, uU<gv — x+u=<gy+v

Convex sets 2.26



Minimum and minimal elements

<k is not in general a linear ordering: we can have x £x y and y £ x

x € S is the minimum element of S with respect to < if

yeS = x=<gYy

x € S is a minimal element of S with respect to < if

vyeS, y=gx = y=xXx

Example (K = R?) ;
2

x1 is the minimum element of S
x> is a minimal element of S» X
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Inner products

in this course we will use the following standard inner products
e for vectors x,y € R™:

(X, y) =x1y1+ -+ xpyn :xTy

e for matrices X,Y € R"™*"

S

(X,Y) = Xi Vi =tr(X'Y)

Ms

i=1 j=

e for symmetric matrices X,Y € S"

(X,Y) = ZXllYll +22X1]Yl] = tr(XY)

i=1 i>]
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Dual cones

Dual cone of a cone K:
K*={y|{y,x) >0forallx € K}

note: definition depends on choice of inner product

Examples
K K*
nonnegative orthant R" R"
second order cone {(x,0) | Ix|l2 <t} {Ce,0) | ||Ix]l2 < 1}
1-norm cone {Ce,0) | x|l <t} {(x0) | |Ix]leo < 2}
positive semidefinite cone S’ S™

three of the four examples are self-dual (K* = K)
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Exercise

derive the duals of the four examples on page 2.29

Solution (K = R” is self-dual for inner product (y, x) = y! x)

e suppose y > 0; then y € K* because

ViXi+---+ypx, >0 forallx >0

e suppose y # 0; this means that y; < O for some k

let x be the kth standard unit vector:
{ 0 i+k
X = .

then x € K but the inner product y'x = y;, is negative; therefore y ¢ K*
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Exercise

Solution (K = {(x,1) | ||x||2 < t} is self-dual)

e suppose

)

y|l2 < s;then (y,s) € K* because for all (x,1) € K,

> —||yll2llx]|> + st (by Cauchy—Schwarz inequality)
> s(r—|lxll2)
> 0

e suppose ||y|l2 > s

define x = —y/||y|l» and ¢t = 1; then (x, 1) € K but

HIR T

therefore (y,s) ¢ K*
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Exercise

Solution (K = S is self-dual for inner product (Y, X) = tr(Y X))

e suppose Y > 0 with eigendecomposition
c T
Y = ) diqiq;

i=1

then Y € K™ because for all X > 0,

r(YX) = tr((Zn]ﬂiqiqiT)X)
i=1

n
= > Atr(qiq; X)
i=1

n

= > Aiq] Xq;
i=1

> 0

(last step follows because 4; > 0 and X is positive semidefinite)
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e suppose Y # 0, ie., there exists a vector a with alYa <0

define X = aa’; then X € S” but
tr(YX) = tr(Yaa') =a'Ya <0

therefore Y ¢ K*
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Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist a # 0, b s.t.

alx <bforxecC, alx>bforxeD

the hyperplane {x | a’x = b} separates C and D

strict separation requires additional assumptions (e.g., C closed, D a singleton)
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Supporting hyperplane theorem

Supporting hyperplane to set C at boundary point xg:
{x|a'x =a'xo}

where a # 0 and a’x < alxpforallx e C

Supporting hyperplane theorem:

there exists a supporting hyperplane at every boundary point of a convex set C
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