2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- dual cones
- separating and supporting hyperplanes

Affine set

Line through points x_{1}, x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2} \quad \text { with } \theta \in \mathbf{R}
$$

x is a called an affine combination of x_{1} and x_{2}

Affine set: a set that contains the line through any two distinct points in the set
Example: the solution set of linear equations $\{x \mid A x=b\}$ is an affine set conversely, every affine set can be expressed as solution set of linear equations

Convex set

Line segment between points x_{1}, x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2} \quad \text { with } 0 \leq \theta \leq 1
$$

x is a called a convex combination of x_{1} and x_{2}
Convex set: a set that contains the line segment between any two points in the set

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

Examples (one convex, two nonconvex sets)

Convex cone

Conic (nonnegative) combination of points x_{1}, x_{2} : any point of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2} \quad \text { with } \theta_{1} \geq 0, \theta_{2} \geq 0
$$

Convex cone: a set that contains all conic combinations of points in the set

Important common examples of convex sets

- hyperplanes and halfspaces
- Euclidean balls and ellipsoids
- norm balls and norm cones
- polyhedra
- positive semidefinite cone

Hyperplanes and halfspaces

Hyperplane: set of the form $\left\{x \mid a^{T} x=b\right\}$ where $a \neq 0$

Halfspace: set of the form $\left\{x \mid a^{T} x \leq b\right\}$ where $a \neq 0$

hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_{c} and radius r :

$$
B\left(x_{\mathrm{c}}, r\right)=\left\{x \mid\left\|x-x_{\mathrm{c}}\right\|_{2} \leq r\right\}=\left\{x_{\mathrm{c}}+r u \mid\|u\|_{2} \leq 1\right\}
$$

$\|\cdot\|_{2}$ denotes the Euclidean norm
Ellipsoid: set of the form

$$
\left\{x \mid\left(x-x_{\mathrm{c}}\right)^{T} P^{-1}\left(x-x_{\mathrm{c}}\right) \leq 1\right\}
$$

with P symmetric positive definite
other representation: $\left\{x_{\mathrm{c}}+A u \mid\|u\|_{2} \leq 1\right\}$ with A square and nonsingular

Principal axes

$$
\mathcal{E}=\left\{x \mid\left(x-x_{\mathrm{c}}\right)^{T} P^{-1}\left(x-x_{\mathrm{c}}\right) \leq 1\right\}
$$

Eigendecomposition: $P=Q \Lambda Q^{T}=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}$

- Q is orthogonal $\left(Q^{T}=Q^{-1}\right)$ with columns q_{i}
- Λ is diagonal with diagonal elements $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$

Change of variables: $y=Q^{T}\left(x-x_{\mathrm{c}}\right), x=x_{\mathrm{c}}+Q y$

- after the change of variables the ellipsoid is described by

$$
y^{T} \Lambda^{-1} y=y_{1}^{2} / \lambda_{1}+\cdots+y_{n}^{2} / \lambda_{n} \leq 1
$$

this is an ellipsoid centered at the origin, and aligned with the coordinate axes

- eigenvectors q_{i} of P give the principal axes of \mathcal{E}
- the width of \mathcal{E} along the principal axis corresponding to q_{i} is $2 \sqrt{\lambda_{i}}$

Example in $\mathbf{R}^{\mathbf{2}}$

Exercise: give an interpretation of $\operatorname{tr}(P)$ as a measure of the size of the ellipsoid

$$
\mathcal{E}=\left\{x \mid\left(x-x_{\mathrm{c}}\right)^{T} P^{-1}\left(x-x_{\mathrm{c}}\right) \leq 1\right\}
$$

Norms

Norm: a function || $\cdot \|$ that satisfies

- $\|x\| \geq 0$ for all x
- $\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|| | x| |$ for $t \in \mathbf{R}$
- $\|x+y\| \leq\|x\|+\|y\|$

Notation

- \| $\|\cdot\|$ is a general (unspecified) norm
- \| $\cdot \|_{\text {symb }}$ is a particular norm

Common vector norms

for $x \in \mathbf{R}^{n}$

- Euclidean norm

$$
\|x\|_{2}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}
$$

- p-norm $(p \geq 1)$

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

- Chebyshev norm (∞-norm)

$$
\|x\|_{\infty}=\max _{k=1, \ldots, n}\left|x_{k}\right|
$$

- quadratic norm

$$
\|x\|_{A}=\left(x^{T} A x\right)^{1 / 2}
$$

with A symmetric positive definite

Common matrix norms

for $X \in \mathbf{R}^{m \times n}$

- Frobenius norm

$$
\|X\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j}^{2}\right)^{1 / 2}
$$

- 2-norm (spectral norm, operator norm)

$$
\|X\|_{2}=\sup _{y \neq 0} \frac{\|X y\|_{2}}{\|y\|_{2}}=\sigma_{\max }(X)
$$

$\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}$ is largest singular value of X

Norm balls and norm cones

Norm ball with center x_{c} and radius r :

$$
\left\{x \mid\left\|x-x_{\mathrm{c}}\right\| \leq r\right\}
$$

norm balls are convex sets
Norm cone:

$$
\{(x, t) \mid\|x\| \leq t\}
$$

- norm cones are convex cones
- example: second order cone (norm cone for Euclidean norm)

Polyhedra

Polyhedron: solution set of finitely many linear inequalities and equalities

$$
A x \leq b, \quad C x=d
$$

\leq denotes componentwise inequality between vectors

a polyhedron is the intersection of a finite number of halfspaces and hyperplanes

Positive semidefinite cone

Notation

- \mathbf{S}^{n} is the set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \geq 0\right\}$: the set of positive semidefinite $n \times n$ matrices

$$
X \in \mathbf{S}_{+}^{n} \quad \Longleftrightarrow z^{T} X z \geq 0 \text { for all } z
$$

\mathbf{S}_{+}^{n} is a convex cone

- $\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X>0\right\}$: the positive definite $n \times n$ matrices

Example

$$
\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \in \mathbf{S}_{+}^{2}
$$

Operations that preserve convexity

methods for establishing convexity of a set C

1. apply definition

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity

- intersection
- affine functions
- perspective function
- linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

Example

$$
S=\left\{x \in \mathbf{R}^{m}| | p(t) \mid \leq 1 \text { for }|t| \leq \pi / 3\right\}
$$

where $p(t)=x_{1} \cos t+x_{2} \cos 2 t+\cdots+x_{m} \cos m t$
for $m=2$:

Convex combination and convex hull

Convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{1}+\cdots+\theta_{k}=1, \theta_{i} \geq 0$

Convex hull (of a set S)

- conv (S) is set of all convex combinations of points in S
- conv (S) is the intersection of all convex sets that contain S

Affine function

suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is an affine function:

$$
f(x)=A x+b
$$

with $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$

- the image of a convex set under f is convex

$$
S \subseteq \mathbf{R}^{n} \quad \text { convex } \quad \Longrightarrow \quad f(S)=\{A x+b \mid x \in S\} \quad \text { is convex }
$$

- the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$
C \subseteq \mathbf{R}^{m} \text { convex } \quad \Longrightarrow \quad f^{-1}(C)=\left\{x \in \mathbf{R}^{n} \mid A x+b \in C\right\} \quad \text { is convex }
$$

Exercise

prove the statements on page 2.19
Solution (image of convex set under f is convex)

- suppose $S \subseteq \mathbf{R}^{n}$ is convex and consider two points $y_{1}, y_{2} \in f(S)$:

$$
y_{1}=A x_{1}+b, \quad y_{2}=A x_{2}+b \quad \text { where } x_{1}, x_{2} \in S
$$

- consider convex combination $y=\theta y_{1}+(1-\theta) y_{2}$:

$$
\begin{aligned}
y & =\theta y_{1}+(1-\theta) y_{2} \\
& =\theta\left(A x_{1}+b\right)+(1-\theta)\left(A x_{2}+b\right) \\
& =A\left(\theta x_{1}+(1-\theta) x_{2}\right)+b \\
& =A x+b
\end{aligned}
$$

where $\left.x=\theta x_{1}+(1-\theta) x_{2}\right)$

- $x \in S$ because S is convex, so $y=A x+b \in f(S)$

Examples

- scaling, translation, projection
- image and inverse image of norm ball under affine transformation

$$
\{A x+b \mid\|x\| \leq 1\}, \quad\{x \mid\|A x+b\| \leq 1\}
$$

- hyperbolic cone

$$
\left\{x \mid x^{T} P x \leq\left(c^{T} x\right)^{2}, c^{T} x \geq 0\right\} \quad \text { with } P \in \mathbf{S}_{+}^{n}
$$

- solution set of linear matrix inequality

$$
\left\{x \mid x_{1} A_{1}+\cdots+x_{m} A_{m} \leq B\right\} \quad \text { with } A_{i}, B \in \mathbf{S}^{p}
$$

Perspective and linear-fractional function

Perspective function $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$:

$$
P(x, t)=x / t, \quad \operatorname{dom} P=\{(x, t) \mid t>0\}
$$

images and inverse images of convex sets under perspective are convex

Linear-fractional function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$:

$$
f(x)=\frac{A x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

- the composition of the perspective function and an affine function
- image, inverse image of convex sets under linear-fractional function are convex

Exercise

prove that images/inverse images of convex sets under perspective are convex
Solution (image of convex set under perspective)

- suppose $S \subseteq \mathbf{R}^{n+1}$ is convex and consider two points $y_{1}, y_{2} \in P(S)$:

$$
y_{1}=x_{1} / t_{1}, \quad y_{2}=x_{2} / t_{2} \quad \text { where }\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in S \text { and } t_{1}, t_{2}>0
$$

- consider convex combination $y=\theta y_{1}+(1-\theta) y_{2}$ and verify that

$$
y=\theta\left(x_{1} / t_{1}\right)+(1-\theta)\left(x_{2} / t_{2}\right)=\frac{\mu x_{1}+(1-\mu) x_{2}}{\mu t_{1}+(1-\mu) t_{2}}
$$

where

$$
\mu=\frac{\theta / t_{1}}{\theta / t_{1}+(1-\theta) / t_{2}}, \quad 1-\mu=\frac{(1-\theta) / t_{2}}{\theta / t_{1}+(1-\theta) / t_{2}}
$$

- this shows that y is the perspective x / t of the convex combination

$$
(x, t)=\mu\left(x_{1}, t_{1}\right)+(1-\mu)\left(x_{2}, t_{2}\right)
$$

$(x, t) \in S$ by convexity of S, so $y=x / t \in P(S)$

Example

a linear-fractional function from \mathbf{R}^{2} to \mathbf{R}^{2}

$$
f(x)=\frac{1}{x_{1}+x_{2}+1} x, \quad \operatorname{dom} f=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}+x_{2}+1>0\right\}
$$

Proper cone

Proper cone: a convex cone $K \subseteq \mathbf{R}^{n}$ that satisfies three properties

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

Examples

- nonnegative orthant

$$
K=\mathbf{R}_{+}^{n}=\left\{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}
$$

- positive semidefinite cone $K=\mathbf{S}_{+}^{n}$
- nonnegative polynomials on $[0,1]$:

$$
K=\left\{x \in \mathbf{R}^{n} \mid x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\}
$$

Generalized inequality

Generalized inequality defined by a proper cone K :

$$
x \leq_{K} y \quad \Longleftrightarrow y-x \in K, \quad x<_{K} y \quad \Longleftrightarrow y-x \in \operatorname{int} K
$$

Examples

- componentwise inequality ($K=\mathbf{R}_{+}^{n}$)

$$
x \leq \mathbf{R}_{+}^{n} y \quad \Longleftrightarrow \quad x_{i} \leq y_{i}, \quad i=1, \ldots, n
$$

- matrix inequality $\left(K=\mathbf{S}_{+}^{n}\right)$

$$
X \leq \mathbf{S}_{+}^{n} Y \quad \Longleftrightarrow Y-X \text { positive semidefinite }
$$

these two types are so common that we drop the subscript in \leq_{K}
Properties: many properties of \leq_{K} are similar to \leq on \mathbf{R}, e.g.,

$$
x \leq_{K} y, \quad u \leq_{K} v \quad \Longrightarrow \quad x+u \leq_{K} y+v
$$

Minimum and minimal elements

\leq_{K} is not in general a linear ordering: we can have $x \not Ł_{K} y$ and $y \npreceq_{K} x$
$x \in S$ is the minimum element of S with respect to \leq_{K} if

$$
y \in S \quad \Longrightarrow \quad x \leq_{K} y
$$

$x \in S$ is a minimal element of S with respect to \leq_{K} if

$$
y \in S, \quad y \leq_{K} x \quad \Longrightarrow \quad y=x
$$

Example ($K=\mathbf{R}_{+}^{2}$)
x_{1} is the minimum element of S_{1} x_{2} is a minimal element of S_{2}

Inner products

in this course we will use the following standard inner products

- for vectors $x, y \in \mathbf{R}^{n}$:

$$
\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}=x^{T} y
$$

- for matrices $X, Y \in \mathbf{R}^{m \times n}$

$$
\langle X, Y\rangle=\sum_{i=1}^{m} \sum_{j=1}^{n} X_{i j} Y_{i j}=\operatorname{tr}\left(X^{T} Y\right)
$$

- for symmetric matrices $X, Y \in \mathbf{S}^{n}$

$$
\langle X, Y\rangle=\sum_{i=1}^{n} X_{i i} Y_{i i}+2 \sum_{i>j} X_{i j} Y_{i j}=\operatorname{tr}(X Y)
$$

Dual cones

Dual cone of a cone K :

$$
K^{*}=\{y \mid\langle y, x\rangle \geq 0 \text { for all } x \in K\}
$$

note: definition depends on choice of inner product

Examples

	K	K^{*}				
nonnegative orthant	\mathbf{R}_{+}^{n}	\mathbf{R}_{+}^{n}				
second order cone	$\left\{(x, t) \mid\\|x\\|_{2} \leq t\right\}$	$\left\{(x, t) \mid\\|x\\|_{2} \leq t\right\}$				
1-norm cone	$\left\{(x, t) \mid\\|x\\|_{1} \leq t\right\}$	$\left\{(x, t) \mid\\|x\\|_{\infty} \leq t\right\}$				
positive semidefinite cone	\mathbf{S}_{+}^{n}	\mathbf{S}_{+}^{n}				

three of the four examples are self-dual $\left(K^{*}=K\right)$

Exercise

derive the duals of the four examples on page 2.29

Solution ($K=\mathbf{R}_{+}^{n}$ is self-dual for inner product $\langle y, x\rangle=y^{T} x$)

- suppose $y \geq 0$; then $y \in K^{*}$ because

$$
y_{1} x_{1}+\cdots+y_{n} x_{n} \geq 0 \quad \text { for all } x \geq 0
$$

- suppose $y \nsucceq 0$; this means that $y_{k}<0$ for some k
let x be the k th standard unit vector:

$$
x_{i}=\left\{\begin{array}{cc}
0 & i \neq k \\
1 & i=k
\end{array}\right.
$$

then $x \in K$ but the inner product $y^{T} x=y_{k}$ is negative; therefore $y \notin K^{*}$

Exercise

Solution $\left(K=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}\right.$ is self-dual)

- suppose $\|y\|_{2} \leq s$; then $(y, s) \in K^{*}$ because for all $(x, t) \in K$,

$$
\begin{aligned}
\left\langle\left[\begin{array}{l}
y \\
s
\end{array}\right],\left[\begin{array}{c}
x \\
t
\end{array}\right]\right\rangle & =y_{1} x_{1}+\cdots+y_{n} x_{n}+s t \\
& \geq-\|y\|_{2}\|x\|_{2}+s t \quad \text { (by Cauchy-Schwarz inequality) } \\
& \geq s\left(t-\|x\|_{2}\right) \\
& \geq 0
\end{aligned}
$$

- suppose $\|y\|_{2}>s$
define $x=-y /\|y\|_{2}$ and $t=1$; then $(x, t) \in K$ but

$$
\left\langle\left[\begin{array}{l}
y \\
s
\end{array}\right],\left[\begin{array}{c}
x \\
t
\end{array}\right]\right\rangle=y^{T} x+s t=-\|y\|_{2}+s<0
$$

therefore $(y, s) \notin K^{*}$

Exercise

Solution ($K=\mathbf{S}_{+}^{n}$ is self-dual for inner product $\langle Y, X\rangle=\operatorname{tr}(Y X)$)

- suppose $Y \geq 0$ with eigendecomposition

$$
Y=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}
$$

then $Y \in K^{*}$ because for all $X \geq 0$,

$$
\begin{aligned}
\operatorname{tr}(Y X) & =\operatorname{tr}\left(\left(\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}\right) X\right) \\
& =\sum_{i=1}^{n} \lambda_{i} \operatorname{tr}\left(q_{i} q_{i}^{T} X\right) \\
& =\sum_{i=1}^{n} \lambda_{i} q_{i}^{T} X q_{i} \\
& \geq 0
\end{aligned}
$$

(last step follows because $\lambda_{i} \geq 0$ and X is positive semidefinite)

- suppose $Y \nsucceq 0$, i.e., there exists a vector a with $a^{T} Y a<0$
define $X=a a^{T}$; then $X \in \mathbf{S}_{+}^{n}$ but

$$
\operatorname{tr}(Y X)=\operatorname{tr}\left(Y a a^{T}\right)=a^{T} Y a<0
$$

therefore $Y \notin K^{*}$

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0, b$ s.t.

$$
a^{T} x \leq b \text { for } x \in C, \quad a^{T} x \geq b \text { for } x \in D
$$

the hyperplane $\left\{x \mid a^{T} x=b\right\}$ separates C and D
strict separation requires additional assumptions (e.g., C closed, D a singleton)

Supporting hyperplane theorem

Supporting hyperplane to set C at boundary point x_{0} :

$$
\left\{x \mid a^{T} x=a^{T} x_{0}\right\}
$$

where $a \neq 0$ and $a^{T} x \leq a^{T} x_{0}$ for all $x \in C$

Supporting hyperplane theorem:

there exists a supporting hyperplane at every boundary point of a convex set C

