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2. Convex sets

• affine and convex sets

• some important examples

• operations that preserve convexity

• generalized inequalities

• dual cones

• separating and supporting hyperplanes
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Affine set

Line through points G1, G2: all points

G = \G1 + (1 − \)G2 with \ ∈ R

G is a called an affine combination of G1 and G2

G1

G2

\ = 1.2
\ = 1

\ = 0.6

\ = 0
\ = −0.2

Affine set: a set that contains the line through any two distinct points in the set

Example: the solution set of linear equations {G | �G = 1} is an affine set

conversely, every affine set can be expressed as solution set of linear equations
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Convex set

Line segment between points G1, G2: all points

G = \G1 + (1 − \)G2 with 0 ≤ \ ≤ 1

G is a called a convex combination of G1 and G2

Convex set: a set that contains the line segment between any two points in the set

G1, G2 ∈ �, 0 ≤ \ ≤ 1 =⇒ \G1 + (1 − \)G2 ∈ �

Examples (one convex, two nonconvex sets)
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Convex cone

Conic (nonnegative) combination of points G1, G2: any point of the form

G = \1G1 + \2G2 with \1 ≥ 0, \2 ≥ 0

0

G1

G2

Convex cone: a set that contains all conic combinations of points in the set
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Common convex sets

• hyperplanes and halfspaces

• Euclidean balls and ellipsoids

• norm balls and norm cones

• polyhedra

• positive semidefinite cone
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Hyperplanes and halfspaces

Hyperplane: set of the form {G | 0)G = 1} where 0 ≠ 0

0

G

0)G = 1

G0

G0 is a particular element, e.g.,

G0 =
1

0)0
0

0)G = 1 if and only if 0 ⊥ (G − G0)

Halfspace: set of the form {G | 0)G ≤ 1} where 0 ≠ 0

0

0)G ≥ 1

0)G ≤ 1

G0

hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center Gc and radius A:

�(Gc, A) = {G | ‖G − Gc‖2 ≤ A} = {Gc + AD | ‖D‖2 ≤ 1}

‖ · ‖2 denotes the Euclidean norm

Ellipsoid: set of the form

{G | (G − Gc))%−1(G − Gc) ≤ 1}

with % symmetric positive definite

Gc

other representation: {Gc + �D | ‖D‖2 ≤ 1} with � square and nonsingular
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Principal axes

E = {G | (G − Gc))%−1(G − Gc) ≤ 1}

Eigendecomposition: % = &Λ&) =
∑=
8=1
_8@8@

)
8

• & is orthogonal (&) = &−1) with columns @8

• Λ is diagonal with diagonal elements _1 ≥ _2 ≥ · · · ≥ _= > 0

Change of variables: H = &) (G − Gc), G = Gc +&H

• after the change of variables the ellipsoid is described by

H)Λ−1H =
H2

1

_1
+ · · · + H

2
=

_=
≤ 1

this is an ellipsoid centered at the origin, and aligned with the coordinate axes

• eigenvectors @8 of % give the principal axes of E
• the width of E along the principal axis corresponding to @8 is 2

√
_8
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Example in R
2

H1

H2

√
_1

√
_2

G = Gc +&H

H = &) (G − Gc)

Gc

Gc +
√
_1@1

Gc +
√
_2@2

Exercise: give an interpretation of tr(%) as a measure of the size of the ellipsoid

E = {G | (G − Gc))%−1(G − Gc) ≤ 1}
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Principal axes (second representation)

E = {Gc + �D | ‖D‖2 ≤ 1}

Singular value decomposition

� = %Σ&) =

=
∑

8=1

f8?8@
)
8

• %,& orthogonal; Σ diagonal with diagonal elements f1 ≥ f2 ≥ · · · ≥ f=
• since ‖&)D‖2 = ‖D‖2 for orthogonal &, we have E = {Gc + %Σ{ | ‖{‖2 ≤ 1}

{1

{2

1

1

G = Gc + %Σ{

{ = Σ−1%) (G − Gc)

Gc

Gc + f1?1
Gc + f2?2
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Norms

Norm: a function ‖ · ‖ that satisfies

• ‖G‖ ≥ 0 for all G

• ‖G‖ = 0 if and only if G = 0

• ‖CG‖ = |C | ‖G‖ for C ∈ R

• ‖G + H‖ ≤ ‖G‖ + ‖H‖

Notation

• ‖ · ‖ is a general (unspecified) norm

• ‖ · ‖symb is a particular norm
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Common vector norms

for G ∈ R
=

• Euclidean norm

‖G‖2 = (G2
1 + · · · + G2

=)1/2

• ?-norm (? ≥ 1)

‖G‖? = ( |G1 |? + · · · + |G= |?)1/?

• Chebyshev norm (∞-norm)

‖G‖∞ = max
:=1,...,=

|G: |

• quadratic norm

‖G‖� = (G)�G)1/2

with � symmetric positive definite
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Common matrix norms

for - ∈ R
<×=

• Frobenius norm

‖- ‖� = (
<
∑

8=1

=
∑

9=1

-2
8 9)1/2

• 2-norm (spectral norm, operator norm)

‖- ‖2 = sup
H≠0

‖-H‖2

‖H‖2
= fmax(-)

fmax(-) = (_max(-)-))1/2 is largest singular value of -
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Norm balls and norm cones

Norm ball with center Gc and radius A:

{G | ‖G − Gc‖ ≤ A}

norm balls are convex sets

Norm cone:

{(G, C) | ‖G‖ ≤ C}

• norm cones are convex cones

• example: second order cone (norm cone for Euclidean norm)

G1
G2

C

−1

0

1

−1

0

1
0

0.5

1
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Polyhedra

Polyhedron: solution set of finitely many linear inequalities and equalities

�G � 1, �G = 3

� denotes componentwise inequality between vectors

01 02

03

04

05

P

a polyhedron is the intersection of a finite number of halfspaces and hyperplanes
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Positive semidefinite cone

Notation

• S
= is the set of symmetric = × = matrices

• S
=
+ = {- ∈ S

= | - � 0}: the set of positive semidefinite = × = matrices

- ∈ S
=
+ ⇐⇒ I)-I ≥ 0 for all I

S
=
+ is a convex cone

• S
=
++ = {- ∈ S

= | - ≻ 0}: the positive definite = × = matrices

Example

[

G H

H I

]

∈ S
2
+

GH

I

0

0.5

1

−1

0

1
0

0.5

1
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Operations that preserve convexity

methods for establishing convexity of a set �

1. apply definition

G1, G2 ∈ �, 0 ≤ \ ≤ 1 =⇒ \G1 + (1 − \)G2 ∈ �

2. show that � is obtained from simple convex sets (hyperplanes, halfspaces,

norm balls, . . . ) by operations that preserve convexity

• intersection

• affine functions

• perspective function

• linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

Example

( = {G ∈ R
< | |?(C) | ≤ 1 for |C | ≤ c/3}

where ?(C) = G1 cos C + G2 cos 2C + · · · + G< cos<C

three elements of ( for < = 4 the set ( for < = 2

0 c/3 2c/3 c

−1

0

1

C

?
(C)

G1

G
2 (

−2 −1 0 1 2
−2

−1

0

1

2
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Convex combination and convex hull

Convex combination of G1, . . . , G: : any point G of the form

G = \1G1 + \2G2 + · · · + \:G:

with \1 + · · · + \: = 1, \8 ≥ 0

Convex hull (of a set ()

• conv (() is set of all convex combinations of points in (

• conv (() is the intersection of all convex sets that contain (
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Affine function

suppose 5 : R
= → R

< is an affine function:

5 (G) = �G + 1

with � ∈ R
<×=, 1 ∈ R

<

• the image of a convex set under 5 is convex

( ⊆ R
= convex =⇒ 5 (() = {�G + 1 | G ∈ (} is convex

• the inverse image 5 −1(�) of a convex set under 5 is convex

� ⊆ R
< convex =⇒ 5 −1(�) = {G ∈ R

= | �G + 1 ∈ �} is convex
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Exercise

prove the statements on page 2.20

Solution (image of convex set under 5 is convex)

• suppose ( ⊆ R
= is convex and consider two points H1, H2 ∈ 5 (():

H1 = �G1 + 1, H2 = �G2 + 1 where G1, G2 ∈ (

• consider convex combination H = \H1 + (1 − \)H2:

H = \H1 + (1 − \)H2

= \ (�G1 + 1) + (1 − \) (�G2 + 1)
= �(\G1 + (1 − \)G2) + 1
= �G + 1

where G = \G1 + (1 − \)G2)
• G ∈ ( because ( is convex, so H = �G + 1 ∈ 5 (()
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Examples

• scaling, translation, projection

• image and inverse image of norm ball under affine transformation

{�G + 1 | ‖G‖ ≤ 1}, {G | ‖�G + 1‖ ≤ 1}

• hyperbolic cone

{G | G)%G ≤ (2)G)2, 2)G ≥ 0} with % ∈ S
=
+

• solution set of linear matrix inequality

{G | G1�1 + · · · + G<�< � �} with �8, � ∈ S
?
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Perspective and linear-fractional function

Perspective function % : R
=+1 → R

=:

%(G, C) = G/C, dom % = {(G, C) | C > 0}

images and inverse images of convex sets under perspective are convex

Linear-fractional function 5 : R
= → R

<:

5 (G) = �G + 1
2)G + 3

, dom 5 = {G | 2)G + 3 > 0}

• the composition of the perspective function and an affine function

• image, inverse image of convex sets under linear-fractional function are convex
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Exercise

prove that images/inverse images of convex sets under perspective are convex

Solution (image of convex set under perspective)

• suppose ( ⊆ R
=+1 is convex and consider two points H1, H2 ∈ %(():

H1 = G1/C1, H2 = G2/C2 where (G1, C1), (G2, C2) ∈ ( and C1, C2 > 0

• consider convex combination H = \H1 + (1 − \)H2 and verify that

H = \ (G1/C1) + (1 − \) (G2/C2) =
`G1 + (1 − `)G2

`C1 + (1 − `)C2
where

` =
\/C1

\/C1 + (1 − \)/C2
, 1 − ` =

(1 − \)/C2
\/C1 + (1 − \)/C2

• this shows that H is the perspective G/C of the convex combination

(G, C) = `(G1, C1) + (1 − `) (G2, C2)

(G, C) ∈ ( by convexity of (, so H = G/C ∈ %(()
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Example

a linear-fractional function from R
2 to R

2

5 (G) = 1

G1 + G2 + 1
G, dom 5 = {(G1, G2) | G1 + G2 + 1 > 0}

G1

G
2 �

−1 0 1
−1

0

1

G1

G
2

5 (�)

−1 0 1
−1

0

1
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Proper cone

Proper cone: a convex cone  ⊆ R
= that satisfies three properties

•  is closed (contains its boundary)

•  is solid (has nonempty interior)

•  is pointed (contains no line)

Examples

• nonnegative orthant

 = R
=
+ = {G ∈ R

= | G8 ≥ 0, 8 = 1, . . . , =}

• positive semidefinite cone  = S
=
+

• nonnegative polynomials on [0, 1]:

 = {G ∈ R
= | G1 + G2C + G3C

2 + · · · + G=C=−1 ≥ 0 for C ∈ [0, 1]}
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Generalized inequality

Generalized inequality defined by a proper cone  :

G � H ⇐⇒ H − G ∈  , G ≺ H ⇐⇒ H − G ∈ int 

Examples

• componentwise inequality ( = R
=
+)

G �R
=
+ H ⇐⇒ G8 ≤ H8, 8 = 1, . . . , =

• matrix inequality ( = S
=
+)

- �S
=
+ . ⇐⇒ . − - positive semidefinite

these two types are so common that we drop the subscript in � 
Properties: many properties of � are similar to ≤ on R, e.g.,

G � H, D � { =⇒ G + D � H + {
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Minimum and minimal elements

� is not in general a linear ordering: we can have G 6� H and H 6� G

G ∈ ( is the minimum element of ( with respect to � if

H ∈ ( =⇒ G � H

G ∈ ( is a minimal element of ( with respect to � if

H ∈ (, H � G =⇒ H = G

Example ( = R
2
+)

G1 is the minimum element of (1

G2 is a minimal element of (2 G1

G2(1

(2
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Inner products

in this course we will use the following standard inner products

• for vectors G, H ∈ R
=:

〈G, H〉 = G1H1 + · · · + G=H= = G) H

• for matrices -,. ∈ R
<×=

〈-,.〉 =
<
∑

8=1

=
∑

9=1

-8 9.8 9 = tr(-). )

• for symmetric matrices -,. ∈ S
=

〈-,.〉 =
=
∑

8=1

-88.88 + 2
∑

8> 9

-8 9.8 9 = tr(-. )
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Dual cones

Dual cone of a cone  :

 ∗
= {H | 〈H, G〉 ≥ 0 for all G ∈  }

note: definition depends on choice of inner product

Examples

  ∗

nonnegative orthant R
=
+ R

=
+

second order cone {(G, C) | ‖G‖2 ≤ C} {(G, C) | ‖G‖2 ≤ C}
1-norm cone {(G, C) | ‖G‖1 ≤ C} {(G, C) | ‖G‖∞ ≤ C}
positive semidefinite cone S

=
+ S

=
+

three of the four examples are self-dual ( ∗ =  )
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Exercise

derive the duals of the four examples on page 2.30

Solution ( = R
=
+ is self-dual for inner product 〈H, G〉 = H)G)

• suppose H � 0; then H ∈  ∗ because

H1G1 + · · · + H=G= ≥ 0 for all G � 0

• suppose H � 0; this means that H: < 0 for some :

let G be the : th standard unit vector:

G8 =

{

0 8 ≠ :

1 8 = :

then G ∈  but the inner product H)G = H: is negative; therefore H ∉  ∗
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Exercise

Solution ( = {(G, C) | ‖G‖2 ≤ C} is self-dual)

• suppose ‖H‖2 ≤ B; then (H, B) ∈  ∗ because for all (G, C) ∈  ,

〈[

H

B

]

,

[

G

C

]〉

= H1G1 + · · · + H=G= + BC

≥ −‖H‖2‖G‖2 + BC (by Cauchy–Schwarz inequality)

≥ B(C − ‖G‖2)
≥ 0

• suppose ‖H‖2 > B

define G = −H/‖H‖2 and C = 1; then (G, C) ∈  but

〈[

H

B

]

,

[

G

C

]〉

= H)G + BC = −‖H‖2 + B < 0

therefore (H, B) ∉  ∗
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Exercise

Solution ( = S
=
+ is self-dual for inner product 〈., -〉 = tr(.-))

• suppose . � 0 with eigendecomposition

. =

=
∑

8=1

_8@8@
)
8

then . ∈  ∗ because for all - � 0,

tr(.-) = tr((
=
∑

8=1

_8@8@
)
8 )-)

=

=
∑

8=1

_8 tr(@8@)8 -)

=

=
∑

8=1

_8@
)
8 -@8

≥ 0

(last step follows because _8 ≥ 0 and - is positive semidefinite)
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• suppose . � 0, i.e., there exists a vector 0 with 0).0 < 0

define - = 00) ; then - ∈ S
=
+ but

tr(.-) = tr(.00)) = 0).0 < 0

therefore . ∉  ∗
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Separating hyperplane theorem

if � and � are nonempty disjoint convex sets, there exist 0 ≠ 0, 1 s.t.

0)G ≤ 1 for G ∈ �, 0)G ≥ 1 for G ∈ �

�

�

0

0)G ≥ 1 0)G ≤ 1

the hyperplane {G | 0)G = 1} separates � and �

strict separation requires additional assumptions (e.g., � closed, � a singleton)
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Supporting hyperplane theorem

Supporting hyperplane to set � at boundary point G0:

{G | 0)G = 0)G0}

where 0 ≠ 0 and 0)G ≤ 0)G0 for all G ∈ �

�

0

G0

Supporting hyperplane theorem:

there exists a supporting hyperplane at every boundary point of a convex set �
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