L. Vandenberghe ECE236B (Winter 2025)

2. Convex sets

e affine and convex sets

e some important examples

e operations that preserve convexity
e generalized inequalities

e dual cones

e separating and supporting hyperplanes
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Affine set

Line through points x;, x,: all points
x=0x;+(1-6)x, withdeR

x is a called an affine combination of x; and x»

Affine set: a set that contains the line through any two distinct points in the set

Example: the solution set of linear equations {x | Ax = b} is an affine set

conversely, every affine set can be expressed as solution set of linear equations
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Convex set

Line segment between points x{, x,: all points
x=0x1+(1-0)x, with0<6<1

x is a called a convex combination of x1 and x»

Convex set: a set that contains the line segment between any two points in the set

x1,x20€C, 0<0<1 = 6x;+(1-0)xpeC

Examples (one convex, two nonconvex sets)
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Convex cone

Conic (nonnegative) combination of points x{, xy: any point of the form

xX=01x;1+60x, with6; >0,0,>0

X1

X2

Convex cone: a set that contains all conic combinations of points in the set
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Common convex sets

e hyperplanes and halfspaces
e Euclidean balls and ellipsoids
e norm balls and norm cones

e polyhedra

e positive semidefinite cone
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Hyperplanes and halfspaces

Hyperplane: set of the form {x | a’x = b} where a # 0

a Xo is a particular element, e.g.,
b
X0 0T AT
X
a’x = b a’x=bifandonlyifa L (x — xq)

Halfspace: set of the form {x | a’x < b} where a # 0

hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center x. and radius r:
B(xe,r) ={x | |lx —xclla < r} ={xc+ru | |lull2 < 1}

| - ||» denotes the Euclidean norm

Ellipsoid: set of the form
el =x0) P (x —xe) < 1)

with P symmetric positive definite

other representation: {x. + Au | ||u||p < 1} with A square and nonsingular
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Principal axes

E={x| (x—x)' P (x—xc) < 1}
Eigendecomposition: P = OAQT = ?:1 /liqz'ql-T

e Qis orthogonal (QT = Q1) with columns ¢;

e A is diagonal with diagonal elements 41 >4, > --- > 1, >0

Change of variables: y = O (x —x.), x = xc + Qy

e after the change of variables the ellipsoid is described by

2 2
y
yTA_ly:_1+...+& < 1
A1 An
this is an ellipsoid centered at the origin, and aligned with the coordinate axes
e eigenvectors g; of P give the principal axes of &

e the width of & along the principal axis corresponding to g; is 2v1;
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Example in R?

Yo+ V> xe + Vg,

Exercise: give an interpretation of tr(P) as a measure of the size of the ellipsoid

& ={x| (X_XC)TP_I(X_XC) < 1}
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Principal axes (second representation)

& = {xc+Au | |lull2 < 1}

Singular value decomposition
n
A=pP0" = > oipig]
i=1

e P, Q orthogonal; X diagonal with diagonal elements oy > 0o > --- > oy,

e since ||QTul|» = ||ul|» for orthogonal Q, we have & = {x. + PZv | ||v|]5 < 1}

X =x.+ PXv vy

Xc+O02p2 1

Xc+01P1
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Norms

Norm: a function || - || that satisfies

e |[x|| >O0forallx
e ||[x||=0ifandonlyifx =0

o |tx|| = |t| ||x] fort € R

o llx+yll < x|l +llyll

Notation
e || - || is a general (unspecified) norm
® || - |[symb is @ particular norm
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Common vector norms

forx € R”

e Euclidean norm
2 2\1/2
Ixll2 = (¢ +---+x)Y

e p-norm (p > 1)
Xl = (1P + - - - + x| )P

e Chebyshev norm (co-norm)

e quadratic norm
lxlla = (x"Ax)'/

with A symmetric positive definite
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Common matrix norms

for X € R™*"1

e Frobenius norm .

IXlr= Q) D X' ?

i=1 j=1

e 2-norm (spectral norm, operator norm)

1 Xyll2
| X 1|2 = sup = Omax (X)

y#0 1yll2

omax(X) = (Amax (X7 X))Y/2 is largest singular value of X
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Norm balls and norm cones
Norm ball with center x. and radius r:
{x | [lx =xcl| <7}

norm balls are convex sets

Norm cone:

{Ge 1) [lx]] <7}

® NOrm COnes are convex cones
e example: second order cone (norm cone for Euclidean norm)
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Polyhedra

Polyhedron: solution set of finitely many linear inequalities and equalities
Ax 2 b, Cx=d

< denotes componentwise inequality between vectors

a
1 a

as

aq

a polyhedron is the intersection of a finite number of halfspaces and hyperplanes
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Positive semidefinite cone

Notation
e S" is the set of symmetric n X n matrices

o S ={X €8§"| X = 0}: the set of positive semidefinite n X n matrices
XeS!' & z'Xz>O0forallz

S’ is a convex cone

o S ={X €8§"| X > 0}: the positive definite n X n matrices

Example
X Y 2
[y Z ] S
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Operations that preserve convexity

methods for establishing convexity of a set C
1. apply definition

X1, x0€C, 0<0<1 = Ox;+(1-0)xeC

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces,
norm balls, ...) by operations that preserve convexity

intersection

affine functions
perspective function
linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

Example
S={xeR"||p(r)| <1for|t| < x/3}

where p(t) = xj cost + xp cos 2t + - - - + X, COS mt

three elements of S form = 4 the set S form =2

o
T

p(t)

0 ﬂ)3 p 27r‘/3 T
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Convex combination and convex hull

Convex combination of x{, ..., x;: any point x of the form
X =01x1+60x2+ -+ 0;x;
withf;+---+6;,=1,6;, >0

Convex hull (of a set )

e conv (S) is set of all convex combinations of points in §

e conv () is the intersection of all convex sets that contain §
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Affine function

suppose f : R" — R is an affine function:
f(x)=Ax+b

with A € R"™" ph ¢ R™

e the image of a convex set under f is convex

S C R" convex — f(S)={Ax+b |x €S} isconvex

e the inverse image f~!(C) of a convex set under f is convex

C C R™ convex — I (C)={xeR"| Ax+b € C} is convex
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Exercise

prove the statements on page 2.20

Solution (image of convex set under f is convex)

e suppose S C R is convex and consider two points y, yo € f(S5):

yi=Ax1+b, yr)=Axp+b wherex;,xp €S

e consider convex combination y = 6y + (1 — 0) y;:

y = Oyi+(1-0)y2
= O0(Ax1+b)+(1-60)(Axy+ D)
= A@x;+(1-6)xy)+b
= Ax+D

where x = 0x1 + (1 — 0)xp)

e x € S because Sisconvex,soy =Ax+b € f(S)
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Examples

e scaling, translation, projection

e image and inverse image of norm ball under affine transformation

{Ax+0b | [Ix] <1}, {x|[Ax+ D]l < 1}

e hyperbolic cone

{x | xTPx < (cTx)?, ¢Tx > 0} with P € S%

e solution set of linear matrix inequality

{x|x1A1+---+x,,A;, 2 B} with A;, B € S?
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Perspective and linear-fractional function

Perspective function P : R™! — R":
P(x,t) =x/t, domP = {(x,1) | t > 0}

images and inverse images of convex sets under perspective are convex

Linear-fractional function f : R” — R

Ax+b

cI'x+d

f(x) = ,  domf={x]|c'x+d>0}

e the composition of the perspective function and an affine function

e image, inverse image of convex sets under linear-fractional function are convex
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Exercise
prove that images/inverse images of convex sets under perspective are convex

Solution (image of convex set under perspective)

e suppose S C R*! is convex and consider two points yi, y» € P(S):

y1 =x1/t1, Y2 =x2/t Where (x1,71), (x2,22) € Sand 1,2, > 0

e consider convex combination y = 6y + (1 — 8)y, and verify that

pxy + (1= p)x;
pty+ (1 — iy

y=0(x1/t1) + (1 =0)(x2/12) =

where
) 0/t -0
R 9n+(1-0)/n =80+ (1-0)/n

e this shows that y is the perspective x/t of the convex combination

(x,1) = p(x, 1) + (1 = ) (x2, 12)
(x,t) € S by convexity of S, so y = x/t € P(S)
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Example

a linear-fractional function from R? to R?

1
Xy
X1+x+1

dOIIlf = {(Xl,X2) | X1+x2+1> O}

fx) =

X2
o
X2
o

_1 N _1 1
-1 0 1 -1 0 1
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Proper cone

Proper cone: a convex cone K C R” that satisfies three properties
e K is closed (contains its boundary)
e K is solid (has nonempty interior)

e K is pointed (contains no line)

Examples

e nonnegative orthant

K=R!={xeR"|x;20,i=1,...,n}

e positive semidefinite cone K = S%

e nonnegative polynomials on [0, 1]:

K={xeR"|x{+xpt +x3t>+ -+ x, L > 0fort € [0,1]}
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Generalized inequality
Generalized inequality defined by a proper cone K:
xX3xky & y-xe€k, xX<gy & y—-xemkK
Examples
e componentwise inequality (K = R)

xﬁng — x;<vy, i=1,...,n

e matrix inequality (K = S)
X 2sY <<= Y - X positive semidefinite

these two types are so common that we drop the subscript in g

Properties: many properties of <k are similarto < on R, e.g.,

XKy, UKV — X+ulgy+v
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Minimum and minimal elements

<k is not in general a linear ordering: we can have x Ax y and y Zg x

x € § is the minimum element of S with respect to < if

yeES = xZgVYy

x € S is a minimal element of S with respect to < if

yeES, yIkx = y=Xx

Example (K = R2) )
2

x1 is the minimum element of S
x> is a minimal element of S» i
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Inner products

in this course we will use the following standard inner products
e for vectors x,y € R™:

(X, y) =X1y1+ -+ Xy =Xy

e for matrices X,Y € R

S

m
(X,Y)y =2 > Xij¥ij = te(X'Y)
i=1 j=1

e for symmetric matrices X,Y € S"

n

(X,Y) = D> XiYii +2 > XYy = r(XY)

i=1 i>]
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Dual cones

Dual cone of a cone KX:
K ={y|{(y,x) >0forallx € K}

note: definition depends on choice of inner product

Examples
K K*
nonnegative orthant R” R"
second order cone {(x,0) | ||xll2 <t} {(x,0) | ||x||2 <t}
1-norm cone {(x,0) | x| <t} {(x, 1) | l|x]|lo <t}
positive semidefinite cone S’ S’

three of the four examples are self-dual (K* = K)
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Exercise

derive the duals of the four examples on page 2.30

Solution (K = R” is self-dual for inner product (y, x) = y’x)

e suppose y = 0; then y € K* because

ViXi+:-+ypx, 20 forallx =0

e suppose y # 0; this means that y;, < O for some k

let x be the kth standard unit vector:
{ 0 i+k
X = .

then x € K but the inner product y! x = y; is negative; therefore y ¢ K*
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Exercise

Solution (K = {(x,1) | ||x||2 < t} is self-dual)

e suppose ||y|l> < s;then (y,s) € K* because for all (x,¢) € K,

(U

> —||yll2l|lx||2 + st (by Cauchy—Schwarz inequality)
> s(t—[lx]]2)
> 0

e suppose ||yl > s

define x = —y/||y|]l» and t = 1; then (x,t) € K but

(2] ==t <o

therefore (y,s) ¢ K*
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Exercise

Solution (K = S/ is self-dual for inner product (Y, X) = tr(Y X))

e suppose Y > 0 with eigendecomposition
5 T
Y = > Aiqiq;

i=1

then Y € K* because for all X = 0,

r(YX) = tr((Zn]ﬂiqiqiT)X)
i=1

n
= > A4itr(qiq) X)
i=1

n

= > Aiq] Xq;
i=1

> 0

(last step follows because 4; > 0 and X is positive semidefinite)
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e suppose Y # 0, i.e., there exists a vector a with alYa <0

define X = aa’’; then X € S” but
tr(YX) = tr(Yaa') = a'Ya <0

therefore Y ¢ K*
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Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist a # 0, b s.t.

aszbfoerC, alx>bforxeD

alx > b alx < b

the hyperplane {x | a’x = b} separates C and D

strict separation requires additional assumptions (e.g., C closed, D a singleton)
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Supporting hyperplane theorem

Supporting hyperplane to set C at boundary point xg:
{x|a'x =axp}

where a #0and a’x < alxgforallx e C

Supporting hyperplane theorem:

there exists a supporting hyperplane at every boundary point of a convex set C
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