L. Vandenberghe ECE236B (Winter 2024)

### 2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- dual cones
- separating and supporting hyperplanes

#### **Affine set**

**Line through points**  $x_1, x_2$ : all points

$$x = \theta x_1 + (1 - \theta)x_2$$
 with  $\theta \in \mathbf{R}$ 

x is a called an *affine combination* of  $x_1$  and  $x_2$ 



Affine set: a set that contains the line through any two distinct points in the set

**Example**: the solution set of linear equations  $\{x \mid Ax = b\}$  is an affine set conversely, every affine set can be expressed as solution set of linear equations

### **Convex set**

Line segment between points  $x_1, x_2$ : all points

$$x = \theta x_1 + (1 - \theta)x_2$$
 with  $0 \le \theta \le 1$ 

x is a called a *convex combination* of  $x_1$  and  $x_2$ 

Convex set: a set that contains the line segment between any two points in the set

$$x_1, x_2 \in C$$
,  $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$ 

**Examples** (one convex, two nonconvex sets)



### **Convex cone**

Conic (nonnegative) combination of points  $x_1, x_2$ : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$
 with  $\theta_1 \ge 0$ ,  $\theta_2 \ge 0$ 



Convex cone: a set that contains all conic combinations of points in the set

### Important common examples of convex sets

- hyperplanes and halfspaces
- Euclidean balls and ellipsoids
- norm balls and norm cones
- polyhedra
- positive semidefinite cone

Convex sets

# Hyperplanes and halfspaces

**Hyperplane:** set of the form  $\{x \mid a^Tx = b\}$  where  $a \neq 0$ 



 $x_0$  is a particular element, *e.g.*,

$$x_0 = \frac{b}{a^T a} a$$

 $a^T x = b$   $a^T x = b$  if and only if  $a \perp (x - x_0)$ 

**Halfspace:** set of the form  $\{x \mid a^Tx \leq b\}$  where  $a \neq 0$ 



hyperplanes are affine and convex; halfspaces are convex

## **Euclidean balls and ellipsoids**

(**Euclidean**) ball with center  $x_c$  and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

 $\|\cdot\|_2$  denotes the Euclidean norm

Ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with *P* symmetric positive definite



other representation:  $\{x_c + Au \mid ||u||_2 \le 1\}$  with A square and nonsingular

# Principal axes

$$\mathcal{E} = \{ x \mid (x - x_{c})^{T} P^{-1} (x - x_{c}) \le 1 \}$$

**Eigendecomposition:**  $P = Q\Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T$ 

- Q is orthogonal  $(Q^T = Q^{-1})$  with columns  $q_i$
- $\Lambda$  is diagonal with diagonal elements  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$

Change of variables:  $y = Q^T(x - x_c)$ ,  $x = x_c + Qy$ 

after the change of variables the ellipsoid is described by

$$y^T \Lambda^{-1} y = y_1^2 / \lambda_1 + \dots + y_n^2 / \lambda_n \le 1$$

this is an ellipsoid centered at the origin, and aligned with the coordinate axes

- eigenvectors  $q_i$  of P give the principal axes of  $\mathcal{E}$
- the width of  $\mathcal E$  along the principal axis corresponding to  $q_i$  is  $2\sqrt{\lambda_i}$

# Example in $\mathbb{R}^2$



**Exercise:** give an interpretation of tr(P) as a measure of the size of the ellipsoid

$$\mathcal{E} = \{ x \mid (x - x_{c})^{T} P^{-1} (x - x_{c}) \le 1 \}$$

### **Norms**

**Norm:** a function  $\|\cdot\|$  that satisfies

- $||x|| \ge 0$  for all x
- ||x|| = 0 if and only if x = 0
- $||tx|| = |t| ||x|| \text{ for } t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

#### **Notation**

- $\|\cdot\|$  is a general (unspecified) norm
- $\bullet \ \| \cdot \|_{symb}$  is a particular norm

### **Common vector norms**

for  $x \in \mathbf{R}^n$ 

Euclidean norm

$$||x||_2 = (x_1^2 + \dots + x_n^2)^{1/2}$$

• p-norm ( $p \ge 1$ )

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$$

• Chebyshev norm (∞-norm)

$$||x||_{\infty} = \max_{k=1,\dots,n} |x_k|$$

quadratic norm

$$||x||_A = (x^T A x)^{1/2}$$

with A symmetric positive definite

### **Common matrix norms**

for  $X \in \mathbf{R}^{m \times n}$ 

Frobenius norm

$$||X||_F = (\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2)^{1/2}$$

• 2-norm (spectral norm, operator norm)

$$||X||_2 = \sup_{y \neq 0} \frac{||Xy||_2}{||y||_2} = \sigma_{\max}(X)$$

 $\sigma_{\max}(X) = (\lambda_{\max}(X^TX))^{1/2}$  is largest singular value of X

### Norm balls and norm cones

**Norm ball** with center  $x_c$  and radius r:

$${x \mid ||x - x_{c}|| \le r}$$

norm balls are convex sets

#### Norm cone:

$$\{(x,t) \mid ||x|| \le t\}$$

- norm cones are convex cones
- example: second order cone (norm cone for Euclidean norm)



# **Polyhedra**

**Polyhedron:** solution set of *finitely many* linear inequalities and equalities

$$Ax \leq b$$
,  $Cx = d$ 

≤ denotes componentwise inequality between vectors



a polyhedron is the intersection of a finite number of halfspaces and hyperplanes

### Positive semidefinite cone

#### **Notation**

- $S^n$  is the set of symmetric  $n \times n$  matrices
- $S_{+}^{n} = \{X \in S^{n} \mid X \geq 0\}$ : the set of positive semidefinite  $n \times n$  matrices

$$X \in \mathbf{S}_{+}^{n} \iff z^{T}Xz \ge 0 \text{ for all } z$$

 $\mathbf{S}_{+}^{n}$  is a convex cone

•  $S_{++}^n = \{X \in S^n \mid X > 0\}$ : the positive definite  $n \times n$  matrices

### **Example**

$$\left[\begin{array}{cc} x & y \\ y & z \end{array}\right] \in \mathbf{S}_{+}^{2}$$



## **Operations that preserve convexity**

methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C$$
,  $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$ 

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity
  - intersection
  - affine functions
  - perspective function
  - linear-fractional functions

### Intersection

the intersection of (any number of) convex sets is convex

### **Example**

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where  $p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt$ 

for m = 2:





### **Convex combination and convex hull**

**Convex combination** of  $x_1, \ldots, x_k$ : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with 
$$\theta_1 + \cdots + \theta_k = 1$$
,  $\theta_i \ge 0$ 

#### **Convex hull** (of a set *S*)

- conv (S) is set of all convex combinations of points in S
- $\bullet$  conv (S) is the intersection of all convex sets that contain S





### **Affine function**

suppose  $f: \mathbf{R}^n \to \mathbf{R}^m$  is an affine function:

$$f(x) = Ax + b$$

with  $A \in \mathbf{R}^{m \times n}$ ,  $b \in \mathbf{R}^m$ 

• the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n$$
 convex  $\Longrightarrow$   $f(S) = \{Ax + b \mid x \in S\}$  is convex

• the inverse image  $f^{-1}(C)$  of a convex set under f is convex

$$C \subseteq \mathbf{R}^m$$
 convex  $\Longrightarrow$   $f^{-1}(C) = \{x \in \mathbf{R}^n \mid Ax + b \in C\}$  is convex

prove the statements on page 2.19

**Solution** (image of convex set under f is convex)

• suppose  $S \subseteq \mathbb{R}^n$  is convex and consider two points  $y_1, y_2 \in f(S)$ :

$$y_1 = Ax_1 + b$$
,  $y_2 = Ax_2 + b$  where  $x_1, x_2 \in S$ 

• consider convex combination  $y = \theta y_1 + (1 - \theta)y_2$ :

$$y = \theta y_1 + (1 - \theta)y_2$$

$$= \theta (Ax_1 + b) + (1 - \theta)(Ax_2 + b)$$

$$= A(\theta x_1 + (1 - \theta)x_2) + b$$

$$= Ax + b$$

where  $x = \theta x_1 + (1 - \theta)x_2$ 

•  $x \in S$  because S is convex, so  $y = Ax + b \in f(S)$ 

# **Examples**

- scaling, translation, projection
- image and inverse image of norm ball under affine transformation

$${Ax + b \mid ||x|| \le 1}, \qquad {x \mid ||Ax + b|| \le 1}$$

• hyperbolic cone

$$\{x \mid x^T P x \le (c^T x)^2, \ c^T x \ge 0\}$$
 with  $P \in \mathbb{S}^n_+$ 

solution set of linear matrix inequality

$$\{x \mid x_1 A_1 + \dots + x_m A_m \leq B\}$$
 with  $A_i, B \in \mathbf{S}^p$ 

## Perspective and linear-fractional function

Perspective function  $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ :

$$P(x,t) = x/t,$$
 dom  $P = \{(x,t) \mid t > 0\}$ 

images and inverse images of convex sets under perspective are convex

Linear-fractional function  $f: \mathbb{R}^n \to \mathbb{R}^m$ :

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom  $f = \{x \mid c^T x + d > 0\}$ 

- the composition of the perspective function and an affine function
- image, inverse image of convex sets under linear-fractional function are convex

prove that images/inverse images of convex sets under perspective are convex **Solution** (image of convex set under perspective)

• suppose  $S \subseteq \mathbb{R}^{n+1}$  is convex and consider two points  $y_1, y_2 \in P(S)$ :

$$y_1 = x_1/t_1$$
,  $y_2 = x_2/t_2$  where  $(x_1, t_1), (x_2, t_2) \in S$  and  $t_1, t_2 > 0$ 

• consider convex combination  $y = \theta y_1 + (1 - \theta)y_2$  and verify that

$$y = \theta(x_1/t_1) + (1 - \theta)(x_2/t_2) = \frac{\mu x_1 + (1 - \mu)x_2}{\mu t_1 + (1 - \mu)t_2}$$

where

$$\mu = \frac{\theta/t_1}{\theta/t_1 + (1-\theta)/t_2}, \qquad 1 - \mu = \frac{(1-\theta)/t_2}{\theta/t_1 + (1-\theta)/t_2}$$

• this shows that y is the perspective x/t of the convex combination

$$(x,t) = \mu(x_1,t_1) + (1-\mu)(x_2,t_2)$$

 $(x, t) \in S$  by convexity of S, so  $y = x/t \in P(S)$ 

# **Example**

a linear-fractional function from  ${\bf R}^2$  to  ${\bf R}^2$ 

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$
,  $dom f = \{(x_1, x_2) \mid x_1 + x_2 + 1 > 0\}$ 



### **Proper cone**

**Proper cone:** a convex cone  $K \subseteq \mathbb{R}^n$  that satisfies three properties

- *K* is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)

#### **Examples**

nonnegative orthant

$$K = \mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{i} \ge 0, i = 1, \dots, n\}$$

- positive semidefinite cone  $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0, 1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

## **Generalized inequality**

**Generalized inequality** defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x <_K y \iff y - x \in \text{int } K$$

#### **Examples**

• componentwise inequality  $(K = \mathbf{R}_{+}^{n})$ 

$$x \leq_{\mathbf{R}_+^n} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality  $(K = \mathbf{S}_{+}^{n})$ 

$$X \leq_{\mathbf{S}_{+}^{n}} Y \iff Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in  $\leq_K$ 

**Properties:** many properties of  $\leq_K$  are similar to  $\leq$  on  $\mathbf{R}$ , e.g.,

$$x \leq_K y$$
,  $u \leq_K v \implies x + u \leq_K y + v$ 

#### Minimum and minimal elements

 $\leq_K$  is not in general a *linear ordering*: we can have  $x \not\leq_K y$  and  $y \not\leq_K x$ 

 $x \in S$  is the minimum element of S with respect to  $\leq_K$  if

$$y \in S \implies x \leq_K y$$

 $x \in S$  is a minimal element of S with respect to  $\leq_K$  if

$$y \in S$$
,  $y \leq_K x \implies y = x$ 

# Example $(K = \mathbb{R}^2_+)$

 $x_1$  is the minimum element of  $S_1$   $x_2$  is a minimal element of  $S_2$ 





## **Inner products**

in this course we will use the following standard inner products

• for vectors  $x, y \in \mathbf{R}^n$ :

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n = x^T y$$

• for matrices  $X, Y \in \mathbf{R}^{m \times n}$ 

$$\langle X, Y \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} Y_{ij} = \operatorname{tr}(X^{T} Y)$$

• for symmetric matrices  $X, Y \in \mathbf{S}^n$ 

$$\langle X, Y \rangle = \sum_{i=1}^{n} X_{ii} Y_{ii} + 2 \sum_{i>j} X_{ij} Y_{ij} = \operatorname{tr}(XY)$$

### **Dual cones**

#### **Dual cone** of a cone *K*:

$$K^* = \{ y \mid \langle y, x \rangle \ge 0 \text{ for all } x \in K \}$$

note: definition depends on choice of inner product

### **Examples**

|                            | K                              | $K^*$                                 |
|----------------------------|--------------------------------|---------------------------------------|
| nonnegative orthant        | $\mathbf{R}^n_+$               | $\mathbf{R}^n_+$                      |
| second order cone          | $\{(x,t) \mid   x  _2 \le t\}$ | $\{(x,t) \mid   x  _2 \le t\}$        |
| 1-norm cone                | $\{(x,t) \mid   x  _1 \le t\}$ | $\{(x,t) \mid   x  _{\infty} \le t\}$ |
| positive semidefinite cone | $\mathbf{S}^n_+$               | $\mathbf{S}^n_+$                      |

three of the four examples are *self-dual*  $(K^* = K)$ 

derive the duals of the four examples on page 2.29

**Solution**  $(K = \mathbb{R}^n_+ \text{ is self-dual for inner product } \langle y, x \rangle = y^T x)$ 

• suppose  $y \ge 0$ ; then  $y \in K^*$  because

$$y_1x_1 + \dots + y_nx_n \ge 0$$
 for all  $x \ge 0$ 

• suppose  $y \not\geq 0$ ; this means that  $y_k < 0$  for some k let x be the kth standard unit vector:

$$x_i = \left\{ \begin{array}{ll} 0 & i \neq k \\ 1 & i = k \end{array} \right.$$

then  $x \in K$  but the inner product  $y^T x = y_k$  is negative; therefore  $y \notin K^*$ 

**Solution**  $(K = \{(x, t) \mid ||x||_2 \le t\}$  is self-dual)

• suppose  $||y||_2 \le s$ ; then  $(y, s) \in K^*$  because for all  $(x, t) \in K$ ,

$$\left\langle \begin{bmatrix} y \\ s \end{bmatrix}, \begin{bmatrix} x \\ t \end{bmatrix} \right\rangle = y_1 x_1 + \dots + y_n x_n + st$$

$$\geq -\|y\|_2 \|x\|_2 + st \quad \text{(by Cauchy-Schwarz inequality)}$$

$$\geq s(t - \|x\|_2)$$

$$\geq 0$$

• suppose  $||y||_2 > s$ define  $x = -y/||y||_2$  and t = 1; then  $(x, t) \in K$  but

$$\left\langle \begin{bmatrix} y \\ s \end{bmatrix}, \begin{bmatrix} x \\ t \end{bmatrix} \right\rangle = y^T x + st = -\|y\|_2 + s < 0$$

therefore  $(y, s) \notin K^*$ 

**Solution**  $(K = \mathbf{S}_{+}^{n} \text{ is self-dual for inner product } \langle Y, X \rangle = \operatorname{tr}(YX))$ 

• suppose  $Y \geq 0$  with eigendecomposition

$$Y = \sum_{i=1}^{n} \lambda_i q_i q_i^T$$

then  $Y \in K^*$  because for all  $X \geq 0$ ,

$$tr(YX) = tr((\sum_{i=1}^{n} \lambda_i q_i q_i^T)X)$$

$$= \sum_{i=1}^{n} \lambda_i tr(q_i q_i^T X)$$

$$= \sum_{i=1}^{n} \lambda_i q_i^T X q_i$$

$$> 0$$

(last step follows because  $\lambda_i \geq 0$  and X is positive semidefinite)

• suppose  $Y \not\geq 0$ , *i.e.*, there exists a vector a with  $a^TYa < 0$  define  $X = aa^T$ ; then  $X \in \mathbf{S}^n_+$  but

$$tr(YX) = tr(Yaa^T) = a^T Ya < 0$$

therefore  $Y \notin K^*$ 

## Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist  $a \neq 0$ , b s.t.

$$a^T x \le b \text{ for } x \in C, \qquad a^T x \ge b \text{ for } x \in D$$



the hyperplane  $\{x \mid a^T x = b\}$  separates C and D

strict separation requires additional assumptions (e.g., C closed, D a singleton)

### **Supporting hyperplane theorem**

**Supporting hyperplane** to set C at boundary point  $x_0$ :

$$\{x \mid a^T x = a^T x_0\}$$

where  $a \neq 0$  and  $a^T x \leq a^T x_0$  for all  $x \in C$ 



### **Supporting hyperplane theorem:**

there exists a supporting hyperplane at every boundary point of a convex set C