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7. Statistical estimation

• maximum likelihood estimation

• optimal detector design

• experiment design
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Parametric distribution estimation

• distribution estimation problem: estimate probability density ?(H) of a random

variable from observed values

• parametric distribution estimation: choose from a family of densities ?G (H),

indexed by a parameter G

Maximum likelihood estimation

maximize (over G) log ?G (H)

• H is observed value

• ; (G) = log ?G (H) is called log-likelihood function

• can add constraints G ∈ � explicitly, or define ?G (H) = 0 for G ∉ �

• a convex optimization problem if log ?G (H) is concave in G for fixed H
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Linear measurements with IID noise

Linear measurement model

H8 = 0)8 G + {8, 8 = 1, . . . , <

• G ∈ R= is vector of unknown parameters

• {8 is IID measurement noise, with density ?(I)

• H8 is measurement: H ∈ R< has density

?G (H) =
<∏

8=1

?(H8 − 0)8 G)

Maximum likelihood estimate: any solution G of

maximize ; (G) =
<∑

8=1

log ?(H8 − 0)8 G)

(H is observed value)
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Examples

• Gaussian noise N(0, f2): ?(I) = (2cf2)−1/24−I
2/(2f2),

; (G) = −
<

2
log(2cf2) −

1

2f2

<∑

8=1

(0)8 G − H8)
2

ML estimate is LS solution

• Laplacian noise: ?(I) = (1/(20))4−|I |/0,

; (G) = −< log(20) −
1

0

<∑

8=1

|0)8 G − H8 |

ML estimate is ℓ1-norm solution

• uniform noise on [−0, 0]:

; (G) =

{
−< log(20) |0)

8
G − H8 | ≤ 0, 8 = 1, . . . , <

−∞ otherwise

ML estimate is any G with |0)
8
G − H8 | ≤ 0
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Logistic regression

random variable H ∈ {0, 1} with distribution

? = prob(H = 1) =
exp(0)D + 1)

1 + exp(0)D + 1)

• 0, 1 are parameters; D ∈ R= are (observable) explanatory variables

• estimation problem: estimate 0, 1 from < observations (D8, H8)

Log-likelihood function (for H1 = · · · = H: = 1, H:+1 = · · · = H< = 0):

; (0, 1) = log

(
:∏

8=1

exp(0)D8 + 1)

1 + exp(0)D8 + 1)

<∏

8=:+1

1

1 + exp(0)D8 + 1)

)

=

:∑

8=1

(0)D8 + 1) −
<∑

8=1

log(1 + exp(0)D8 + 1))

concave in 0, 1

Statistical estimation 7.5



Example (= = 1, < = 50 measurements)
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• circles show 50 points (D8, H8)

• solid curve is ML estimate of ? = exp(0D + 1)/(1 + exp(0D + 1))
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(Binary) hypothesis testing

Detection (hypothesis testing) problem

given observation of a random variable - ∈ {1, . . . , =}, choose between:

• hypothesis 1: - was generated by distribution ? = (?1, . . . , ?=)

• hypothesis 2: - was generated by distribution @ = (@1, . . . , @=)

Randomized detector

• a nonnegative matrix ) ∈ R2×=, with 1)) = 1)

• if we observe - = : , we choose hypothesis 1 with probability C1: , hypothesis 2

with probability C2:

• if all elements of ) are 0 or 1, it is called a deterministic detector
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Detection probability matrix

� =
[
) ? )@

]
=

[
1 − %fp %fn

%fp 1 − %fn

]

• %fp is probability of selecting hypothesis 2 if - is generated by distribution 1

(false positive)

• %fn is probability of selecting hypothesis 1 if - is generated by distribution 2

(false negative)

Multicriterion formulation of detector design

minimize (w.r.t. R2
+) (%fp, %fn) = (() ?)2, ()@)1)

subject to C1: + C2: = 1, : = 1, . . . , =

C8: ≥ 0, 8 = 1, 2, : = 1, . . . , =

variable ) ∈ R2×=
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Scalarization (with weight _ > 0)

minimize () ?)2 + _()@)1
subject to C1: + C2: = 1, C8: ≥ 0, 8 = 1, 2, : = 1, . . . , =

an LP with a simple analytical solution

(C1: , C2:) =

{
(1, 0) ?: ≥ _@:
(0, 1) ?: < _@:

• a deterministic detector, given by a likelihood ratio test

• if ?: = _@: for some : , any value 0 ≤ C1: ≤ 1, C1: = 1 − C2: is optimal (i.e.,

Pareto-optimal detectors include non-deterministic detectors)

Minimax detector

minimize max{%fp, %fn} = max{() ?)2, ()@)1}

subject to C1: + C2: = 1, C8: ≥ 0, 8 = 1, 2, : = 1, . . . , =

an LP; solution is usually not deterministic
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Example


?1 @1
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?3 @3

?4 @4



=
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solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector
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Experiment design

< linear measurements H8 = 0)
8
G + |8, 8 = 1, . . . , < of unknown G ∈ R=

• measurement errors |8 are IID N(0, 1)

• ML (least-squares) estimate is

Ĝ =

(
<∑

8=1

080
)
8

)−1
<∑

8=1

H808

• error 4 = Ĝ − G has zero mean and covariance

� = E 44) =

(
<∑

8=1

080
)
8

)−1

confidence ellipsoids are given by {G | (G − Ĝ))�−1(G − Ĝ) ≤ V}

Experiment design: choose 08 ∈ {{1, . . . , {?} (a set of possible test vectors) to

make � ‘small’
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Vector optimization formulation

minimize (w.r.t. S=
+) � =

(
?∑

:=1
<:{:{

)
:

)−1

subject to <: ≥ 0, <1 + · · · + <? = <

<: ∈ Z

• variables are <: (# vectors 08 equal to {:)

• difficult in general, due to integer constraint

Relaxed experiment design

assume < ≫ ?, use _: = <:/< as (continuous) real variable

minimize (w.r.t. S=
+) � = (1/<)

(
?∑

:=1
_:{:{

)
:

)−1

subject to _ � 0, 1)_ = 1

• common scalarizations: minimize log det � , tr � , _max(�), . . .

• can add other convex constraints, e.g., bound experiment cost 2)_ ≤ �
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�-optimal design

minimize log det

(
?∑

:=1
_:{:{

)
:

)−1

subject to _ � 0, 1)_ = 1

interpretation: minimizes volume of confidence ellipsoids

Dual problem
maximize log det, + = log =

subject to {)
:
,{: ≤ 1, : = 1, . . . , ?

interpretation: {G | G),G ≤ 1} is minimum volume ellipsoid centered at origin, that

includes all test vectors {:

Complementary slackness: for _, , primal and dual optimal

_: (1 − {):,{:) = 0, : = 1, . . . , ?

optimal experiment uses vectors {: on boundary of ellipsoid defined by ,
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Example (? = 20)

_1 = 0.5

_2 = 0.5

design uses two vectors, on boundary of ellipse defined by optimal ,
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Derivation of dual of page 7.13

first reformulate primal problem with new variable - :

minimize log det -−1

subject to - =

?∑
:=1

_:{:{
)
:
, _ � 0, 1)_ = 1

! (-, _, /, I, a) = log det -−1 + tr(/ (- −

?∑

:=1

_:{:{
)
: )) − I)_ + a(1)_ − 1)

• minimize over - by setting gradient to zero: −-−1 + / = 0

• minimum over _: is −∞ unless −{)
:
/{: − I: + a = 0

dual problem
maximize = + log det / − a

subject to {)
:
/{: ≤ a, : = 1, . . . , ?

change variable , = //a, and optimize over a to get dual of page 7.13
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