9. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton’s method
- self-concordant functions
- implementation
Unconstrained minimization

\[\text{minimize } f(x) \]

- \(f \) is convex and twice continuously differentiable; hence \(\text{dom } f \) is an open set
- we assume the optimal value \(p^* = \inf_x f(x) \) is finite and attained

Unconstrained minimization methods

- produce a sequence of points \(x^{(k)} \in \text{dom } f, \ k = 0, 1, \ldots \), with
 \[f(x^{(k)}) \to p^* \]
- can be interpreted as iterative methods for solving optimality condition
 \[\nabla f(x^*) = 0 \]
Initial point

algorithms in this chapter require a starting point $x^{(0)}$ that satisfies two conditions

- **feasibility**: $x^{(0)} \in \text{dom } f$
- the initial sublevel set S is closed, where

$$ S = \{ x \mid f(x) \leq f(x^{(0)}) \} $$

2nd condition is often hard to verify, except when all sublevel sets of f are closed

Closed function: a function with closed sublevel sets

- equivalent to property that the epigraph is a closed set
- convex f is closed if $\text{dom } f = \mathbb{R}^n$
- convex f is closed if $\text{dom } f$ is open and $f(x) \to \infty$ as $x \to \text{bd dom } f$
Examples

three convex differentiable functions

\[f(x) = \log(\sum_{i=1}^{m} \exp(a_i^T x + b_i)), \quad \text{dom } f = \mathbb{R}^n \]

\[g(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } g = \{x \mid a_i^T x < b_i, \ i = 1, \ldots, m\} \]

\[h(x) = x_1^2 + x_2^2, \quad \text{dom } h = \{(x_1, x_2) \mid x_1 > 1\} \]

- \(f \) is closed; every \(x^{(0)} \in \mathbb{R}^n \) satisfies closed initial sublevel set condition
- \(g \) is closed; every \(x^{(0)} \in \text{dom } g \) satisfies closed initial sublevel set condition
- \(h \) is not closed; no \(x^{(0)} \) satisfies closed initial sublevel set condition
many convergence results in this chapter require *strong convexity*

- \(f \) is strongly convex if there exists an \(m > 0 \) such that
 \[
 f(x) - \frac{m}{2} x^T x \quad \text{is a convex function}
 \]

- equivalent definition for differentiable function: \(\text{dom } f \) is convex and
 \[
 f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \|y - x\|_2^2 \quad \text{for all } x, y \in \text{dom } f \tag{1}
 \]

- equivalent definition for twice differentiable function: \(\text{dom } f \) is convex and
 \[
 \nabla^2 f(x) \succeq m I \quad \text{for all } x \in \text{dom } f
 \]
Implications of strong convexity

- sublevel sets are bounded (follows from (1))
- optimal value p^* is finite and

\[
 f(x) - p^* \leq \frac{1}{2m} \|\nabla f(x)\|_2^2 \quad \text{for all } x \in \text{dom } f
\]

useful as stopping criterion (if you know m)

Proof: from (1)

\[
p^* = \inf_y f(y)
\geq \inf_y (f(x) + \nabla f(x)^T(y - x) + \frac{m}{2} \|y - x\|_2^2)
\]

\[
= f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2
\]

minimizer on second line is $y = x - (1/m)\nabla f(x)$
Descent methods

in a descent method, the iterates satisfy

\[f(x^{(k+1)}) < f(x^{(k)}) \]

• the algorithms discussed in this chapter are of this type
• for convex \(f \), requires that \(v = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)}) \) is a descent direction, i.e.,

\[\nabla f(x^{(k)})^T v < 0 \] (3)

(the directional derivative at \(x^{(k)} \) in the direction \(v \) is negative)

necessity of (3) can be seen from the inequality

\[f(x^{(k+1)}) \geq f(x^{(k)}) + \nabla f(x^{(k)})^T v \]
General outline of a descent method

- different notation styles will be used for the update:

\[x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}, \quad x^+ = x + t \Delta x, \quad x := x + t \Delta x \]

- \(\Delta x \) is the step or search direction
- \(t \) is the step size or step length

Descent method

given a starting point \(x \in \text{dom } f \)

repeat

1. search direction: determine a descent direction \(\Delta x \)
2. line search: choose a step size \(t > 0 \)
3. update: \(x := x + t \Delta x \)

until stopping criterion is satisfied

next, we discuss step 2 (line search) and then step 1 (choices for \(\Delta x \))
Line search types

Exact line search: \[t = \arg\min_{t>0} f(x + t\Delta x) \]

Backtracking line search

- starting at \(t = 1 \), repeat \(t := \beta t \) until
 \[f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x \]

- \(\alpha \in (0, 1/2) \) and \(\beta \in (0, 1) \) are algorithm parameters
- in the example of the figure, we backtrack until \(t \leq t_0 \)
Gradient descent method

Gradient descent: the general descent method of page 9.8 with \(\Delta x = -\nabla f(x) \)
given: a starting point \(x \in \text{dom } f \)
repeat
1. \(\Delta x := -\nabla f(x) \)
2. line search: choose step size \(t \) via exact or backtracking line search
3. update: \(x := x + t\Delta x \)
until stopping criterion is satisfied

- stopping criterion usually of the form \(\|\nabla f(x)\|_2 \leq \epsilon \)
- convergence result: for strongly convex \(f \),
 \[
 f(x^{(k)}) - p^* \leq c^k (f(x^{(0)}) - p^*)
 \]
 \(c \in (0, 1) \) depends on \(m, x^{(0)} \), line search type
- iteration is simple and inexpensive, but convergence is often very slow
Quadratic problem in \mathbb{R}^2

$$f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \quad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1} \right)^k, \quad x_2^{(k)} = \left(\frac{-\gamma - 1}{\gamma + 1} \right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma = 10$:

![Graph showing the minimization process](image-url)
Nonquadratic example

\[f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1} \]

Figure shows iterates with backtracking line search.
Example in \mathbb{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

shows linear convergence, i.e., a straight line on a semilog plot
Steepest descent method

Normalized steepest descent direction (at x, for norm $\| \cdot \|$)

$$\Delta x_{\text{nsd}} = \arg\min \{ \nabla f(x)^T v \mid \|v\| = 1 \}$$

- direction Δx_{nsd} is unit-norm step with most negative directional derivative
- directional derivative in this direction is $\nabla f(x)^T \Delta x_{\text{nsd}} = -\|\nabla f(x)\|_*$
 (recall definition of dual norm $\|v\|_* = \sup_{\|u\|=1} v^T u$)

(Unnormalized) steepest descent direction

$$\Delta x_{\text{sd}} = \|\nabla f(x)\|_* \Delta x_{\text{nsd}}$$

multiple of Δx_{nsd}, scaled to make $\nabla f(x)^T \Delta x_{\text{sd}} = -\|\nabla f(x)\|_*^2$

Steepest descent method

- general descent method of page 9.8 with $\Delta x = \Delta x_{\text{sd}}$
- convergence properties are similar to gradient descent
Steepest descent direction for quadratic norm

• for Euclidean norm ($\| \cdot \| = \| \cdot \|_2$)

$$\Delta x_{\text{nsd}} = -\frac{\nabla f(x)}{\| \nabla f(x) \|_2}, \quad \Delta x_{\text{sd}} = -\nabla f(x)$$

• as an extension, define quadratic norm and dual norm (for $P \in S_{++}^n$)

$$\|x\| = (x^T P x)^{1/2} = \| P^{1/2} x \|_2, \quad \|y\|^* = (y^T P^{-1} y)^{1/2} = \| P^{-1/2} y \|_2$$

• normalized and unnormalized steepest descent directions for this norm are

$$\Delta x_{\text{nsd}} = -\frac{P^{-1} \nabla f(x)}{\| P^{-1/2} \nabla f(x) \|_2}$$

$$\Delta x_{\text{sd}} = -P^{-1} \nabla f(x)$$
Steepest descent direction for 1-norm

- for $\| \cdot \| = \| \cdot \|_1$ and its dual norm $\| \cdot \|_\infty$, steepest descent directions are

$$\Delta x_{\text{nsd}} = \frac{-\partial f(x)/\partial x_i}{|\partial f(x)/\partial x_i|} e_i$$

$$\Delta x_{\text{sd}} = -\frac{\partial f(x)}{\partial x_i} e_i,$$

where i is an index with

$$\left| \frac{\partial f(x)}{\partial x_i} \right| = \| \nabla f(x) \|_\infty = \max_{k=1,...,n} \left| \frac{\partial f(x)}{\partial x_k} \right|$$

- not necessarily unique

- steepest descent method for 1-norm updates one coordinate of x at a time
Choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show \(\{ x \mid \| x - x^{(k)} \|_P = 1 \} \)
- equivalent to gradient descent after change of variables \(\bar{x} = P^{1/2}x \)
- figures show that choice of \(P \) has strong effect on speed of convergence
Newton step

\[\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) \]

Interpretations

- \(x + \Delta x_{nt} \) minimizes second order approximation \(\hat{f} \) of \(f \) at \(x \)

\[\hat{f}(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v \] (4)

- \(x + \Delta x_{nt} \) solves linearized optimality condition

\[\nabla f(x + v) \approx \nabla \hat{f}(x + v) = \nabla f(x) + \nabla^2 f(x) v = 0 \]
Interpretation as steepest descent direction in local norm

Δx_{nt} is steepest descent direction at x in local norm defined by Hessian

$$\|u\|_{\nabla^2 f(x)} = (u^T \nabla^2 f(x) u)^{1/2}$$

- dashed lines are contour lines of f
- ellipse is $\{x + v \mid v^T \nabla^2 f(x) v = 1\}$
- arrow shows $-\nabla f(x)$
Affine invariance of Newton step

suppose we make a change of variables $x = Ay$, with A nonsingular, and solve

$$\text{minimize } g(y) = f(Ay)$$

- gradient and Hessian of g are

$$\nabla g(y) = A^T \nabla f(Ay), \quad \nabla^2 g(y) = A^T \nabla^2 f(Ay)A$$

- Newton step of g at y is

$$\Delta y_{nt} = -\nabla^2 g(y)^{-1} \nabla g(y) = -A^{-1} \nabla^2 f(Ay)^{-1} \nabla^2 f(Ay)$$

- if $y = A^{-1}x$, then

$$\Delta y_{nt} = A^{-1} \Delta x_{nt}, \quad \text{where } \Delta x_{nt} \text{ is Newton step of } f \text{ at } x$$

Newton step is invariant under affine change of variables
Newton decrement

\[\lambda(x) = (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2} \]

a measure of the proximity of \(x \) to the minimizer \(x^* \)

- \(\lambda(x)^2 = -\nabla f(x)^T \Delta x_{nt} \) is negative of directional derivative in Newton direction
- \(\lambda(x) \) is the norm of the Newton step in the quadratic Hessian norm

\[\lambda(x) = (\Delta x_{nt}^T \nabla^2 f(x) \Delta x_{nt})^{1/2} \]

- \(\lambda(x) \) gives estimate of \(f(x) - p^* \), estimated using quadratic approximation (4)

\[f(x) - \inf_y \hat{\lambda}(y) = \frac{1}{2} \lambda(x)^2 \]

- \(\lambda(x) \) is affine invariant (unlike \(\| \nabla f(x) \|_2 \))
Newton’s method

given: a starting point \(x \in \text{dom } f \), tolerance \(\epsilon > 0 \)
repeat

1. *compute Newton step and decrement*
 \[
 \Delta x_{nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda(x) := (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}
 \]

2. *stopping criterion:* quit if \(\lambda(x)^2/2 \leq \epsilon \)
3. *line search:* choose step size \(t \) by backtracking line search
4. *update:* \(x := x + t \Delta x_{nt} \)

• we use line search of page 9.9: starting at \(t = 1 \), backtrack \((t := \beta t) \) until

 \[
 f(x + t \Delta x_{nt}) < f(x) + \alpha t \nabla f(x)^T \Delta x_{nt}
 = f(x) - \alpha t \lambda(x)^2
 \]

• typical values of line search parameters are \(\alpha = 0.01, \beta = 1/2 \)
Affine invariance of Newton’s method

- we already noted that Newton step and Newton decrement are affine invariant
- affine invariance of $\lambda(x)$ makes line search, stopping criterion affine invariant
- hence, for Newton method applied to $g(y) = f(Ay)$, started at $y^{(0)} = A^{-1}x^{(0)}$,

$$y^{(k)} = A^{-1}x^{(k)} \text{ for all } k$$

where $x^{(k)}$ are iterates of Newton method applied to $f(x)$, started at $x^{(0)}$
- number of iterates is independent of linear changes of coordinates
Classical convergence analysis

Assumptions

- \(f \) strongly convex with constant \(m \)
- \(\nabla^2 f \) is Lipschitz continuous: there exists a constant \(L \) such that

\[
\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \leq L\|x - y\|_2 \quad \text{for all } x, y \in \text{dom } f
\]

constant \(L \) measures how well \(f \) is approximated by a quadratic function

Summary: there exist constants \(\eta \in (0, m^2/L) \) and \(\gamma > 0 \) such that

- if \(\|\nabla f(x^{(k)})\|_2 \geq \eta \), then

\[
f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma
\]

- if \(\|\nabla f(x^{(k)})\|_2 < \eta \), then

\[
\frac{L}{2m^2}\|\nabla f(x^{(k+1)})\|_2 \leq \left(\frac{L}{2m^2}\|\nabla f(x^{(k)})\|_2\right)^2
\]
Classical convergence analysis

Damped Newton phase \((\| \nabla f(x^{(k)}) \|_2 \geq \eta) \)
- most iterations require backtracking steps
- function value decreases by at least \(\gamma \)
- if \(p^* > -\infty \), this phase ends after at most
 \[
 \frac{f(x^{(0)}) - p^*}{\gamma} \text{ iterations}
 \]

Quadratically convergent phase \((\| \nabla f(x^{(k)}) \|_2 < \eta) \)
- all iterations use step size \(t = 1 \)
- gradient converges to zero quadratically: once \(\| \nabla f(x^{(j)}) \|_2 < \eta \),
 \[
 \frac{L}{2m^2} \| \nabla f(x^k) \|_2 \leq \left(\frac{L}{2m^2} \| \nabla f(x^j) \|_2 \right)^{2^{k-j}} \leq \left(\frac{1}{2} \right)^{2^{k-j}}, \quad k \geq j
 \]
- inequality (2) shows that \((f(x^{(k)}) - p^*) \rightarrow 0 \) quadratically
Classical convergence analysis

Conclusion: number of iterations until $f(x^{(k)}) - p^* \leq \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ, ϵ_0 are constants that depend on $m, L, x^{(0)}$
- 2nd term is small (of the order of 6), almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_0) are usually unknown
- provides qualitative insight in convergence properties (two algorithm phases)
Examples

Example in \mathbb{R}^2 (page 9.12)

- backtracking parameters $\alpha = 0.1$, $\beta = 0.7$
- converges in only 5 steps
- quadratic local convergence
Examples

Example in \mathbb{R}^{100} (page 9.13)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm
Examples

Example in \mathbb{R}^{10000} (with sparse a_i)

$$f(x) = -\sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{100000} \log(b_i - a_i^T x)$$

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- performance similar as for small examples
Self-concordance

Shortcomings of classical convergence analysis

- depends on unknown constants \((m, L) \)
- bound is not affinely invariant, although Newton’s method is

Convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions (self-concordant functions)
- developed to analyze interior-point methods for convex optimization
Self-concordant functions

Definition

• a convex function $f : \mathbb{R} \to \mathbb{R}$ is self-concordant if

$$|f'''(x)| \leq 2f''(x)^{3/2} \quad \text{for all } x \in \text{dom } f$$

• a convex function $f : \mathbb{R}^n \to \mathbb{R}$ is self-concordant if restriction to a line

$$g(t) = f(x + tv)$$

is a self-concordant function of t for all $x \in \text{dom } f$ and v

Affine invariance

• if $f : \mathbb{R}^n \to \mathbb{R}$ is self-concordant, then $\tilde{f}(y) = f(Ay)$ is self-concordant

• this is easily checked for $f : \mathbb{R} \to \mathbb{R}$ and $\tilde{f}(y) = f(ay)$:

$$|\tilde{f}'''(y)| = |a|^3 |f'''(ay)| \leq 2|a|^3 f''(ay)^{3/2} = 2\tilde{f}''(y)^{3/2}$$
Examples of self-concordant functions

- linear and quadratic functions
- negative logarithm: \(f(x) = -\log x \)
- negative entropy plus negative logarithm: \(f(x) = x \log x - \log x \)
- logarithmic barrier for set of linear inequalities
 \[
 f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, \ i = 1, \ldots, m\}
 \]
- log-det barrier
 \[
 f(X) = -\log \det X, \quad \text{dom } f = S^n_{++}
 \]
- logarithmic barrier for second order cone
 \[
 f(x) = -\log(y^2 - x^T x), \quad \text{dom } f = \{(x, y) \mid \|x\|_2 < y\}
 \]
Summary: there exist constants $\eta \in (0, 1/4]$, $\gamma > 0$ such that

- if $\lambda(x^{(k)}) > \eta$, then
 $$f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma$$
- if $\lambda(x^{(k)}) \leq \eta$, then
 $$2\lambda(x^{(k+1)}) \leq (2\lambda(x^{(k)}))^2$$

η and γ only depend on backtracking parameters α, β

Complexity bound: number of iterations until $f(x^{(k)}) - p^* \leq \epsilon$ is bounded by

$$\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2 (1/\epsilon)$$
Implementation of Newton's method

main effort in each iteration: evaluate derivatives and solve Newton system

\[H \Delta x = -g \]

where \(H = \nabla^2 f(x) \) and \(g = \nabla f(x) \)

Via Cholesky factorization

\[H = LL^T, \quad \Delta x_{nt} = -L^{-T} L^{-1} g, \quad \lambda(x) = \|L^{-1} g\|_2 \]

- cost: \((1/3)n^3\) flops for unstructured system, plus cost of evaluating derivatives
- cost \(\ll (1/3)n^3\) if \(H \) sparse or highly structured (for example, banded)
Structured-plus-low-rank matrices

a type of structured linear equations, common in optimization:

\[(A + BC)x = b\] \[\text{with } A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times n}\] \(5\)

- \(A\) has some property that makes \(Ax = b\) easy to solve, for example, diagonal
- \(B, C\) are dense, with \(p \ll n\)
- using an auxiliary variable \(y\), equation can be written as

\[
\begin{bmatrix}
A & B \\
C & -I
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
b \\
0
\end{bmatrix}
\] \(6\)

- instead of solving \((5)\) directly, can solve \((6)\) by eliminating \(x\): first solve equation

\[(I + CA^{-1}B)y = CA^{-1}b\]

to find \(y\); then solve \(Ax = b - By\) to find \(x\)
Matrix inversion lemma

if A and $A + BC$ are nonsingular, then $I + CA^{-1}B$ is nonsingular and

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1} \quad (7)$$

- easily verified by multiplying $A + BC$ and right-hand side of (7)
- can be derived via method on previous page: $x = (A + BC)^{-1}b$ is equal to

$$
x = A^{-1}(b - By)
= A^{-1}(b - B(I + CA^{-1}B)^{-1}CA^{-1}b)
= (A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1})b \quad (8)
$$

since this is true for all b, matrix on the right-hand side of (8) is $(A + BC)^{-1}$
- method on previous page can be viewed as evaluating $(A + BC)^{-1}b$ via (8)
Example

Newton method for unconstrained optimization with cost function $f : \mathbb{R}^n \rightarrow \mathbb{R}$,

$$f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \phi(Ax + b)$$

- functions $\psi_i : \mathbb{R} \rightarrow \mathbb{R}$ and $\phi : \mathbb{R}^p \rightarrow \mathbb{R}$ are convex
- assume $A \in \mathbb{R}^{p \times n}$, dense, with $p \ll n$
- Hessian of f is diagonal plus low rank:

$$H = D + A^T G A$$

where D is diagonal with $D_{ii} = \psi_i''(x_i)$, and $G = \nabla^2 \phi(Ax + b)$
Example

compare two methods for solving Newton equation \((D + A^T GA)Δx = −g\)

Method 1: form \(D + A^T GA\), solve via dense Cholesky
cost dominated by cost of factorization \(((1/3)n^3\) flops)

Method 2: follow idea on page 9.35

- compute Cholesky factorization \(G = LL^T\) and write Newton system as

\[
\begin{bmatrix}
D & A^T L \\
L^T A & -I
\end{bmatrix}
\begin{bmatrix}
Δx \\
y
\end{bmatrix}
=
\begin{bmatrix}
−g \\
0
\end{bmatrix}
\]

- eliminate \(Δx\) from first equation: solve two equations

\[(I + L^T A D^{-1} A^T L)y = −L^T A D^{-1} g, \quad DΔx = −g − A^T L y\]

- cost is roughly \(2p^2 n\) flops, dominated by computation of \(L^T A D^{-1} A^T L\)

complexity of method 2 is linear in \(n\)