10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton’s method
- self-concordant functions
- implementation
Unconstrained minimization

minimize \(f(x) \)

- \(f \) convex, twice continuously differentiable (hence \(\text{dom} \ f \) open)
- we assume optimal value \(p^* = \inf_x f(x) \) is attained (and finite)

Unconstrained minimization methods

- produce sequence of points \(x^{(k)} \in \text{dom} \ f, \ k = 0, 1, \ldots \), with
 \[
 f(x^{(k)}) \to p^*
 \]

- can be interpreted as iterative methods for solving optimality condition
 \[
 \nabla f(x^*) = 0
 \]
Initial point and sublevel set

algorithms in this chapter require a starting point \(x^{(0)}\) such that

- \(x^{(0)} \in \text{dom } f\)
- sublevel set \(S = \{x \mid f(x) \leq f(x^{(0)})\}\) is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

- equivalent to condition that \(\text{epi } f\) is closed
- true if \(\text{dom } f = \mathbb{R}^n\)
- true if \(f(x) \to \infty\) as \(x \to \text{bd dom } f\)

examples of differentiable functions with closed sublevel sets:

\[
f(x) = \log\left(\sum_{i=1}^{m} \exp(a_i^T x + b_i)\right), \quad f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)
\]
Strong convexity and implications

f is strongly convex on S if there exists an $m > 0$ such that

$$\nabla^2 f(x) \succeq m I \quad \text{for all } x \in S$$

Implications

- for $x, y \in S$,
 $$f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \|x - y\|_2^2$$
- S is bounded
- $p^* > -\infty$ and for $x \in S$,
 $$f(x) - p^* \leq \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m)
Descent methods

\[x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)}) \]

• other notations:
 \[x^+ = x + t\Delta x, \quad x := x + t\Delta x \]

• \(\Delta x \) is the step, or search direction; \(t \) is the step size, or step length

• for convex \(f \): if \(f(x^+) < f(x) \) then \(\Delta x \) must be a descent direction:

\[\nabla f(x)^T \Delta x < 0 \]

General descent method

given: a starting point \(x \in \text{dom } f \)
repeat
 1. determine a descent direction \(\Delta x \)
 2. line search: choose a step size \(t > 0 \)
 3. update: \(x := x + t\Delta x \)
until stopping criterion is satisfied
Line search types

Exact line search: \(t = \arg\min_{t>0} f(x + t\Delta x) \)

Backtracking line search (with parameters \(\alpha \in (0, 1/2), \beta \in (0, 1) \))

- starting at \(t = 1 \), repeat \(t := \beta t \) until
 \[
 f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x
 \]

- graphical interpretation: backtrack until \(t \leq t_0 \)
Gradient descent method

Gradient descent: general descent method with $\Delta x = -\nabla f(x)$

given: a starting point $x \in \text{dom } f$
repeat
1. $\Delta x := -\nabla f(x)$
2. *line search:* choose step size t via exact or backtracking line search
3. *update:* $x := x + t\Delta x$
until stopping criterion is satisfied

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
- convergence result: for strongly convex f,

\[f(x^{(k)}) - p^* \leq c^k (f(x^{(0)}) - p^*) \]

$c \in (0, 1)$ depends on $m, x^{(0)}$, line search type

- very simple, but often very slow
Quadratic problem in \mathbb{R}^2

$$f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \quad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \quad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma = 10$:
Nonquadratic example

\[f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1} \]
Example in \mathbb{R}^{100}

\[f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x) \]

'linear' convergence, \textit{i.e.}, a straight line on a semilog plot
Steepest descent method

Normalized steepest descent direction (at x, for norm $\| \cdot \|$):

$$\Delta x_{\text{nsd}} = \arg\min \{ \nabla f(x)^T v \mid \|v\| = 1 \}$$

interpretation: for small v,

$$f(x + v) \approx f(x) + \nabla f(x)^T v$$

direction Δx_{nsd} is unit-norm step with most negative directional derivative

(Unnormalized) steepest descent direction

$$\Delta x_{\text{sd}} = \| \nabla f(x) \|_* \Delta x_{\text{nsd}}$$

satisfies $\nabla f(x)^T \Delta x_{\text{sd}} = -\| \nabla f(x) \|_*^2$

Steepest descent method

- general descent method with $\Delta x = \Delta x_{\text{sd}}$
- convergence properties similar to gradient descent
Examples

- Euclidean norm: $\Delta x_{sd} = -\nabla f(x)$
- Quadratic norm $\|x\|_P = (x^T P x)^{1/2}$ ($P \in S_+^n$):
 $$\Delta x_{sd} = -P^{-1} \nabla f(x)$$
- ℓ_1-norm: $\Delta x_{sd} = -(\partial f(x)/\partial x_i) e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_\infty$

Unit balls, steepest descent directions for a quadratic norm and ℓ_1-norm:
Choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show \(\{ x \mid \|x - x^{(k)}\|_P = 1 \} \)
- equivalent interpretation of steepest descent with quadratic norm \(\| \cdot \|_P \): gradient descent after change of variables \(\bar{x} = P^{1/2}x \)

shows choice of \(P \) has strong effect on speed of convergence
Newton step

\[\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) \]

Interpretations

- \(x + \Delta x_{nt} \) minimizes second order approximation

\[\tilde{f}(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v \]

- \(x + \Delta x_{nt} \) solves linearized optimality condition

\[\nabla f(x + v) \approx \nabla \tilde{f}(x + v) = \nabla f(x) + \nabla^2 f(x) v = 0 \]
• \(\Delta x_{nt} \) is steepest descent direction at \(x \) in local Hessian norm

\[
\|u\|_{\nabla^2 f(x)} = (u^T \nabla^2 f(x) u)^{1/2}
\]

dashed lines are contour lines of \(f \); ellipse is \(\{x + v \mid v^T \nabla^2 f(x) v = 1\} \)

arrow shows \(-\nabla f(x)\)
Newton decrement

$$\lambda(x) = (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$$

a measure of the proximity of x to x^*

Properties

• gives an estimate of $f(x) - p^*$, using quadratic approximation \tilde{f}:

$$f(x) - \inf_y \tilde{f}(y) = \frac{1}{2} \lambda(x)^2$$

• equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = (\Delta x_{nt}^T \nabla^2 f(x) \Delta x_{nt})^{1/2}$$

• directional derivative in the Newton direction: $\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$

• affine invariant (unlike $\|\nabla f(x)\|_2$)
Newton's method

given: a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$
repeat
1. compute the Newton step and decrement
 \[\Delta x_{nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \]
2. stopping criterion: quit if $\lambda^2 / 2 \leq \epsilon$
3. line search: choose step size t by backtracking line search
4. update: $x := x + t \Delta x_{nt}$

Affine invariance

- Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are
 \[y^{(k)} = T^{-1}x^{(k)} \]
- independent of linear changes of coordinates
Classical convergence analysis

Assumptions

- \(f \) strongly convex on \(S \) with constant \(m \)
- \(\nabla^2 f \) is Lipschitz continuous on \(S \), with constant \(L > 0 \):
 \[
 \| \nabla^2 f(x) - \nabla^2 f(y) \|_2 \leq L \| x - y \|_2
 \]

 \((L \) measures how well \(f \) can be approximated by a quadratic function)\n
Outline: there exist constants \(\eta \in (0, m^2/L), \gamma > 0 \) such that

- if \(\| \nabla f(x) \|_2 \geq \eta \), then \(f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma \)
- if \(\| \nabla f(x) \|_2 < \eta \), then
 \[
 \frac{L}{2m^2} \| \nabla f(x^{(k+1)}) \|_2 \leq \left(\frac{L}{2m^2} \| \nabla f(x^{(k)}) \|_2 \right)^2
 \]
Classical convergence analysis

Damped Newton phase \((\|\nabla f(x)\|_2 \geq \eta)\)

- most iterations require backtracking steps
- function value decreases by at least \(\gamma\)
- if \(p^* > -\infty\), this phase ends after at most \((f(x^{(0)}) - p^*)/\gamma\) iterations

Quadratically convergent phase \((\|\nabla f(x)\|_2 < \eta)\)

- all iterations use step size \(t = 1\)
- \(\|\nabla f(x)\|_2\) converges to zero quadratically: if \(\|\nabla f(x^{(k)})\|_2 < \eta\), then

\[
\frac{L}{2m^2}\|\nabla f(x^l)\|_2 \leq \left(\frac{L}{2m^2}\|\nabla f(x^k)\|_2\right)^{2^{l-k}} \leq \left(\frac{1}{2}\right)^{2^{l-k}}, \quad l \geq k
\]
Classical convergence analysis

Conclusion: number of iterations until $f(x) - p^* \leq \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ, ϵ_0 are constants that depend on $m, L, x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_0) are usually unknown
- provides qualitative insight in convergence properties (i.e., explains two algorithm phases)
Examples

Example in \mathbb{R}^2 (page 10.9)

- backtracking parameters $\alpha = 0.1$, $\beta = 0.7$
- converges in only 5 steps
- quadratic local convergence
Examples

Example in \mathbb{R}^{100} (page 10.10)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm
Examples

Example in \mathbb{R}^{10000} (with sparse a_i)

$$f(x) = -\sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{10000} \log(b_i - a_i^T x)$$

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- performance similar as for small examples
Self-concordance

Shortcomings of classical convergence analysis

- depends on unknown constants \((m, L, \ldots)\)
- bound is not affinely invariant, although Newton’s method is

Convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions (‘self-concordant’ functions)
- developed to analyze polynomial-time interior-point methods for convex optimization
Self-concordant functions

Definition

- convex \(f : \mathbb{R} \rightarrow \mathbb{R} \) is self-concordant if
 \[
 |f'''(x)| \leq 2f''(x)^{3/2} \text{ for all } x \in \text{dom } f
 \]

- \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is self-concordant if \(g(t) = f(x + tv) \) is s.c. for all \(x \in \text{dom } f \) and \(v \)

Examples on \(\mathbb{R} \)

- linear and quadratic functions
- negative logarithm \(f(x) = -\log x \)
- negative entropy plus negative logarithm: \(f(x) = x \log x - \log x \)

Affine invariance: if \(f : \mathbb{R} \rightarrow \mathbb{R} \) is s.c., then \(\tilde{f}(y) = f(ay + b) \) is s.c.:

\[
\tilde{f}'''(y) = a^3 f'''(ay + b), \quad \tilde{f}''(y) = a^2 f''(ay + b)
\]
Self-concordant calculus

Properties

• preserved under sums and positive scaling by factor ≥ 1
• preserved under composition with affine function
• if g is convex with $\text{dom } g = \mathbb{R}_{++}$ and $|g'''(x)| \leq 3g''(x)/x$ then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

Examples: properties can be used to show that the following are s.c.

• $f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$ on $\{x \mid a_i^T x < b_i, \ i = 1, \ldots, m\}$
• $f(X) = -\log \det X$ on \mathbb{S}_{++}^{n}
• $f(x) = -\log(y^2 - x^T x)$ on $\{(x, y) \mid \|x\|_2 < y\}$
Convergence analysis for self-concordant functions

Summary: there exist constants $\eta \in (0, 1/4]$, $\gamma > 0$ such that

- if $\lambda(x) > \eta$, then
 \[f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma \]
- if $\lambda(x) \leq \eta$, then
 \[2\lambda(x^{(k+1)}) \leq \left(2\lambda(x^{(k)})\right)^2 \]

(η and γ only depend on backtracking parameters α, β)

Complexity bound: number of Newton iterations bounded by

\[\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(1/\epsilon) \]

for $\alpha = 0.1$, $\beta = 0.8$, $\epsilon = 10^{-10}$, bound evaluates to $375(f(x^{(0)}) - p^*) + 6$
Numerical example

150 randomly generated instances of

\[\text{minimize } f(x) = - \sum_{i=1}^{m} \log(b_i - a_i^T x) \]

○: \(m = 100, n = 50 \)
□: \(m = 1000, n = 500 \)
◇: \(m = 1000, n = 50 \)

- number of iterations much smaller than \(375(f(x^{(0)}) - p^*) + 6 \)
- bound of the form \(c(f(x^{(0)}) - p^*) + 6 \) with smaller \(c \) (empirically) valid
Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

\[H \Delta x = -g \]

where \(H = \nabla^2 f(x), \ g = \nabla f(x) \)

Via Cholesky factorization

\[H = LL^T, \quad \Delta x_{nt} = -L^{-T}L^{-1}g, \quad \lambda(x) = \|L^{-1}g\|_2 \]

• cost \((1/3)n^3\) flops for unstructured system
• cost \(\ll (1/3)n^3\) if \(H\) sparse, banded
Example of dense Newton system with structure

\[f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \quad H = D + A^T H_0 A \]

- assume \(A \in \mathbb{R}^{p \times n} \), dense, with \(p \ll n \)
- \(D \) diagonal with diagonal elements \(\psi_i''(x_i) \); \(H_0 = \nabla^2 \psi_0(Ax + b) \)

Method 1: form \(H \), solve via dense Cholesky factorization (cost \((1/3)n^3\))

Method 2 (page 9.15): factor \(H_0 = L_0 L_0^T \); write Newton system as

\[D \Delta x + A^T L_0 w = -g, \quad L_0^T A \Delta x - w = 0 \]

eliminate \(\Delta x \) from first equation; compute \(w \) and \(\Delta x \) from

\[(I + L_0^T A D^{-1} A^T L_0)w = -L_0^T A D^{-1} g, \quad D \Delta x = -g - A^T L_0 w \]

cost: \(2p^2 n \) (dominated by computation of \(L_0^T A D^{-1} A^T L_0 \)