9. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method
- self-concordant functions
- implementation

Unconstrained minimization

$$
\text { minimize } \quad f(x)
$$

- f is convex and twice continuously differentiable; hence $\operatorname{dom} f$ is an open set
- we assume the optimal value $p^{\star}=\inf _{x} f(x)$ is finite and attained

Unconstrained minimization methods

- produce a sequence of points $x^{(k)} \in \operatorname{dom} f, k=0,1, \ldots$, with

$$
f\left(x^{(k)}\right) \rightarrow p^{\star}
$$

- can be interpreted as iterative methods for solving optimality condition

$$
\nabla f\left(x^{\star}\right)=0
$$

Initial point

algorithms in this chapter require a starting point $x^{(0)}$ that satisfies two conditions

- feasiblity: $x^{(0)} \in \operatorname{dom} f$
- the initial sublevel set S is closed, where

$$
S=\left\{x \mid f(x) \leq f\left(x^{(0)}\right)\right\}
$$

2nd condition is often hard to verify, except when all sublevel sets of f are closed

Closed function: a function with closed sublevel sets

- equivalent to property that the epigraph is a closed set
- convex f is closed if $\operatorname{dom} f=\mathbf{R}^{n}$
- convex f is closed if dom f is open and $f(x) \rightarrow \infty$ as $x \rightarrow \operatorname{bd} \operatorname{dom} f$

Examples

three convex differentiable functions

$$
\begin{array}{ll}
f(x)=\log \left(\sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)\right), & \operatorname{dom} f=\mathbf{R}^{n} \\
g(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), & \operatorname{dom} g=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\} \\
h(x)=x_{1}^{2}+x_{2}^{2}, & \operatorname{dom} h=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>1\right\}
\end{array}
$$

- f is closed; every $x^{(0)} \in \mathbf{R}^{n}$ satisfies closed initial sublevel set condition
- g is closed; every $x^{(0)} \in \operatorname{dom} g$ satisfies closed initial sublevel set condition
- h is not closed; no $x^{(0)}$ satisfies closed initial sublevel set condition

Strong convexity

many convergence results in this chapter require strong convexity

- f is strongly convex if there exists an $m>0$ such that

$$
f(x)-\frac{m}{2} x^{T} x \quad \text { is a convex function }
$$

- equivalent definition for differentiable function: $\operatorname{dom} f$ is convex and

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2} \quad \text { for all } x, y \in \operatorname{dom} f \tag{1}
\end{equation*}
$$

- equivalent definition for twice differentiable function: $\operatorname{dom} f$ is convex and

$$
\nabla^{2} f(x) \geq m I \quad \text { for all } x \in \operatorname{dom} f
$$

Implications of strong convexity

- sublevel sets are bounded (follows from (1))
- optimal value p^{\star} is finite and

$$
\begin{equation*}
f(x)-p^{\star} \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2} \quad \text { for all } x \in \operatorname{dom} f \tag{2}
\end{equation*}
$$

useful as stopping criterion (if you know m)
Proof: from (1)

$$
\begin{aligned}
p^{\star} & =\inf _{y} f(y) \\
& \geq \inf _{y}\left(f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}\right) \\
& =f(x)-\frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}
\end{aligned}
$$

minimizer on second line is $y=x-(1 / m) \nabla f(x)$

Descent methods

in a descent method, the iterates satisfy

$$
f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

- the algorithms discussed in this chapter are of this type
- for convex f, requires that $v=x^{(k+1)}-x^{(k)}$ is a descent direction, i.e.,

$$
\begin{equation*}
\nabla f\left(x^{(k)}\right)^{T} v<0 \tag{3}
\end{equation*}
$$

(the directional derivative at $x^{(k)}$ in the direction v is negative) necessity of (3) can be seen from the inequality

$$
f\left(x^{(k+1)}\right) \geq f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{T} v
$$

General outline of a descent method

- different notation styles will be used for the update:

$$
x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)}, \quad x^{+}=x+t \Delta x, \quad x:=x+t \Delta x
$$

- Δx is the step or search direction
- t is the step size or step length

Descent method

given a starting point $x \in \operatorname{dom} f$
repeat

1. search direction: determine a descent direction Δx
2. line search: choose a step size $t>0$
3. update: $x:=x+t \Delta x$
until stopping criterion is satisfied
next, we discuss step 2 (line search) and then step 1 (choices for Δx)

Line search types

Exact line search: $t=\operatorname{argmin} f(x+t \Delta x)$

$$
t>0
$$

Backtracking line search

- starting at $t=1$, repeat $t:=\beta t$ until

$$
f(x+t \Delta x)<f(x)+\alpha t \nabla f(x)^{T} \Delta x
$$

- $\alpha \in(0,1 / 2)$ and $\beta \in(0,1)$ are algorithm parameters
- in the example of the figure, we backtrack until $t \leq t_{0}$

Gradient descent method

Gradient descent: the general descent method of page 9.8 with $\Delta x=-\nabla f(x)$
given: a starting point $x \in \operatorname{dom} f$
repeat

1. $\Delta x:=-\nabla f(x)$
2. line search: choose step size t via exact or backtracking line search
3. update: $x:=x+t \Delta x$
until stopping criterion is satisfied

- stopping criterion usually of the form $\|\nabla f(x)\|_{2} \leq \epsilon$
- convergence result: for strongly convex f,

$$
f\left(x^{(k)}\right)-p^{\star} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{\star}\right)
$$

$c \in(0,1)$ depends on $m, x^{(0)}$, line search type

- iteration is simple and inexpensive, but convergence is often very slow

Quadratic problem in \mathbf{R}^{2}

$$
f(x)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>0)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$:

Nonquadratic example

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

figure shows iterates with backtracking line search

Example in \mathbf{R}^{100}

$$
f(x)=c^{T} x-\sum_{i=1}^{500} \log \left(b_{i}-a_{i}^{T} x\right)
$$

shows linear convergence, i.e., a straight line on a semilog plot

Steepest descent method

Normalized steepest descent direction (at x, for norm $\|\cdot\|$)

$$
\Delta x_{\text {nsd }}=\operatorname{argmin}\left\{\nabla f(x)^{T} v \mid\|v\|=1\right\}
$$

- direction $\Delta x_{\text {nsd }}$ is unit-norm step with most negative directional derivative
- directional derivative in this direction is $\nabla f(x)^{T} \Delta x_{\text {nsd }}=-\|\nabla f(x)\|_{*}$ (recall definition of dual norm $\|v\|_{*}=\sup _{\|u\|=1} v^{T} u$)
(Unnormalized) steepest descent direction

$$
\Delta x_{\mathrm{sd}}=\|\nabla f(x)\|_{*} \Delta x_{\mathrm{nsd}}
$$

multiple of $\Delta x_{\text {nsd }}$, scaled to make $\nabla f(x)^{T} \Delta x_{\mathrm{sd}}=-\|\nabla f(x)\|_{*}^{2}$

Steepest descent method

- general descent method of page 9.8 with $\Delta x=\Delta x_{\text {sd }}$
- convergence properties are similar to gradient descent

Steepest descent direction for quadratic norm

- for Euclidean norm $\left(\|\cdot\|=\|\cdot\|_{*}=\|\cdot\|_{2}\right)$

$$
\Delta x_{\mathrm{nsd}}=\frac{-\nabla f(x)}{\|\nabla f(x)\|_{2}}, \quad \Delta x_{\mathrm{sd}}=-\nabla f(x)
$$

- as an extension, define quadratic norm and dual norm (for $P \in \mathbf{S}_{++}^{n}$)

$$
\|x\|=\left(x^{T} P x\right)^{1 / 2}=\left\|P^{1 / 2} x\right\|_{2}, \quad\|y\|_{*}=\left(y^{T} P^{-1} y\right)^{1 / 2}=\left\|P^{-1 / 2} y\right\|_{2}
$$

- normalized and unnormalized steepest descent directions for this norm are

$$
\begin{aligned}
\Delta x_{\mathrm{nsd}} & =\frac{-P^{-1} \nabla f(x)}{\left\|P^{-1 / 2} \nabla f(x)\right\|_{2}} \\
\Delta x_{\mathrm{sd}} & =-P^{-1} \nabla f(x)
\end{aligned}
$$

Steepest descent direction for 1-norm

- for $\|\cdot\|=\|\cdot\|_{1}$ and its dual norm $\|\cdot\|_{\infty}$, steepest descent directions are

$$
\begin{aligned}
\Delta x_{\mathrm{nsd}} & =\frac{-\partial f(x) / \partial x_{i}}{\left|\partial f(x) / \partial x_{i}\right|} e_{i} \\
\Delta x_{\mathrm{sd}} & =-\frac{\partial f(x)}{\partial x_{i}} e_{i},
\end{aligned}
$$

where i is an index with

$$
\left|\frac{\partial f(x)}{\partial x_{i}}\right|=\|\nabla f(x)\|_{\infty}=\max _{k=1, \ldots, n}\left|\frac{\partial f(x)}{\partial x_{k}}\right|
$$

- not necessarily unique
- steepest descent method for 1 -norm updates one coordinate of x at a time

Choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\left\{x \mid\left\|x-x^{(k)}\right\|_{P}=1\right\}$
- equivalent to gradient descent after change of variables $\bar{x}=P^{1 / 2} x$
- figures show that shows choice of P has strong effect on speed of convergence

Newton step

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)
$$

Interpretations

- $x+\Delta x_{\mathrm{nt}}$ minimizes second order approximation \hat{f} of f at x

$$
\begin{equation*}
\hat{f}(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v \tag{4}
\end{equation*}
$$

- $x+\Delta x_{\mathrm{nt}}$ solves linearized optimality condition

$$
\nabla f(x+v) \approx \nabla \hat{f}(x+v)=\nabla f(x)+\nabla^{2} f(x) v=0
$$

Interpretation as steepest descent direction in local norm

Δx_{nt} is steepest descent direction at x in local norm defined by Hessian

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2}
$$

- dashed lines are contour lines of f
- ellipse is $\left\{x+v \mid v^{T} \nabla^{2} f(x) v=1\right\}$
- arrow shows $-\nabla f(x)$

Affine invariance of Newton step

suppose we make a change of variables $x=A y$, with A nonsingular, and solve

$$
\text { minimize } g(y)=f(A y)
$$

- gradient and Hessian of g are

$$
\nabla g(y)=A^{T} \nabla f(A y), \quad \nabla^{2} g(y)=A^{T} \nabla^{2} f(A y) A
$$

- Newton step of g at y is

$$
\Delta y_{\mathrm{nt}}=-\nabla^{2} g(y)^{-1} \nabla g(y)=-A^{-1} \nabla^{2} f(A y)^{-1} \nabla^{2} f(A y)
$$

- if $y=A^{-1} x$, then

$$
\Delta y_{\mathrm{nt}}=A^{-1} \Delta x_{\mathrm{nt}}, \quad \text { where } \Delta x_{\mathrm{nt}} \text { is Newton step of } f \text { at } x
$$

Newton step is invariant under affine change of variables

Newton decrement

$$
\lambda(x)=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}
$$

a measure of the proximity of x to the minimizer x^{\star}

- $\lambda(x)^{2}=-\nabla f(x)^{T} \Delta x_{\mathrm{nt}}$ is negative of directional derivative in Newton direction
- $\lambda(x)$ is the norm of the Newton step in the quadratic Hessian norm

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}}^{T} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

- $\lambda(x)$ gives estimate of $f(x)-p^{\star}$, estimated using quadratic approximation (4)

$$
f(x)-\inf _{y} \hat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- $\lambda(x)$ is affine invariant (unlike $\|\nabla f(x)\|_{2}$)

Newton's method

given: a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon>0$ repeat

1. compute Newton step and decrement

$$
\Delta x_{\mathrm{nt}}:=-\nabla^{2} f(x)^{-1} \nabla f(x) ; \quad \lambda(x):=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}
$$

2. stopping criterion: quit if $\lambda(x)^{2} / 2 \leq \epsilon$
3. line search: choose step size t by backtracking line search
4. update: $x:=x+t \Delta x_{n t}$

- we use line search of page 9.9: starting at $t=1$, backtrack $(t:=\beta t)$ until

$$
\begin{aligned}
f\left(x+t \Delta x_{\mathrm{nt}}\right) & <f(x)+\alpha t \nabla f(x)^{T} \Delta x_{\mathrm{nt}} \\
& =f(x)-\alpha t \lambda(x)^{2}
\end{aligned}
$$

- typical values of line search parameters are $\alpha=0.01, \beta=1 / 2$

Affine invariance of Newton's method

- we already noted that Newton step and Newton decrement are affine invariant
- affine invariance of $\lambda(x)$ makes line search, stopping criterion affine invariant
- hence, for Newton method applied to $g(y)=f(A y)$, started at $y^{(0)}=A^{-1} x^{(0)}$,

$$
y^{(k)}=A^{-1} x^{(k)} \quad \text { for all } k
$$

where $x^{(k)}$ are iterates of Newton method applied to $f(x)$, started at $x^{(0)}$

- number of iterates is independent of linear changes of coordinates

Classical convergence analysis

Assumptions

- f strongly convex with constant m
- $\nabla^{2} f$ is Lipschitz continuous: there exists a constant L such that

$$
\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leq L\|x-y\|_{2} \quad \text { for all } x, y \in \operatorname{dom} f
$$

constant L measures how well f is approximated by a quadratic function
Summary: there exist constants $\eta \in\left(0, m^{2} / L\right)$ and $\gamma>0$ such that

- if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \geq \eta$, then

$$
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma
$$

- if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

Classical convergence analysis

Damped Newton phase $\left(\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \geq \eta\right)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^{\star}>-\infty$, this phase ends after at most

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma} \text { iterations }
$$

Quadratically convergent phase $\left(\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta\right)$

- all iterations use step size $t=1$
- gradient converges to zero quadratically: once $\left\|\nabla f\left(x^{(j)}\right)\right\|_{2}<\eta$,

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{k}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{j}\right)\right\|_{2}\right)^{2^{k-j}} \leq\left(\frac{1}{2}\right)^{2^{k-j}}, \quad k \geq j
$$

- inequality (2) shows that $\left(f\left(x^{(k)}\right)-p^{\star}\right) \rightarrow 0$ quadratically

Classical convergence analysis

Conclusion: number of iterations until $f\left(x^{(k)}\right)-p^{\star} \leq \epsilon$ is bounded above by

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right)
$$

- γ, ϵ_{0} are constants that depend on $m, L, x^{(0)}$
- 2nd term is small (of the order of 6), almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_{0}) are usually unknown
- provides qualitative insight in convergence properties (two algorithm phases)

Examples

Example in \mathbf{R}^{2} (page 9.12)

- backtracking parameters $\alpha=0.1, \beta=0.7$
- converges in only 5 steps
- quadratic local convergence

Examples

Example in \mathbf{R}^{100} (page 9.13)

- backtracking parameters $\alpha=0.01, \beta=0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

Examples

Example in \mathbf{R}^{10000} (with sparse a_{i})

$$
f(x)=-\sum_{i=1}^{10000} \log \left(1-x_{i}^{2}\right)-\sum_{i=1}^{100000} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- backtracking parameters $\alpha=0.01, \beta=0.5$
- performance similar as for small examples

Self-concordance

Shortcomings of classical convergence analysis

- depends on unknown constants (m, L)
- bound is not affinely invariant, although Newton's method is

Convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions (self-concordant functions)
- developed to analyze interior-point methods for convex optimization

Self-concordant functions

Definition

- a convex function $f: \mathbf{R} \rightarrow \mathbf{R}$ is self-concordant if

$$
\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{3 / 2} \quad \text { for all } x \in \operatorname{dom} f
$$

- a convex function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is self-concordant if restriction to a line

$$
g(t)=f(x+t v)
$$

is a self-concordant function of t for all $x \in \operatorname{dom} f$ and v

Affine invariance

- if $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is self-concordant, then $\tilde{f}(y)=f(A y)$ is self-concordant
- this is easily checked for $f: \mathbf{R} \rightarrow \mathbf{R}$ and $\tilde{f}(y)=f(a y)$:

$$
\left|\tilde{f}^{\prime \prime \prime}(y)\right|=|a|^{3}\left|f^{\prime \prime \prime}(a y)\right| \leq 2|a|^{3} f^{\prime \prime}(a y)^{3 / 2}=2 \tilde{f}^{\prime \prime}(y)^{3 / 2}
$$

Examples of self-concordant functions

- linear and quadratic functions
- negative logarithm: $f(x)=-\log x$
- negative entropy plus negative logarithm: $f(x)=x \log x-\log x$
- logarithmic barrier for set of linear inequalities

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), \quad \operatorname{dom} f=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}
$$

- log-det barrier

$$
f(X)=-\log \operatorname{det} X, \quad \operatorname{dom} f=\mathbf{S}_{++}^{n}
$$

- logarithmic barrier for second order cone

$$
f(x)=-\log \left(y^{2}-x^{T} x\right), \quad \operatorname{dom} f=\left\{(x, y) \mid\|x\|_{2}<y\right\}
$$

Newton's method for self-concordant functions

Newton's method of page 9.22

Summary: there exist constants $\eta \in(0,1 / 4], \gamma>0$ such that

- if $\lambda\left(x^{(k)}\right)>\eta$, then

$$
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma
$$

- if $\lambda\left(x^{(k)}\right) \leq \eta$, then

$$
2 \lambda\left(x^{(k+1)}\right) \leq\left(2 \lambda\left(x^{(k)}\right)\right)^{2}
$$

η and γ only depend on backtracking parameters α, β

Complexity bound: number of iterations until $f\left(x^{(k)}\right)-p^{\star} \leq \epsilon$ is bounded by

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}(1 / \epsilon)
$$

Implementation of Newton's method

main effort in each iteration: evaluate derivatives and solve Newton system

$$
H \Delta x=-g
$$

where $H=\nabla^{2} f(x)$ and $g=\nabla f(x)$

Via Cholesky factorization

$$
H=L L^{T}, \quad \Delta x_{\mathrm{nt}}=-L^{-T} L^{-1} g, \quad \lambda(x)=\left\|L^{-1} g\right\|_{2}
$$

- cost: $(1 / 3) n^{3}$ flops for unstructured system, plus cost of evaluating derivatives
- cost $\ll(1 / 3) n^{3}$ if H sparse or highly structured (for example, banded)

Structured-plus-low-rank matrices

a type of structured linear equations, common in optimization:

$$
\begin{equation*}
(A+B C) x=b \quad \text { with } A \in \mathbf{R}^{n \times n}, B \in \mathbf{R}^{n \times p}, C \in \mathbf{R}^{p \times n} \tag{5}
\end{equation*}
$$

- A has some property that makes $A x=b$ easy to solve, for example, diagonal
- B, C are dense, with $p \ll n$
- using an auxilary variable y, equation can be written as

$$
\left[\begin{array}{cc}
A & B \tag{6}\\
C & -I
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

- instead of solving (5) directly, can solve (6) by eliminating x : first solve equation

$$
\left(I+C A^{-1} B\right) y=C A^{-1} b
$$

to find y; then solve $A x=b-B y$ to find x

Matrix inversion lemma

if A and $A+B C$ are nonsingular, then $I+C A^{-1} B$ is nonsingular and

$$
\begin{equation*}
(A+B C)^{-1}=A^{-1}-A^{-1} B\left(I+C A^{-1} B\right)^{-1} C A^{-1} \tag{7}
\end{equation*}
$$

- easily verified by multiplying $A+B C$ and right-hand side of (7)
- can be derived via method on previous page: $x=(A+B C)^{-1} b$ is equal to

$$
\begin{align*}
x & =A^{-1}(b-B y) \\
& =A^{-1}\left(b-B\left(I+C A^{-1} B\right)^{-1} C A^{-1} b\right) \\
& =\left(A^{-1}-A^{-1} B\left(I+C A^{-1} B\right)^{-1} C A^{-1}\right) b \tag{8}
\end{align*}
$$

since this is true for all b, matrix on the right-hand side of (8) is $(A+B C)^{-1}$

- method on previous page can be viewed as evaluating $(A+B C)^{-1} b$ via (8)

Example

Newton method for unconstrained optimization with cost function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$,

$$
f(x)=\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right)+\phi(A x+b)
$$

- functions $\psi_{i}: \mathbf{R} \rightarrow \mathbf{R}$ and $\phi: \mathbf{R}^{p} \rightarrow \mathbf{R}$ are convex
- assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$
- Hessian of f is diagonal plus low rank:

$$
H=D+A^{T} G A
$$

where D is diagonal with $D_{i i}=\psi_{i}^{\prime \prime}\left(x_{i}\right)$, and $G=\nabla^{2} \phi(A x+b)$

Example

compare two methods for solving Newton equation $\left(D+A^{T} G A\right) \Delta x=-g$
Method 1: form $D+A^{T} G A$, solve via dense Cholesky cost dominated by cost of factorization (($1 / 3) n^{3}$ flops)

Method 2: follow idea on page 9.35

- compute Cholesky factorization $G=L L^{T}$ and write Newton system as

$$
\left[\begin{array}{cc}
D & A^{T} L \\
L^{T} A & -I
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
y
\end{array}\right]=\left[\begin{array}{c}
-g \\
0
\end{array}\right]
$$

- eliminate Δx from first equation: solve two equations

$$
\left(I+L^{T} A D^{-1} A^{T} L\right) y=-L^{T} A D^{-1} g, \quad D \Delta x=-g-A^{T} L y
$$

- cost is roughly $2 p^{2} n$ flops, dominated by computation of $L^{T} A D^{-1} A^{T} L$ complexity of method 2 is linear in n

