10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton’s method
- self-concordant functions
- implementation
Unconstrained minimization

\[\text{minimize } f(x) \]

- \(f \) convex, twice continuously differentiable (hence \(\text{dom } f \) open)
- we assume optimal value \(p^* = \inf_x f(x) \) is attained (and finite)

unconstrained minimization methods

- produce sequence of points \(x^{(k)} \in \text{dom } f, k = 0, 1, \ldots \) with
 \[f(x^{(k)}) \to p^* \]

- can be interpreted as iterative methods for solving optimality condition
 \[\nabla f(x^*) = 0 \]
Initial point and sublevel set

algorithms in this chapter require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \text{dom } f$
- sublevel set $S = \{ x \mid f(x) \leq f(x^{(0)}) \}$ is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

- equivalent to condition that $\text{epi } f$ is closed
- true if $\text{dom } f = \mathbb{R}^n$
- true if $f(x) \to \infty$ as $x \to \text{bd } \text{dom } f$

examples of differentiable functions with closed sublevel sets:

$$f(x) = \log\left(\sum_{i=1}^{m} \exp(a_i^T x + b_i)\right), \quad f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$
Strong convexity and implications

f is strongly convex on S if there exists an $m > 0$ such that

$$\nabla^2 f(x) \succeq mI \quad \text{for all } x \in S$$

implications

• for $x, y \in S$,

$$f(y) \geq f(x) + \nabla f(x)^T(y - x) + \frac{m}{2}\|x - y\|_2^2$$

hence, S is bounded

• $p^* > -\infty$, and for $x \in S$,

$$f(x) - p^* \leq \frac{1}{2m}\|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m)
Descent methods

\[x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with} \quad f(x^{(k+1)}) < f(x^{(k)}) \]

- other notations: \(x^+ = x + t \Delta x, \ x := x + t \Delta x \)

- \(\Delta x \) is the \textit{step}, or \textit{search direction}; \(t \) is the \textit{step size}, or \textit{step length}

- from convexity, \(f(x^+) < f(x) \) implies \(\nabla f(x)^T \Delta x < 0 \) (\textit{i.e.}, \(\Delta x \) is a \textit{descent direction})

\textit{General descent method.}

\textbf{given} a starting point \(x \in \text{dom} \ f \).

\textbf{repeat}

1. Determine a descent direction \(\Delta x \).
2. \textit{Line search}. Choose a step size \(t > 0 \).
3. \textit{Update}. \(x := x + t \Delta x \).

\textbf{until} stopping criterion is satisfied.

Line search types

exact line search: \(t = \text{argmin}_{t>0} f(x + t\Delta x) \)

backtracking line search (with parameters \(\alpha \in (0, 1/2), \beta \in (0, 1) \))

- starting at \(t = 1 \), repeat \(t := \beta t \) until

 \[f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x \]

- graphical interpretation: backtrack until \(t \leq t_0 \)
Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$.
repeat
1. $\Delta x := -\nabla f(x)$.
 2. Line search. Choose step size t via exact or backtracking line search.
 3. Update. $x := x + t\Delta x$.
until stopping criterion is satisfied.

• stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
• convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \leq c^k (f(x^{(0)}) - p^*)$$

$c \in (0, 1)$ depends on m, $x^{(0)}$, line search type
• very simple, but often very slow; rarely used in practice
quadratic problem in \mathbb{R}^2

$$f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \quad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1} \right)^k, \quad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1} \right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma = 10$:

Unconstrained minimization
nonquadratic example

\[f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1} \]
a problem in \mathbb{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

'linear' convergence, i.e., a straight line on a semilog plot
Steepest descent method

normalized steepest descent direction (at \(x \), for norm \(\| \cdot \| \)):

\[
\Delta x_{\text{nsd}} = \arg\min \{ \nabla f(x)^T v \mid \|v\| = 1 \}
\]

interpretation: for small \(v \), \(f(x + v) \approx f(x) + \nabla f(x)^T v \);
direction \(\Delta x_{\text{nsd}} \) is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

\[
\Delta x_{\text{sd}} = \| \nabla f(x) \| \ast \Delta x_{\text{nsd}}
\]

satisfies \(\nabla f(x)^T \Delta_{\text{sd}} = -\| \nabla f(x) \|_{\ast}^2 \)

steepest descent method

• general descent method with \(\Delta x = \Delta x_{\text{sd}} \)
• convergence properties similar to gradient descent
examples

• Euclidean norm: $\Delta x_{sd} = -\nabla f(x)$

• quadratic norm $\|x\|_P = (x^T P x)^{1/2}$ ($P \in S^n_{++}$): $\Delta x_{sd} = -P^{-1}\nabla f(x)$

• ℓ_1-norm: $\Delta x_{sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_\infty$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1-norm:
choice of norm for steepest descent

• steepest descent with backtracking line search for two quadratic norms
• ellipses show \(\{ x \mid \| x - x^{(k)} \|_P = 1 \} \)
• equivalent interpretation of steepest descent with quadratic norm \(\| \cdot \|_P \): gradient descent after change of variables \(\bar{x} = P^{1/2}x \)

shows choice of \(P \) has strong effect on speed of convergence
Newton step

\[\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) \]

interpretations

- \(x + \Delta x_{nt} \) minimizes second order approximation

\[\hat{f}(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v \]

- \(x + \Delta x_{nt} \) solves linearized optimality condition

\[\nabla f(x + v) \approx \nabla \hat{f}(x + v) = \nabla f(x) + \nabla^2 f(x) v = 0 \]
• Δx_{nt} is steepest descent direction at x in local Hessian norm

$$\|u\|\nabla^2 f(x) = (u^T \nabla^2 f(x) u)^{1/2}$$

dashed lines are contour lines of f; ellipse is $\{x + v \mid v^T \nabla^2 f(x) v = 1\}$
arrow shows $-\nabla f(x)$
Newton decrement

\[\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \right)^{1/2} \]

a measure of the proximity of \(x \) to \(x^* \)

properties

• gives an estimate of \(f(x) - p^* \), using quadratic approximation \(\hat{f} \):

\[f(x) - \inf_y \hat{f}(y) = \frac{1}{2} \lambda(x)^2 \]

• equal to the norm of the Newton step in the quadratic Hessian norm

\[\lambda(x) = (\Delta x_{nt}^T \nabla^2 f(x) \Delta x_{nt})^{1/2} \]

• directional derivative in the Newton direction: \(\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2 \)

• affine invariant (unlike \(\| \nabla f(x) \|_2 \))
Newton’s method

given a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$.

repeat

1. **Compute the Newton step and decrement.**
 $$\Delta x_{\text{nt}} := -\nabla^2f(x)^{-1}\nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$$
2. **Stopping criterion.** **quit** if $\lambda^2/2 \leq \epsilon$.
3. **Line search.** Choose step size t by backtracking line search.
4. **Update.** $x := x + t\Delta x_{\text{nt}}$.

affine invariant, *i.e.*, independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$
Classical convergence analysis

assumptions

• f strongly convex on S with constant m

• $\nabla^2 f$ is Lipschitz continuous on S, with constant $L > 0$:

$$
\| \nabla^2 f(x) - \nabla^2 f(y) \|_2 \leq L \| x - y \|_2
$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0, m^2/L)$, $\gamma > 0$ such that

• if $\| \nabla f(x) \|_2 \geq \eta$, then $f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma$

• if $\| \nabla f(x) \|_2 < \eta$, then

$$
\frac{L}{2m^2} \| \nabla f(x^{(k+1)}) \|_2 \leq \left(\frac{L}{2m^2} \| \nabla f(x^{(k)}) \|_2 \right)^2
$$
damped Newton phase \((\|\nabla f(x)\|_2 \geq \eta) \)

- most iterations require backtracking steps
- function value decreases by at least \(\gamma \)
- if \(p^* > -\infty \), this phase ends after at most \((f(x^{(0)}) - p^*)/\gamma \) iterations

quadratically convergent phase \((\|\nabla f(x)\|_2 < \eta) \)

- all iterations use step size \(t = 1 \)
- \(\|\nabla f(x)\|_2 \) converges to zero quadratically: if \(\|\nabla f(x^{(k)})\|_2 < \eta \), then

\[
\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \leq \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2 \right)^{2^{l-k}} \leq \left(\frac{1}{2} \right)^{2^{l-k}}, \quad l \geq k
\]
conclusion: number of iterations until \(f(x) - p^* \leq \epsilon \) is bounded above by

\[
\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2 (\epsilon_0/\epsilon)
\]

- \(\gamma, \epsilon_0 \) are constants that depend on \(m, L, x^{(0)} \)
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants \(m, L \) (hence \(\gamma, \epsilon_0 \)) are usually unknown
- provides qualitative insight in convergence properties (i.e., explains two algorithm phases)
Examples

example in \mathbb{R}^2 (page 10–9)

- backtracking parameters $\alpha = 0.1$, $\beta = 0.7$
- converges in only 5 steps
- quadratic local convergence
example in \mathbb{R}^{100} (page 10–10)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm
example in \mathbb{R}^{10000} (with sparse a_i)

$$f(x) = -\sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{10000} \log(b_i - a_i^T x)$$

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$.
- performance similar as for small examples
Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants \((m, L, \ldots)\)
- bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions (‘self-concordant’ functions)
- developed to analyze polynomial-time interior-point methods for convex optimization
Self-concordant functions

definition

- convex $f : \mathbb{R} \to \mathbb{R}$ is self-concordant if $|f'''(x)| \leq 2f''(x)^{3/2}$ for all $x \in \text{dom } f$
- $f : \mathbb{R}^n \to \mathbb{R}$ is self-concordant if $g(t) = f(x + tv)$ is self-concordant for all $x \in \text{dom } f$, $v \in \mathbb{R}^n$

examples on \mathbb{R}

- linear and quadratic functions
- negative logarithm $f(x) = -\log x$
- negative entropy plus negative logarithm: $f(x) = x \log x - \log x$

affine invariance: if $f : \mathbb{R} \to \mathbb{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$\tilde{f}'''(y) = a^3 f'''(ay + b), \quad \tilde{f}''(y) = a^2 f''(ay + b)$$
Self-concordant calculus

properties

• preserved under positive scaling $\alpha \geq 1$, and sum
• preserved under composition with affine function
• if g is convex with $\text{dom } g = \mathbb{R}_{++}$ and $|g'''(x)| \leq 3g''(x)/x$ then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

examples: properties can be used to show that the following are s.c.

• $f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$ on $\{x \mid a_i^T x < b_i, \ i = 1, \ldots, m\}$
• $f(X) = -\log \det X$ on \mathbb{S}^n_{++}
• $f(x) = -\log(y^2 - x^T x)$ on $\{(x, y) \mid \|x\|_2 < y\}$
Convergence analysis for self-concordant functions

summary: there exist constants \(\eta \in (0, 1/4] \), \(\gamma > 0 \) such that

- if \(\lambda(x) > \eta \), then
 \[
 f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma
 \]

- if \(\lambda(x) \leq \eta \), then
 \[
 2\lambda(x^{(k+1)}) \leq \left(2\lambda(x^{(k)})\right)^2
 \]

(\(\eta \) and \(\gamma \) only depend on backtracking parameters \(\alpha, \beta \))

complexity bound: number of Newton iterations bounded by

\[
\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(1/\epsilon)
\]

for \(\alpha = 0.1, \beta = 0.8, \epsilon = 10^{-10} \), bound evaluates to \(375(f(x^{(0)}) - p^*) + 6 \)
numerical example: 150 randomly generated instances of

\[
\text{minimize } f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)
\]

- \bigcirc: \(m = 100, n = 50\)
- \square: \(m = 1000, n = 500\)
- \Diamond: \(m = 1000, n = 50\)

- number of iterations much smaller than \(375(f(x^{(0)}) - p^*) + 6\)
- bound of the form \(c(f(x^{(0)}) - p^*) + 6\) with smaller \(c\) (empirically) valid
Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

\[H \Delta x = g \]

where \(H = \nabla^2 f(x) \), \(g = -\nabla f(x) \)

via Cholesky factorization

\[H = LL^T, \quad \Delta x_{nt} = L^{-T}L^{-1}g, \quad \lambda(x) = \|L^{-1}g\|_2 \]

• cost \((1/3)n^3\) flops for unstructured system

• cost \(\ll (1/3)n^3\) if \(H\) sparse, banded
example of dense Newton system with structure

\[f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \quad H = D + A^T H_0 A \]

- assume \(A \in \mathbb{R}^{p \times n} \), dense, with \(p \ll n \)
- \(D \) diagonal with diagonal elements \(\psi''_i(x_i) \); \(H_0 = \nabla^2 \psi_0(Ax + b) \)

method 1: form \(H \), solve via dense Cholesky factorization: (cost \((1/3)n^3\))

method 2 (page 9–15): factor \(H_0 = L_0L_0^T \); write Newton system as

\[
D\Delta x + A^T L_0 w = -g, \quad L_0^T A\Delta x - w = 0
\]

eliminate \(\Delta x \) from first equation; compute \(w \) and \(\Delta x \) from

\[
(I + L_0^T AD^{-1} A^T L_0) w = -L_0^T AD^{-1} g, \quad D\Delta x = -g - A^T L_0 w
\]

cost: \(2p^2n \) (dominated by computation of \(L_0^T AD^{-1} A^T L_0 \))

Unconstrained minimization