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9. Unconstrained minimization

e terminology and assumptions
e gradient descent method

e steepest descent method

e Newton’s method

e self-concordant functions

e implementation
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Unconstrained minimization

minimize  f(x)
e f is convex and twice continuously differentiable; hence dom f is an open set

e we assume the optimal value p* = inf, f(x) is finite and attained

Unconstrained minimization methods

e produce a sequence of points x(¥) € dom £, k =0, 1,. .., with

F) — p*

e can be interpreted as iterative methods for solving optimality condition

Vi(x*) =0
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Initial point

algorithms in this chapter require a starting point x(?) that satisfies two conditions

o feasiblity: x(¥) € dom f

e the initial sublevel set S is closed, where
S={x|fx) < f(xV)}

2nd condition is often hard to verify, except when all sublevel sets of f are closed

Closed function: a function with closed sublevel sets

e equivalent to property that the epigraph is a closed set
e convex f is closed if dom f = R"

e convex f is closed if dom f is open and f(x) — oo as x — bddom f
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Examples

three convex differentiable functions

m
f(x) = log(> exp(a/x+b;), domf=R"
i=1
m
g(x) = —Zlog(bi - al-Tx), domg = {x | al-Tx <b;,i=1,...,m}
i=1
h(x) = x%+x§, domh = {(x1,x2) | x1 > 1}

e 7 is closed; every x(9 e R” satisfies closed initial sublevel set condition
e g is closed; every x(0 ¢ dom g satisfies closed initial sublevel set condition

e /is not closed: no x(0) satisfies closed initial sublevel set condition
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Strong convexity

many convergence results in this chapter require strong convexity
e f is strongly convex if there exists an m > 0 such that

m ) .
f(x) - EXTX is a convex function

e equivalent definition for differentiable function: dom f is convex and

fO) = f@+VF@ (v=0)+Zly -x|3 forallx.yedomf (1)

e equivalent definition for twice differentiable function: dom f is convex and

sz(x) > ml forall x € dom f
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Implications of strong convexity

e sublevel sets are bounded (follows from (1))

e optimal value p* is finite and
x_ >
f(x)—-p~ < 2—||Vf(x)||2 for all x € dom f
m

useful as stopping criterion (if you know m)

Proof: from (1)
p* = inf f(y)
Y
> inf (F() + VA (5 =2+ Flly =)
1
= ()= lIVf O3

minimizer on second lineis y =x — (1/m)V f(x)
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Descent methods

in a descent method, the iterates satisfy

£y < F (™)

e the algorithms discussed in this chapter are of this type

e for convex f, requires that v = x(k*1) — x(%) is a descent direction, i.e.,
VT <0

(the directional derivative at x(¥) in the direction v is negative)

necessity of (3) can be seen from the inequality

FEFDY > £ (0 £ v (x0T
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General outline of a descent method

e different notation styles will be used for the update:
kD) =y (0) t(k)Ax(k), xt =x+1tAx, X :=x+tAx

e Ax is the step or search direction

e ¢ is the step size or step length

Descent method

given a starting point x € dom f

repeat
1. search direction: determine a descent direction Ax
2. line search: choose a step sizet > 0
3. update: x == x +tAx

until stopping criterion is satisfied

next, we discuss step 2 (line search) and then step 1 (choices for Ax)
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Line search types

Exact line search: ¢ = argmin f(x + tAx)
>0

Backtracking line search

e starting atr = 1, repeat ¢ := St until
F(x+1Ax) < f(x) +arVFx) Ax

e v €(0,1/2)and B € (0, 1) are algorithm parameters

e in the example of the figure, we backtrack until r < ¢

f(x+tAx)

f(x) + 1V F(x)TAx f(x)+atVF(x)Ax
! ; !

tr=0 1o
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Gradient descent method

Gradient descent: the general descent method of page 9.8 with Ax = -V f(x)

given: a starting point x € dom f

repeat
1. Ax ==V f(x)
2. line search: choose step size ¢ via exact or backtracking line search
3. update: x == x +tAx

until stopping criterion is satisfied

e stopping criterion usually of the form ||[Vf(x)|2» < €

e convergence result: for strongly convex f,

£y = p* < KOy - p*)

¢ € (0,1) depends on m, x'? line search type

e iteration is simple and inexpensive, but convergence is often very slow
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Quadratic problem in R?

f(x) = 307 +7x3) (y > 0)

with exact line search, starting at x(9 = (y, 1):

L0 _ y -1\ RO RAAN
1 yy+1 ’ 2 y+1

e veryslowify > lory <« 1

e example for y = 10:

4,
S0
_4}
—10 0 10
X1
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Nonquadratic example

x1+3x,—0.1 eX1—3XQ—0.1 + e—xl—O.l

f(x1,x) =e +

figure shows iterates with backtracking line search
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fx®) - p*

10*

102

10°

Example in R'%

500
f(x)=clx - Z log(b; — al.Tx)
i=1

.exact line search

1g line search

50 100 150 200

shows linear convergence, i.e., a straight line on a semilog plot
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Steepest descent method

Normalized steepest descent direction (at x, for norm || - ||)
Axnsg = argmin {V £ (x) v | [lo]| = 1}

e direction Ax,gq is unit-norm step with most negative directional derivative
e directional derivative in this direction is V f (x)! Axpeg = —||V.S (%) ||«

(recall definition of dual norm [|o]l. = supy,=; v" u)

(Unnormalized) steepest descent direction
Axgq = ||V f () ||+Axpsa

multiple of Ax,yq, scaled to make V £ (x)TAxyg = —||VF(x)|?

Steepest descent method
e general descent method of page 9.8 with Ax = Axgy

e convergence properties are similar to gradient descent
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Steepest descent direction for quadratic norm

e for Euclidean norm (|| - | =1 - lls =1 - ||2)

YW N
M Sl AT T

e as an extension, define quadratic norm and dual norm (for P € S”!)

Ixll = TPo)2 = [PV 2x|h, iyl = OTP IV 2 =1 P72y,

e normalized and unnormalized steepest descent directions for this norm are

-P7'V f(x) V£ (x)
Axnsd — 1/2
P12V f(x)l2
AJ'Cnsd
Avgg = —P7Vf(x)

Unconstrained minimization



Steepest descent direction for 1-norm

e for| - || =||-|l; and its dual norm || - ||, Steepest descent directions are
At —0f(x)/0x;
" |0f (x)/0x;]
3 -Vf(x)
A)Csd — . f(x)e,-, ¢ Axnsd
(9)6,'

where i is an index with

af(x)

OXy

‘3f (x)
(9)6,'

= [IVf(0)lloo = max

..... n

e not necessarily unique

e steepest descent method for 1-norm updates one coordinate of x at a time

Unconstrained minimization
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Choice of nhorm for steepest descent

e steepest descent with backtracking line search for two quadratic norms
e ellipses show {x | [lx —x®|p = 1}
e equivalent to gradient descent after change of variables x = P12y

e figures show that shows choice of P has strong effect on speed of convergence
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Newton step

Axne = =V2f(x) "'V f(x)

Interpretations

e x + Axp; minimizes second order approximation f of f at x
n 1
f(x+v)=f(x)+ Vf(x)Tv + ivTVZf(x)v

e x + Axy; solves linearized optimality condition

Vikx+0)~VFix+0)=Vf(x)+ V> f(x)v=0

\
N\
\
\
\\
\)\
\
\

f
4 A f(x + At)
S )

~

(x, f(x))

(6 Ay fx + M)
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Interpretation as steepest descent direction in local norm

Axqq is steepest descent direction at x in local norm defined by Hessian

lully2 ) = V2 F(x)u)'/?

e dashed lines are contour lines of f
e ellipseis {x+v | I V2f(x)v =1}

e arrow shows —V f(x)
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Affine invariance of Newton step
suppose we make a change of variables x = Ay, with A nonsingular, and solve
minimize g(y) = f(Ay)
e gradient and Hessian of g are
Ve(y) = ATVf(Ay),  Vg(y)=A'V’f(Ay)A
e Newton stepof g at yis

Ayne = -V2g(y)"'Vg(y) = —ATIV2 £ (Ay) "' V2 f(Ay)

o if y = A lx, then
Ayni = A" Axy,  Where Axy is Newton step of f at x

Newton step is invariant under affine change of variables
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Newton decrement
A(x) = (VF)TV2 0TIV F(a))t2
a measure of the proximity of x to the minimizer x*

o 1(x)? = -V f(x)T Axy is negative of directional derivative in Newton direction

e A(x) is the norm of the Newton step in the quadratic Hessian norm

A(x) = (A V2 £ () Axg) 2
e A(x) gives estimate of f(x) — p*, estimated using quadratic approximation (4)

F) inf () = 5(x)
Y

e A(x) is affine invariant (unlike ||V £ (x)||2)
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Newton’s method

given: a starting point x € dom f, tolerance € > 0
repeat
1. compute Newton step and decrement

Axpe := =V2F(x)TIVF(x);  A(x) = (VF)IVZF(x)TIVF(x)1/?

2. stopping criterion: quit if 1(x)?/2 < €
3. line search: choose step size ¢ by backtracking line search
4. update: x := x + tAxyt

e we use line search of page 9.9: starting at ¢ = 1, backtrack (¢ := St) until

fx+tAxn) < f(x)+atV ) Axy
= f(x) - atd(x)?

e typical values of line search parameters are @ = 0.01, 8 =1/2
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Affine invariance of Newton’s method

e we already noted that Newton step and Newton decrement are affine invariant
e affine invariance of A(x) makes line search, stopping criterion affine invariant

e hence, for Newton method applied to g(y) = f(Ay), started at y(? = A=1x(O)
y &) = 4710 for all

where x%) are iterates of Newton method applied to f(x), started at x(?

e number of iterates is independent of linear changes of coordinates
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Classical convergence analysis

Assumptions
e f strongly convex with constant m

e V2 is Lipschitz continuous: there exists a constant L such that
IV2£(x) = V2f(»ll2 < Lllx = yll2forallx,y € dom f

constant L measures how well f is approximated by a quadratic function

Summary: there exist constants n € (0, m?/L) and y > 0 such that

o if |V (x¥))|, = n, then
£y - p () < —y

o if [VF (x5 )|, < n, then

L gk L g r® i
2_m2” S < 2_mZ” S ()2
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Classical convergence analysis

Damped Newton phase (||V £ (x|, = n)
e most iterations require backtracking steps
e function value decreases by at least y

e if p* > —o0, this phase ends after at most

f(x©) - p*
y

iterations

Quadratically convergent phase (|V £ (x%)|» < 1)
e all iterations use step sizer =1

e gradient converges to zero quadratically: once ||V £ (x> < 7,

L L 22
S < (59l < (5] ke

e inequality (2) shows that (£ (x%)) — p*) — 0 quadratically
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Classical convergence analysis

Conclusion: number of iterations until f(x(k)) — p* < € is bounded above by

F(x©) - p*
y

+ log, log, (ep/€)

e v, € are constants that depend on m, L, x(¥)
e 2nd term is small (of the order of 6), almost constant for practical purposes
e in practice, constants m, L (hence vy, €y) are usually unknown

e provides qualitative insight in convergence properties (two algorithm phases)
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Examples

Example in R? (page 9.12)

10°

f(x®) - p*

e backtracking parameters « = 0.1, 8 =0.7
e converges in only 5 steps

e quadratic local convergence
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Examples

Example in R'% (page 9.13)

10°

10°

1073

f(x®) - p*

10—10 L

10—15

exact line search

backtracking

0

step size (K

e backtracking parameters a = 0.01, 8 =0.5

[
()}
T

<
)

[E—
T

exact line search

backtracking

e backtracking line search almost as fast as exact I.s. (and much simpler)

e clearly shows two phases in algorithm
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Examples

Example in R'%9% (with sparse ;)

10000 X 100000 .
f(x) =- Z log(1 —x;) — Z log(b; — a; x)
10°
X
N9 100 L
|
=
S
10—5 L
0 5 1‘0 1‘5 20
k

e backtracking parameters a = 0.01, 8 =0.5
e performance similar as for small examples
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Self-concordance

Shortcomings of classical convergence analysis

e depends on unknown constants (m, L)

e bound is not affinely invariant, although Newton’s method is

Convergence analysis via self-concordance (Nesterov and Nemirovski)

e does not depend on any unknown constants
e gives affine-invariant bound
e applies to special class of convex functions (self-concordant functions)

e developed to analyze interior-point methods for convex optimization
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Self-concordant functions

Definition

e a convex function f : R — R is self-concordant if

17 (x)| < 2f"(x)*? forallx € dom f

e a convex function f : R" — R is self-concordant if restriction to a line
g(1) = f(x+1v)
is a self-concordant function of ¢ for all x € dom f and v

Affine invariance
o if f: R"” — Ris self-concordant, then f(y) = f(Ay) is self-concordant
e this is easily checked for f : R — R and £(y) = f(ay):

|77 (D) = lal’| £ (ay)| < 2|lalP £ (ay)*? = 277 (y)*/?
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Examples of self-concordant functions

e linear and quadratic functions
e negative logarithm: f(x) = —logx
e negative entropy plus negative logarithm: f(x) = xlogx — logx

e logarithmic barrier for set of linear inequalities

m
f(x) = —Zlog(bi —al.Tx), dom f = {x | aiTx <bj,i=1,...,m}
i=1

e log-det barrier
f(X)=—-logdet X, dom f =S",

e |ogarithmic barrier for second order cone
f@) = =log(y* =x"x),  dom [ ={(x,y) | lIxll2 <}
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Newton’s method for self-concordant functions

Newton’s method of page 9.22

Summary: there exist constants n € (0, 1/4], ¥ > 0 such that

e if 1(x(K)) > p, then
FEFD) — 0y < —y

o if 1(x(K)) < p, then
2A(x* Dy < 22(xFY)?

n and y only depend on backiracking parameters «a,

Complexity bound: number of iterations until £(x¥)) — p* < ¢ is bounded by

f(x?) - p*
%

+log, log,(1/€)

Unconstrained minimization 9.33



Implementation of Newton’s method

main effort in each iteration: evaluate derivatives and solve Newton system
HAx = —g

where H = V2f(x) and g = Vf(x)

Via Cholesky factorization
H=LL",  A=-L7TL7',  ax) =|L"¢l

e cost: (1/3)n? flops for unstructured system, plus cost of evaluating derivatives

e cost < (1/3)n? if H sparse or highly structured (for example, banded)
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Structured-plus-low-rank matrices
a type of structured linear equations, common in optimization:
(A+BC)x=b  withA e R"™ BeR"P, C e RP" (5)

e A has some property that makes Ax = b easy to solve, for example, diagonal
e B,( are dense, with p < n

e using an auxilary variable y, equation can be written as

e S]]

e instead of solving (5) directly, can solve (6) by eliminating x: first solve equation
(I+CA™'B)yy=CA™ b

to find y; then solve Ax = b — By to find x
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Matrix inversion lemma

if A and A + BC are nonsingular, then I + CA~!B is nonsingular and
(A+BC) '=A1'-A'BU+ca'B)~lca™! (7)

e casily verified by multiplying A + BC and right-hand side of (7)

e can be derived via method on previous page: x = (A + BC)~!b is equal to

x = A'(b-By)
AN b -B(I+cA'B)IcaA D)
= (A'-A"'BU+ca'B)lcaThp (8)

since this is true for all b, matrix on the right-hand side of (8) is (A + BC)‘1

e method on previous page can be viewed as evaluating (A + BC)~'b via (8)

Unconstrained minimization 9.36



Example

Newton method for unconstrained optimization with cost function f : R" — R,
n
f(x) = D wi(xi) + ¢p(Ax + b)
i=1

e functions y; : R - R and ¢ : R” — R are convex

e assume A € RP*" dense, with p < n

e Hessian of f is diagonal plus low rank:

H=D+A'GA

where D is diagonal with D;; = ¢/ (x;), and G = V>¢(Ax + b)
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Example

compare two methods for solving Newton equation (D + ATGA)Ax = —g

Method 1: form D + ATG A, solve via dense Cholesky
cost dominated by cost of factorization ((1/3)r° flops)

Method 2: follow idea on page 9.35

e compute Cholesky factorization G = LL! and write Newton system as
D AL Ax | | —g
L'a -1 y || 0
e eliminate Ax from first equation: solve two equations

(I+L"AD'ATL)yy=-LTAD™ 'g, DAx=-g-A"Ly

e cost is roughly 2p?n flops, dominated by computation of LTAD~1ATL

complexity of method 2 is linear in n
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