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9. Unconstrained minimization

• terminology and assumptions

• gradient descent method

• steepest descent method

• Newton’s method

• self-concordant functions

• implementation
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Unconstrained minimization

minimize 5 (G)

• 5 is convex and twice continuously differentiable; hence dom 5 is an open set

• we assume the optimal value ?★ = infG 5 (G) is finite and attained

Unconstrained minimization methods

• produce a sequence of points G (:) ∈ dom 5 , : = 0, 1, . . . , with

5 (G (:)) → ?★

• can be interpreted as iterative methods for solving optimality condition

∇ 5 (G★) = 0
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Initial point

algorithms in this chapter require a starting point G (0) that satisfies two conditions

• feasiblity: G (0) ∈ dom 5

• the initial sublevel set ( is closed, where

( = {G | 5 (G) ≤ 5 (G (0))}

2nd condition is often hard to verify, except when all sublevel sets of 5 are closed

Closed function: a function with closed sublevel sets

• equivalent to property that the epigraph is a closed set

• convex 5 is closed if dom 5 = R
=

• convex 5 is closed if dom 5 is open and 5 (G) → ∞ as G → bd dom 5
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Examples

three convex differentiable functions

5 (G) = log(
<
∑

8=1

exp(0)8 G + 18)), dom 5 = R
=

6(G) = −
<
∑

8=1

log(18 − 0)8 G), dom 6 = {G | 0)8 G < 18, 8 = 1, . . . , <}

ℎ(G) = G2
1 + G2

2, dom ℎ = {(G1, G2) | G1 > 1}

• 5 is closed; every G (0) ∈ R
= satisfies closed initial sublevel set condition

• 6 is closed; every G (0) ∈ dom 6 satisfies closed initial sublevel set condition

• ℎ is not closed; no G (0) satisfies closed initial sublevel set condition
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Strong convexity

many convergence results in this chapter require strong convexity

• 5 is strongly convex if there exists an < > 0 such that

5 (G) −
<

2
G)G is a convex function

• equivalent definition for differentiable function: dom 5 is convex and

5 (H) ≥ 5 (G) + ∇ 5 (G)) (H − G) +
<

2
‖H − G‖2

2 for all G, H ∈ dom 5 (1)

• equivalent definition for twice differentiable function: dom 5 is convex and

∇2 5 (G) � <� for all G ∈ dom 5
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Implications of strong convexity

• sublevel sets are bounded (follows from (1))

• optimal value ?★ is finite and

5 (G) − ?★ ≤
1

2<
‖∇ 5 (G)‖2

2 for all G ∈ dom 5 (2)

useful as stopping criterion (if you know <)

Proof: from (1)

?★ = inf
H

5 (H)

≥ inf
H
( 5 (G) + ∇ 5 (G)) (H − G) +

<

2
‖H − G‖2

2)

= 5 (G) −
1

2<
‖∇ 5 (G)‖2

2

minimizer on second line is H = G − (1/<)∇ 5 (G)
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Descent methods

in a descent method, the iterates satisfy

5 (G (:+1)) < 5 (G (:))

• the algorithms discussed in this chapter are of this type

• for convex 5 , requires that { = G (:+1) − G (:) is a descent direction, i.e.,

∇ 5 (G (:))){ < 0 (3)

(the directional derivative at G (:) in the direction { is negative)

necessity of (3) can be seen from the inequality

5 (G (:+1)) ≥ 5 (G (:)) + ∇ 5 (G (:))){
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General outline of a descent method

• different notation styles will be used for the update:

G (:+1)
= G (:) + C (:)ΔG (:), G+ = G + CΔG, G := G + CΔG

• ΔG is the step or search direction

• C is the step size or step length

Descent method

given a starting point G ∈ dom 5

repeat

1. search direction: determine a descent direction ΔG

2. line search: choose a step size C > 0

3. update: G := G + CΔG

until stopping criterion is satisfied

next, we discuss step 2 (line search) and then step 1 (choices for ΔG)
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Line search types

Exact line search: C = argmin
C>0

5 (G + CΔG)

Backtracking line search

• starting at C = 1, repeat C := VC until

5 (G + CΔG) < 5 (G) + UC∇ 5 (G))ΔG

• U ∈ (0, 1/2) and V ∈ (0, 1) are algorithm parameters

• in the example of the figure, we backtrack until C ≤ C0

C

5 (G + CΔG)

C = 0 C0

5 (G) + UC∇ 5 (G))ΔG5 (G) + C∇ 5 (G))ΔG
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Gradient descent method

Gradient descent: the general descent method of page 9.8 with ΔG = −∇ 5 (G)

given: a starting point G ∈ dom 5

repeat

1. ΔG := −∇ 5 (G)

2. line search: choose step size C via exact or backtracking line search

3. update: G := G + CΔG

until stopping criterion is satisfied

• stopping criterion usually of the form ‖∇ 5 (G)‖2 ≤ n

• convergence result: for strongly convex 5 ,

5 (G (:)) − ?★ ≤ 2: ( 5 (G (0)) − ?★)

2 ∈ (0, 1) depends on <, G (0), line search type

• iteration is simple and inexpensive, but convergence is often very slow
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Quadratic problem in R
2

5 (G) = 1
2 (G

2
1 + WG2

2) (W > 0)

with exact line search, starting at G (0) = (W, 1):

G
(:)

1
= W

(

W − 1

W + 1

) :

, G
(:)

2
=

(

−
W − 1

W + 1

) :

• very slow if W ≫ 1 or W ≪ 1

• example for W = 10:

G1

G
2

G (0)

G (1)

−10 0 10

−4

0

4
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Nonquadratic example

5 (G1, G2) = 4G1+3G2−0.1 + 4G1−3G2−0.1 + 4−G1−0.1

figure shows iterates with backtracking line search

G (0)

G (1)

G (2)
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Example in R
100

5 (G) = 2)G −
500
∑

8=1

log(18 − 0)8 G)

:

5
(G

(:
) )
−
?
★

exact line search

backtracking line search

0 50 100 150 200
10−4

10−2

100

102

104

shows linear convergence, i.e., a straight line on a semilog plot
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Steepest descent method

Normalized steepest descent direction (at G, for norm ‖ · ‖)

ΔGnsd = argmin {∇ 5 (G)){ | ‖{‖ = 1}

• direction ΔGnsd is unit-norm step with most negative directional derivative

• directional derivative in this direction is ∇ 5 (G))ΔGnsd = −‖∇ 5 (G)‖∗

(recall definition of dual norm ‖{‖∗ = sup‖D‖=1 {
)D)

(Unnormalized) steepest descent direction

ΔGsd = ‖∇ 5 (G)‖∗ΔGnsd

multiple of ΔGnsd, scaled to make ∇ 5 (G))ΔGsd = −‖∇ 5 (G)‖2
∗

Steepest descent method

• general descent method of page 9.8 with ΔG = ΔGsd

• convergence properties are similar to gradient descent
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Steepest descent direction for quadratic norm

• for Euclidean norm (‖ · ‖ = ‖ · ‖∗ = ‖ · ‖2)

ΔGnsd =
−∇ 5 (G)

‖∇ 5 (G)‖2
, ΔGsd = −∇ 5 (G)

• as an extension, define quadratic norm and dual norm (for % ∈ S
=
++)

‖G‖ = (G)%G)1/2 = ‖%1/2G‖2, ‖H‖∗ = (H)%−1H)1/2 = ‖%−1/2H‖2

• normalized and unnormalized steepest descent directions for this norm are

ΔGnsd =
−%−1∇ 5 (G)

‖%−1/2∇ 5 (G)‖2

ΔGsd = −%−1∇ 5 (G)

−∇ 5 (G)

ΔGnsd
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Steepest descent direction for 1-norm

• for ‖ · ‖ = ‖ · ‖1 and its dual norm ‖ · ‖∞, steepest descent directions are

ΔGnsd =
−m 5 (G)/mG8

|m 5 (G)/mG8 |
48

ΔGsd = −
m 5 (G)

mG8
48,

−∇ 5 (G)

ΔGnsd

where 8 is an index with

�

�

�

�

m 5 (G)

mG8

�

�

�

�

= ‖∇ 5 (G)‖∞ = max
:=1,...,=

�

�

�

�

m 5 (G)

mG:

�

�

�

�

• not necessarily unique

• steepest descent method for 1-norm updates one coordinate of G at a time
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Choice of norm for steepest descent

G (0)

G (1) G (2)

G (0)

G (1)

G (2)

• steepest descent with backtracking line search for two quadratic norms

• ellipses show {G | ‖G − G (:)‖% = 1}

• equivalent to gradient descent after change of variables Ḡ = %1/2G

• figures show that shows choice of % has strong effect on speed of convergence
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Newton step

ΔGnt = −∇2 5 (G)−1∇ 5 (G)

Interpretations

• G + ΔGnt minimizes second order approximation 5̂ of 5 at G

5̂ (G + {) = 5 (G) + ∇ 5 (G)){ +
1

2
{)∇2 5 (G){ (4)

• G + ΔGnt solves linearized optimality condition

∇ 5 (G + {) ≈ ∇ 5̂ (G + {) = ∇ 5 (G) + ∇2 5 (G){ = 0

5

5̂

(G, 5 (G))

(G + ΔGnt, 5 (G + ΔGnt))

5 ′

5̂ ′

(G, 5 ′(G))

(G + ΔGnt, 5
′(G + ΔGnt))
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Interpretation as steepest descent direction in local norm

ΔGnt is steepest descent direction at G in local norm defined by Hessian

‖D‖∇2 5 (G) = (D)∇2 5 (G)D)1/2

• dashed lines are contour lines of 5

• ellipse is {G + { | {)∇2 5 (G){ = 1}

• arrow shows −∇ 5 (G)

G

G + ΔGnt

G + ΔGnsd
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Affine invariance of Newton step

suppose we make a change of variables G = �H, with � nonsingular, and solve

minimize 6(H) = 5 (�H)

• gradient and Hessian of 6 are

∇6(H) = �)∇ 5 (�H), ∇26(H) = �)∇2 5 (�H)�

• Newton step of 6 at H is

ΔHnt = −∇26(H)−1∇6(H) = −�−1∇2 5 (�H)−1∇2 5 (�H)

• if H = �−1G, then

ΔHnt = �−1
ΔGnt, where ΔGnt is Newton step of 5 at G

Newton step is invariant under affine change of variables
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Newton decrement

_(G) = (∇ 5 (G))∇2 5 (G)−1∇ 5 (G))1/2

a measure of the proximity of G to the minimizer G★

• _(G)2 = −∇ 5 (G))ΔGnt is negative of directional derivative in Newton direction

• _(G) is the norm of the Newton step in the quadratic Hessian norm

_(G) = (ΔG)nt∇
2 5 (G)ΔGnt)

1/2

• _(G) gives estimate of 5 (G) − ?★, estimated using quadratic approximation (4)

5 (G) − inf
H

5̂ (H) =
1

2
_(G)2

• _(G) is affine invariant (unlike ‖∇ 5 (G)‖2)

Unconstrained minimization 9.21



Newton’s method

given: a starting point G ∈ dom 5 , tolerance n > 0

repeat

1. compute Newton step and decrement

ΔGnt := −∇2 5 (G)−1∇ 5 (G); _(G) := (∇ 5 (G))∇2 5 (G)−1∇ 5 (G))1/2

2. stopping criterion: quit if _(G)2/2 ≤ n

3. line search: choose step size C by backtracking line search

4. update: G := G + CΔGnt

• we use line search of page 9.9: starting at C = 1, backtrack (C := VC) until

5 (G + CΔGnt) < 5 (G) + UC∇ 5 (G))ΔGnt

= 5 (G) − UC_(G)2

• typical values of line search parameters are U = 0.01, V = 1/2
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Affine invariance of Newton’s method

• we already noted that Newton step and Newton decrement are affine invariant

• affine invariance of _(G) makes line search, stopping criterion affine invariant

• hence, for Newton method applied to 6(H) = 5 (�H), started at H(0) = �−1G (0),

H(:) = �−1G (:) for all :

where G (:) are iterates of Newton method applied to 5 (G), started at G (0)

• number of iterates is independent of linear changes of coordinates
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Classical convergence analysis

Assumptions

• 5 strongly convex with constant <

• ∇2 5 is Lipschitz continuous: there exists a constant ! such that

‖∇2 5 (G) − ∇2 5 (H)‖2 ≤ !‖G − H‖2 for all G, H ∈ dom 5

constant ! measures how well 5 is approximated by a quadratic function

Summary: there exist constants [ ∈ (0, <2/!) and W > 0 such that

• if ‖∇ 5 (G (:))‖2 ≥ [, then

5 (G (:+1)) − 5 (G (:)) ≤ −W

• if ‖∇ 5 (G (:))‖2 < [, then

!

2<2
‖∇ 5 (G (:+1))‖2 ≤

(

!

2<2
‖∇ 5 (G (:))‖2

)2
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Classical convergence analysis

Damped Newton phase (‖∇ 5 (G (:))‖2 ≥ [)

• most iterations require backtracking steps

• function value decreases by at least W

• if ?★ > −∞, this phase ends after at most

5 (G (0)) − ?★

W
iterations

Quadratically convergent phase (‖∇ 5 (G (:))‖2 < [)

• all iterations use step size C = 1

• gradient converges to zero quadratically: once ‖∇ 5 (G ( 9))‖2 < [,

!

2<2
‖∇ 5 (G:)‖2 ≤

(

!

2<2
‖∇ 5 (G 9)‖2

)2:− 9

≤

(

1

2

)2:− 9

, : ≥ 9

• inequality (2) shows that ( 5 (G (:)) − ?★) → 0 quadratically
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Classical convergence analysis

Conclusion: number of iterations until 5 (G (:)) − ?★ ≤ n is bounded above by

5 (G (0)) − ?★

W
+ log2 log2(n0/n)

• W, n0 are constants that depend on <, !, G (0)

• 2nd term is small (of the order of 6), almost constant for practical purposes

• in practice, constants <, ! (hence W, n0) are usually unknown

• provides qualitative insight in convergence properties (two algorithm phases)

Unconstrained minimization 9.26



Examples

Example in R
2 (page 9.12)

G (0)

G (1)

:

5
(G

(:
) )
−
?
★

0 1 2 3 4 5
10−15

10−10

10−5

100

105

• backtracking parameters U = 0.1, V = 0.7

• converges in only 5 steps

• quadratic local convergence
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Examples

Example in R
100 (page 9.13)

:

5
(G

(:
) )
−
?
★

exact line search

backtracking

0 2 4 6 8 10
10−15

10−10

10−5

100

105

:

s
te

p
s
iz

e
C(
:
)

exact line search

backtracking

0 2 4 6 8
0

0.5

1

1.5

2

• backtracking parameters U = 0.01, V = 0.5

• backtracking line search almost as fast as exact l.s. (and much simpler)

• clearly shows two phases in algorithm
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Examples

Example in R
10000 (with sparse 08)

5 (G) = −
10000
∑

8=1

log(1 − G2
8 ) −

100000
∑

8=1

log(18 − 0)8 G)

:

5
(G

(:
) )
−
?
★

0 5 10 15 20

10−5

100

105

• backtracking parameters U = 0.01, V = 0.5

• performance similar as for small examples
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Self-concordance

Shortcomings of classical convergence analysis

• depends on unknown constants (<, !)

• bound is not affinely invariant, although Newton’s method is

Convergence analysis via self-concordance (Nesterov and Nemirovski)

• does not depend on any unknown constants

• gives affine-invariant bound

• applies to special class of convex functions (self-concordant functions)

• developed to analyze interior-point methods for convex optimization
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Self-concordant functions

Definition

• a convex function 5 : R → R is self-concordant if

| 5 ′′′(G) | ≤ 2 5 ′′(G)3/2 for all G ∈ dom 5

• a convex function 5 : R
= → R is self-concordant if restriction to a line

6(C) = 5 (G + C{)

is a self-concordant function of C for all G ∈ dom 5 and {

Affine invariance

• if 5 : R
= → R is self-concordant, then 5̃ (H) = 5 (�H) is self-concordant

• this is easily checked for 5 : R → R and 5̃ (H) = 5 (0H):

| 5̃ ′′′(H) | = |0 |3 | 5 ′′′(0H) | ≤ 2|0 |3 5 ′′(0H)3/2 = 2 5̃ ′′(H)3/2
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Examples of self-concordant functions

• linear and quadratic functions

• negative logarithm: 5 (G) = − log G

• negative entropy plus negative logarithm: 5 (G) = G log G − log G

• logarithmic barrier for set of linear inequalities

5 (G) = −
<
∑

8=1

log(18 − 0)8 G), dom 5 = {G | 0)8 G < 18, 8 = 1, . . . , <}

• log-det barrier

5 (-) = − log det -, dom 5 = S
=
++

• logarithmic barrier for second order cone

5 (G) = − log(H2 − G)G), dom 5 = {(G, H) | ‖G‖2 < H}
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Newton’s method for self-concordant functions

Newton’s method of page 9.22

Summary: there exist constants [ ∈ (0, 1/4], W > 0 such that

• if _(G (:)) > [, then

5 (G (:+1)) − 5 (G (:)) ≤ −W

• if _(G (:)) ≤ [, then

2_(G (:+1)) ≤ (2_(G (:)))2

[ and W only depend on backtracking parameters U, V

Complexity bound: number of iterations until 5 (G (:)) − ?★ ≤ n is bounded by

5 (G (0)) − ?★

W
+ log2 log2(1/n)
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Implementation of Newton’s method

main effort in each iteration: evaluate derivatives and solve Newton system

�ΔG = −6

where � = ∇2 5 (G) and 6 = ∇ 5 (G)

Via Cholesky factorization

� = !!) , ΔGnt = −!−)!−16, _(G) = ‖!−16‖2

• cost: (1/3)=3 flops for unstructured system, plus cost of evaluating derivatives

• cost ≪ (1/3)=3 if � sparse or highly structured (for example, banded)
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Structured-plus-low-rank matrices

a type of structured linear equations, common in optimization:

(� + ��)G = 1 with � ∈ R
=×=, � ∈ R

=×?, � ∈ R
?×= (5)

• � has some property that makes �G = 1 easy to solve, for example, diagonal

• �,� are dense, with ? ≪ =

• using an auxilary variable H, equation can be written as

[

� �

� −�

] [

G

H

]

=

[

1

0

]

(6)

• instead of solving (5) directly, can solve (6) by eliminating G: first solve equation

(� + ��−1�)H = ��−11

to find H; then solve �G = 1 − �H to find G
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Matrix inversion lemma

if � and � + �� are nonsingular, then � + ��−1� is nonsingular and

(� + ��)−1
= �−1 − �−1�(� + ��−1�)−1��−1 (7)

• easily verified by multiplying � + �� and right-hand side of (7)

• can be derived via method on previous page: G = (� + ��)−11 is equal to

G = �−1(1 − �H)

= �−1(1 − �(� + ��−1�)−1��−11)

= (�−1 − �−1�(� + ��−1�)−1��−1)1 (8)

since this is true for all 1, matrix on the right-hand side of (8) is (� + ��)−1

• method on previous page can be viewed as evaluating (� + ��)−11 via (8)
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Example

Newton method for unconstrained optimization with cost function 5 : R
= → R,

5 (G) =
=
∑

8=1

k8 (G8) + q(�G + 1)

• functions k8 : R → R and q : R
? → R are convex

• assume � ∈ R
?×=, dense, with ? ≪ =

• Hessian of 5 is diagonal plus low rank:

� = � + �)��

where � is diagonal with �88 = k′′
8
(G8), and � = ∇2q(�G + 1)
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Example

compare two methods for solving Newton equation (� + �)��)ΔG = −6

Method 1: form � + �)��, solve via dense Cholesky

cost dominated by cost of factorization ((1/3)=3 flops)

Method 2: follow idea on page 9.35

• compute Cholesky factorization � = !!) and write Newton system as

[

� �)!

!)� −�

] [

ΔG

H

]

=

[

−6

0

]

• eliminate ΔG from first equation: solve two equations

(� + !)��−1�)!)H = −!)��−16, �ΔG = −6 − �)!H

• cost is roughly 2?2= flops, dominated by computation of !)��−1�)!

complexity of method 2 is linear in =
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