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Abstract

Several important problems in control theory can be reformulated as semidefinite program-
ming problems, i.e., minimization of a linear objective subject to Linear Matrix Inequality
(LMI) constraints. From convex optimization duality theory, conditions for infeasibility of
the LMIs as well as dual optimization problems can be formulated. These can in turn be re-
interpreted in control or system theoretic terms, often yielding new results or new proofs for
existing results from control theory. We explore such connections for a few problems associ-
ated with linear time-invariant systems.

Index Terms—Semidefinite programming, linear matrix inequality (LMI), convex duality,
linear time-invariant systems.

1 Introduction

Over the past few years, convex optimization, and semidefinite programming1 (SDP) in particular,

have come to be recognized as valuable numerical tools for control system analysis and design. A

number of publications can be found in the control literature that survey applications of SDP to

the solution of system and control problems (see for example [1, 2, 3, 4, 5]). In parallel, there has

been considerable recent research on algorithms and software for the numerical solution of SDPs

(for surveys, see [6, 7, 8, 9, 10, 11, 12]). This interest was primarily motivated by applications of

SDP in combinatorial optimization but, more recently, also by the applications in control.

Thus far, the application of SDP in systems and control has been mainly motivated by the

possibilities it offers for the numerical solution of analysis and synthesis problems for which no
�
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analytical solutions are known [13, 14, 15]. In this paper, we explore another application of SDP:

We discuss the application of duality theory to obtain new theoretical insight or to provide new

proofs to existing results from system and control theory. Specifically, we discuss the following

applications of SDP duality.

� Theorems of alternatives provide systematic and unified proofs of necessary and sufficient

conditions for solvability of LMIs. As examples, we investigate the conditions for the exis-

tence of feasible solutions to Lyapunov and Riccati inequalities. As a by-product, we obtain

a simple new proof of the Kalman-Yakubovich-Popov lemma.

Several of the results that we use from convex duality require technical conditions (so-called

constraint qualifications). We show that for problems involving Riccati inequalities these

constraint qualifications are related to controllability and observability. In particular, we will

obtain a new criterion for the controllability of an LTI system realization.

� The optimal solution of an SDP is characterized by necessary and sufficient optimality con-

ditions that involve the dual variables. As an example, we show that the properties of the

solution of the LQR problem can be derived directly from the SDP optimality conditions.

� The dual problem associated with an SDP can be used to derive lower bounds on the optimal

value. As an example, we give new easily computed bounds on the H∞-norm of an LTI

system, and a duality-based proof of the Enns-Glover lower bound.

Several researchers have recently applied notions from convex optimization duality toward the

re-interpretation of existing results and the derivation of new results in system theory. Rantzer [16]

uses ideas from convexity theory to give a new proof of the Kalman-Yakubovich-Popov Lemma.

In [17], SDP duality is used to study the relationship between “mixed-µ” and its upper bound.

Henrion and Meinsma [18] apply SDP to provide a new proof of a generalized form of Lyapunov’s

matrix inequality on the location of the eigenvalues of a matrix in some region of the complex

plane. Yao, Zhao, and Zhang [19] apply SDP optimality conditions to derive properties of the

optimal solution of a stochastic linear-quadratic control problem; see also [20]. Our work is similar

in spirit to these; however, the scope of our paper is wider, as we present new proofs to (and in

many cases generalize) some of the results in these papers.
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Notation

R (R � ) denotes the set of real (nonnegative real) numbers. C denotes the set of complex numbers.

ℜ
�����

and ℑ
�����

denote respectively the real and imaginary parts of a complex scalar, vector or matrix.

The matrix inequalities A � B and A � B mean A and B are square, Hermitian, and that A � B is

positive definite and positive semi-definite, respectively. The inequality A 	 0 means that the

matrix A is positive semidefinite and nonzero. S n denotes the set of Hermitian n 
 n matrices with

an associated inner product � ������ Sn . While the development in the sequel are applicable to any inner

product on S n, we will assume that the standard inner product, given by � A �
B
�
Sn � Tr A � B � Tr AB

is in effect.

L2 is the Hilbert space of square-integrable signals defined over R � (see for example [21]).

L2e denotes the extended space associated with L2.

2 Duality

Suppose that S is a space of block diagonal Hermitian matrices with some given dimensions,

S � S n1 
 ����� 
 SnL , and with inner product

� diag
�
A1

���������
AL

���
diag

�
B1

���������
BL

���
S � L

∑
k � 1

Tr AkBk
�

Suppose that V is a finite-dimensional vector space with an inner product � ������� V , A : V � S is a

linear mapping and A0 � S . Then, the inequality

A
�
x
���

A0 � 0 (1)

is called a Linear Matrix Inequality or LMI. We let Aadj denote the adjoint mapping of A . That is,

Aadj : S � V such that for all x � V and Z � S , � A �
x
���

Z
�

S � � x �
Aadj � Z ���

V .

Remark 1 We note that all the results derived in the sequel hold if S is a space of block diagonal

real symmetric (instead of Hermitian) matrices. This would be applicable when dealing with real

data. �
2.1 Theorems of alternatives

We first examine criteria for solvability of different types of LMIs. We consider the following three

feasibility problems.
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� Strict feasibility: there exists an x � V with A
�
x
���

A0 � 0.

� Nonzero feasibility: there exists an x � V with A
�
x
���

A0 	 0.

� Feasibility: there exists an x � V with A
�
x
� �

A0 � 0.

By properly choosing A we will be able to address a wide variety of LMI feasibility problems. For

example, when V � Rm, we can express A as

A
�
x
� � x1A1

�
x2A2

� ����� �
xmAm

�
(2)

where Ai � S are given. With this parametrization, the three problems described above reduce to

the following three basic LMIs:

A0
�

x1A1
�

x2A2
� ����� �

xmAm � 0
�

(3)

A0
�

x1A1
�

x2A2
� ����� �

xmAm 	 0
�

(4)

A0
�

x1A1
�

x2A2
� ����� �

xmAm � 0
�

(5)

There exists a rich literature on theorems of alternatives for generalized inequalities (i.e., in-

equalities with respect to nonpolyhedral convex cones), and linear matrix inequalities in particular.

For our purposes the following three theorems will be sufficient. Owing to space limitations, we

state these theorems without proof; proofs can be found in [22]. We refer to [23, 24, 25, 26] for

more background on theorems of alternative for nonpolyhedral cones, and to [27, 28, 29] for results

on linear matrix inequalities. We note that these theorems are special cases of the more general

Hahn-Banach separation theorem; see for example [30].

Theorem 1 (ALT 1) Exactly one of the following statements is true.

1. There exists an x � V with A
�
x
� �

A0 � 0.

2. There exists a Z � S with Z 	 0, Aadj � Z � � 0, and � A0
�
Z
�
S
�

0.

Theorem ALT 1 is the first example of a theorem of alternatives. The two statements in the

theorem are called strong alternatives, because exactly one of them is true.

Example 1 The adjoint Aadj
0 : S � Rm of the mapping defined by (2) is given by

Aadj
0

�
Z
� ��� Tr A1Z Tr A2Z

�����
Tr AmZ � T �

Theorem ALT 1 therefore implies that either there exists x � Rm such that LMI (3) holds, or there

exists Z � S with Z 	 0 such that Tr AiZ � 0, i � 1
�
2
���������

m, and Tr A0Z
�

0. �
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Example 2 As an example of an application of Theorem ALT 1 in matrix algebra, consider

Finsler’s Theorem [31, 32, 33], which states that given F � Cn � m with rank r � n, and G � S n, the

condition that there exists µ � R such that µFF � � G � 0
�
is equivalent to

�
F
� � � GF

� � 0, where

F
�

is a full-rank matrix whose columns span the left nullspace of F , i.e.,
�
F
� � � F � 0.

Let A : R � Sn be defined by A
�
µ
� � µFF � , and let A0 � � G. Then Aadj : Sn � R is given

by Aadj � Z � � Tr
�
F � ZF

�
. Then, there does not exist µ � R such that A

�
µ
� �

A0 � 0, if and only

if there exists a Z � S n with Z 	 0, Tr
�
F � ZF

� � 0, Tr
�
ZG

� � 0. Factoring Z as Z � ∑k
i � 1 λiuiu �i ,

where λi � 0, we must have for some i, u �i F � 0 and u �i Gui � 0, which immediately means�
F
� � � GF

� � 0 is violated. Conversely, if
�
F
� � � GF

���� 0, then for some nonzero u � Cn, we

must have u � � F � � � GF
�

u � 0. Then, with Z � �
F
�

u
���

F
�

u
� � , it is readily verified that Z 	 0 and

Tr
�
F � ZF

� � 0. �
Example 3 Let A

�
B � Sn. The following result is a version of the S-procedure [34, 35, 36, 1].

There exist τ1
�
τ2 � R such that

τ1 � 0
�

τ2 � 0
�

τ1A
�

τ2B � 0
�

(6)

if and only if there exists no z � Cn satisfying

z
�� 0

�
z � Az
�

0
�

z � Bz
�

0
�

(7)

We can derive the result from Theorem ALT1 as follows. Define A : R2 � Sn 
 R 
 R as

A
�
τ1

�
τ2

� � diag
�
τ1A

�
τ2B

�
τ1

�
τ2

�

and take A0 � 0. Theorem ALT1 states that (6) is infeasible if and only if there exists Z � S n such

that

Z 	 0
�

Tr AZ
�

0
�

Tr BZ
�

0
�

This turns out to be equivalent to the existence of a z � Cn such that (7) holds. The equivalence

readily follows from the fact that the field of values of a pair of Hermitian matrices, which is

defined as

F
�
A
�
B
� ��� � z� Az

�
z � Bz

���
z � Cn �

z � z � 1 	�
 R2 �
is a convex set (see [37, p.86]), and therefore equal to its convex hull

F
�
A
�
B
� � CoF

�
A
�
B
�

� � � Tr AZ
�
Tr BZ

���
Z � Sn �

Z � 0
�
Tr Z � 1 	 �
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�
Theorem 2 (ALT 2) At most one of the following statements is true.

1. There exists an x � V with A
�
x
� �

A0 	 0.

2. There exists a Z � S with Z � 0, Aadj � Z � � 0, and � A0
�
Z
�
S
�

0.

Moreover, if A0 � A
�
x0

�
for some x0 � V , or if there exists no x � V with A

�
x
� 	 0, then exactly

one of the two statements is true.

The theorem gives a pair of weak alternatives, i.e., two statements at most one of which is true. It

also gives additional assumptions under which the statements become strong alternatives. These

additional assumptions are called constraint qualifications.

Remark 2 Note that if A0 � A
�
x0

�
for some x0, the theorem can be paraphrased as follows: Ex-

actly one of the following statements is true.

1. There exists an x � V with A
�
x
� 	 0.

2. There exists a Z � S with Z � 0 and Aadj � Z � � 0.

If in addition the mapping A has full rank, i.e., A
�
x
� � 0 implies x � 0, then the first statement is

equivalent to A
�
x
� � 0, x

�� 0. �
Example 4 Theorem ALT 2 implies that at most one of the following are possible: either there

exists x � Rm such that LMI (4) holds, or there exists Z � S with Z � 0, Tr AiZ � 0 for i � 1
���������

m,

and Tr A0Z
�

0. However, it is possible that neither condition holds; a simple counterexample is

provided by S � S 2, A0 � diag
�
0
� � 1

�
and A1 � diag

�
1
�
0
�
. �

Theorem 3 (ALT 3) At most one of the following statements is true.

1. There exists an x � V with A
�
x
� �

A0 � 0.

2. There exists a Z � S with Z � 0, Aadj � Z � � 0, and � A0
�
Z
�
S
� 0.

Moreover, if A0 � A
�
x0

�
for some x0 � V , or if there exists no x � V such that A

�
x
� 	 0, then

exactly one of the two statements is true.
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Again, the theorem states a pair of weak alternatives, and additional assumptions under which the

statements are strong alternatives.

Note that the theorem is trivial if A0 � A
�
x0

�
for some x0: the first statement is true because

we can take x � � x0; the second statement is obviously false because Aadj � Z � � 0 implies that

� A0
�
Z
�
S � � A �

x0
���

Z
�
S � � x0

�
Aadj � Z ���

V � 0
�

Example 5 Theorem ALT 3, applied to the linear mapping (2), implies that at most one of the

following are possible: either there exists x � Rm such that LMI (5) holds, or there exists Z � S
with Z � 0 such that Tr AiZ � 0, i � 1

�
2
��� �����

m, and Tr A0Z � 0. It is possible that neither condition

holds; see for example [23, p.378]. �
2.2 Semidefinite programming duality

A semidefinite programming problem (SDP) requires minimizing a linear function subject to an

LMI constraint: �����������	��
� � c �
x
�
V������� 
��	�������

A
�
x
� �

A0 � 0
(8)

From convex duality, we can associate with the SDP the dual problem���	����������
� � � A0
�
Z
�
S������� 
���������

Aadj � Z � � c
�

Z � 0
(9)

where the variable is the matrix Z � S . In the context of duality we refer to the SDP (8) as the

primal problem associated with (9).

The following theorem relates the optimal values of the primal and dual SDPs. Let popt be the

optimal value of (8) and dopt the optimal value of (9). We allow values � ∞: popt � �
∞ if the primal

problem is infeasible and popt � � ∞ if it is unbounded below; dopt � �
∞ if the dual problem is

unbounded above, dopt � � ∞ if it is infeasible.

Theorem 4 popt � dopt. If the primal problem is strictly feasible, (i.e., there exists x with A
�
x
� �

A0 � 0), or the dual problem is strictly feasible (i.e., there exists Z � 0 with Aadj � Z � � c), then

popt � dopt.

The first property (popt � dopt) is called weak duality. If popt � dopt, we say the primal and dual

SDPs satisfy strong duality. A proof of Theorem 4 can be found in [22].

Theorem 4 is the standard Lagrange duality result for semidefinite programming. An alterna-

tive duality theory, which does not require a constraint qualification, was developed by Ramana,

Tunçel, and Wolkowicz [38].
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2.3 Optimality conditions

Suppose strong duality holds. The following facts are useful when studying the properties of the

optimal solutions of the primal and dual SDP.

� A primal feasible x and a dual feasible Z are optimal if and only if
�
A

�
x
� �

A0
�
Z � 0. This

property is called complementary slackness.

� If the primal problem is strictly feasible, then the dual optimum is attained, i.e., there exists

a dual optimal Z.

� If the dual problem is strictly feasible, then the primal optimum is attained, i.e., there exists

a primal optimal x.

A proof of this result can be found in [22].

We combine these properties to state necessary and sufficient conditions for optimality. For

example, it follows that if the primal problem is strictly feasible (hence strong duality obtains), then

a primal feasible x is optimal if and only if there exists a dual feasible Z with
�
A

�
x
���

A0
�
Z � 0.

Note that complementary slackness between optimal solutions is only satisfied when strong

duality holds; see for example [9, p. 65].

2.4 Some useful preliminaries

We will encounter four specific linear mappings several times in the sequel. For easy reference,

we define these here, and derive the expression for their adjoints.

Example 6 Let A1 : Sn � Sn be defined by

A1
�
P
� � � �

A � P �
PA

� �

Then, it is easily verified that Aadj
1 : Sn � Sn is given by

Aadj
1

�
Z
� � � �

ZA � �
AZ

� �

�
Example 7 Let A2 : Sn � Sn 
 Sn be defined by

A
�
P
� � diag

� � �
A � P �

PA
� �

P
���
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Then, it is easily verified that Aadj
2 : Sn 
 Sn � Sn is given by

Aadj
2

�
Z
� � � �

Z1A � �
AZ1 � Z2

� �

where Z � diag
�
Z1

�
Z2

�
. �

Example 8 Let A3 : Sn � Sn � m be defined by

A3
�
P
� � �

�
A � P �

PA PB
B � P 0 � �

Then, it is easily verified that Aadj
3 : Sn � m � Sn is given by

Aadj
3

� �
Z11 Z12

Z �12 Z22 � � � � Z11A � � AZ11 � BZ �12 � Z12B � �

�

3 Lyapunov inequalities, stability, and controllability

As our first application of the theorem of alternatives to the analysis of linear time-invariant (LTI)

systems, we consider the LTI system

ẋ � Ax
�

(10)

where A � Cn � n. Lyapunov equations, i.e., equations of the form A � P �
PA

�
Q � 0, and Lyapunov

inequalities, i.e., LMIs of the form A � P �
PA � 0 or A � P �

PA
�

0 play a fundamental role in

establishing the stability of system (10); see any text on linear systems, for instance, [39].

We consider some well known results on Lyapunov inequalities. Although these results are

readily proved using standard techniques, we give a proof using SDP duality to illustrate the tech-

niques that will be used later in the paper.

3.1 Strict Lyapunov inequalities

Proposition 1 Exactly one of the following two statements is true.

1. There exists a P � Sn such that A � P
�

PA � 0.

2. A has an imaginary eigenvalue.
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Proof. With A1 as in Example 6 and with A0 � 0, the first statement of the theorem is equivalent to

the existence of P � Sn such that A1
�
P
� �

A0 � 0. Then, applying Theorem ALT 1, the alternative

is that there exists a Z � S n with

Z 	 0
�

AZ
�

ZA � � 0
�

(11)

We now show that this condition is equivalent to A having imaginary eigenvalues, establishing the

proposition.

Suppose A has an imaginary eigenvalue, i.e., there exist nonzero v � Cn, and ω � R with

Av � jωv. It is easily shown that Z � vv � satisfies (11).

Conversely, suppose that (11) holds. Let Z � UU � where U � Cn � r and RankU � Rank Z � r.

From (11), we note that AZ is skew-Hermitian, so that we must have AUU � � USU � where S is

skew-Hermitian. Therefore AU � US
�
The eigenvalues of S are all on the imaginary axis because

S is skew-Hermitian. Therefore, the columns of U span an invariant subspace of A associated with

a set of imaginary eigenvalues. Thus A has at least one imaginary eigenvalue. �

Remark 3 In Proposition 1, it is easy to show directly that both statements cannot hold; this

is the “easy” part. For instance, if A has an imaginary eigenvalue, i.e., if Av � jωv for some

ω � R and nonzero v � Cn, it is easy to show that A � P �
PA � 0 cannot hold for any P � Sn.

(In the proof, we prove this “easy” implication with the second alternative.) The hard part is the

converse, and the theorems of alternatives give a “constructive” proof: We exhibit the eigenspace

of A corresponding to one or more imaginary eigenvalues. It is also worthy of note that (numerical)

convex optimization algorithms operate similarly: Given a convex feasibility problem, they either

find a feasible point, or provide a constructive proof of infeasibility.

Proposition 1 is representative of most of the results in the sequel, with an easy part and a hard

part, with the theorems of alternatives providing a constructive proof of the hard part. �
Proposition 2 Exactly one of the following two statements is true.

1. There exists a P � Sn such that P � 0 and A � P �
PA � 0.

2. A has an eigenvalue with non-negative real part.

Remark 4 This is a restatement of the celebrated Lyapunov stability theorem for LTI systems. �
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Proof. With A2 as in Example 7 and with A0 � 0, the first statement of the theorem is equivalent to

the existence of P � Sn such that A2
�
P
� �

A0 � 0. Then, applying Theorem ALT 1, the alternative

is that there exist Z1 � Sn and Z2
� � Sn with

diag
�
Z1

�
Z2

� 	 0
�

Z1A � �
AZ1 � Z2 � 0

�
(12)

We now show that this condition is equivalent to A having eigenvalues with non-negative real part,

establishing the proposition.

Suppose that A has an eigenvalue with non-negative real part, i.e., there exist nonzero v � Cn,

σ � 0 and ω � R with Av � �
σ

�
jω

�
v. It is easily shown that Z1 � vv � , Z2 � 2σvv � satisfy (12).

Conversely, suppose that (12) holds. We can write Z1 � UU � with U � Cn � r and RankU �
Rank Z � r. From (12), we note that the symmetric part of AZ1 is positive semidefinite, so that

we must have AUU � � USU � where S is the sum of a skew-Hermitian and a positive semidefinite

matrix. Then, AU � US. The eigenvalues of S are all in the closed right-half plane because S is

the sum of a skew-Hermitian and a positive semidefinite matrix. Therefore U spans a (nonempty)

invariant subspace of A associated with a set eigenvalues of A with non-negative real part. �

Remark 5 Theorem ALT 1, besides offering a simple proof to Lyapunov’s theorem, also enables

the extension of Proposition 2 to more general settings. Consider the problem of the existence of

P satisfying

P � 0
�

A �1P
�

PA1
� 0

�
A �2P

�
PA2

� 0
�

(13)

The matrix P can be interpreted as defining a common or simultaneous quadratic Lyapunov func-

tion [40, 1, 41, 42, 43, 44] that proves the stability of the time-varying system

ẋ � A
�
t
�
x
�

A
�
t
� � λ

�
t
�
A1

� �
1 � λ

�
t
���

A2
�

λ
�
t
� � �

0
�
1 � for all t

�
An application of Theorem ALT 1 immediately yields a necessary and sufficient condition for (13)

to be feasible: There do not exist Z1
�
Z2 � Sn such that

diag
�
Z1

�
Z2

� 	 0
�

Z1A �1 �
A1Z1

�
Z2A �2 �

A2Z2 � 0
�

(14)

It is easy to show that if A1
�

σA2 has a nonnegative eigenvalue for some σ � C, then (14) is

feasible, or there does not exist P satisfying (13). References [41, 42, 43, 44] explore sufficient

conditions, using algebraic techniques, for the existence of P satisfying (13) for the special case

when the matrices Ai are 2 
 2 and real.
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3.2 Nonstrict Lyapunov inequalities

We saw in � 3.1 that the alternatives to strict Lyapunov inequalities involving a matrix A are equiv-

alent to a condition on some eigenvalue of A. We will see in this section that the alternatives to

nonstrict Lyapunov inequalities result in conditions that are to be satisfied by all eigenvalues of A.

Proposition 3 Exactly one of the following two statements is true.

1. There exists P � Sn such that A � P �
PA � 0.

2. A is similar to a purely imaginary diagonal matrix.

Proof. Follows from an application of Theorem ALT 2; see [22]. �

Proposition 4 Exactly one of the following two statements is true.

1. There exists P � Sn such that A � P �
PA
�

0, P 	 0.

2. The eigenvalues of A are in the open right half plane.

Proof. Follows from an application of Theorem ALT 2; see [22]. �

Remark 6 Propositions 1–4 deal with the issue of whether the eigenvalues of A lie in or on the

boundary of the left-half complex plane. It is possible to directly extend these propositions to

handle general disks in the complex plane (see for example [18]). An indirect route is through

conformal mapping techniques from complex analysis (see for instance, [45]). For example, the

mapping A �� �
I
�

A
���

I � A
��� 1 can be used to derive theorems of alternatives that address whether

the eigenvalues of A lie in or on the boundary of the unit disk in the complex plane; the underlying

control-theoretic interpretation then concerns the stability of discrete-time linear systems. For a

direct extension of Propositions 1–4 to handle to handle general disks, see [22]. �
3.3 Lyapunov inequalities with equality constraints

We next consider an LTI system with an input:

ẋ � Ax
�

Bu
�

(15)

where A � Cn � n and B � Cn � m. The pair
�
A
�
B
�

is said to be controllable if for every initial

condition x
�
0
�
, there exists an input u and T such that x

�
T

� � 0. While, there are several equivalent
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characterizations and conditions for controllability of
�
A
�
B
�

(see for example [39]), we will use the

following: The pair
�
A
�
B
�

is not controllable if and only if there exists a left eigenvector v � of A

such that v � B � 0.

If
�
A
�
B
�

is controllable, then given any monic polynomial a : C � C of degree n with complex

coefficients, there exists K � Cm � n such that det
�
sI � A � BK

� � a
�
s
�

for all s � C. In other words,

with “state-feedback” u � Kx in (15), the eigenvalues of A
�

BK can be arbitrarily assigned. When�
A
�
B
�

is not controllable, there exists a nonsingular matrix T � Cn � n such that

T
� 1AT �

�
A11 A12

0 A22 � �
T
� 1B �

�
B1

0 � �
(16)

where A11 � Cr � r and B1 � Cr � m, with r � n and
�
A11

�
B1

�
being controllable. (This is called the

“Kalman form”.) The eigenvalues of A22 are called the uncontrollable modes. An uncontrollable

mode is called nondefective if its algebraic multiplicity as an eigenvalue of A22 equals its geometric

multiplicity. The matrix T in (16) has the interpretation of a state coordinate transformation x̄ �
T
� 1x such that in the new coordinates, only the first r components of the state are controllable.

Proposition 5 Exactly one of the following two statements is true.

1. There exists P � Sn satisfying A � P �
PA � 0, PB � 0.

2. All uncontrollable modes of
�
A
�
B
�

are nondefective and correspond to imaginary eigenval-

ues.

Proof. With A3 as in Example 8 and with A0 � 0, the first statement of the theorem is equiv-

alent to the existence of P � S n such that A3
�
P
� �

A0 	 0. Then, applying Theorem ALT 2, the

alternative is that there exists Z � S n � m such that

Z �
�

Z11 Z12
Z �12 Z22 � � 0

�
AZ11

�
Z11A � �

BZ �12
�

Z12B � � 0
�

Defining K � Z �12Z
� 1
11 , we can write this equivalently as

Z11 � 0
� �

A
�

BK
�
Z11

�
Z11

�
A

�
BK

� � � 0
�

(17)

In other words, the first statement of the Proposition is false if and only if there exist K � Rn � m

and Z11 � Sn that satisfy (17). We now establish that this condition is equivalent to the second

13



statement. We will assume, without loss of generality, that
�
A
�
B
�

is in Kalman form, and that K

and Z11 are appropriately partitioned as

K � � K1 K2 � � Z11 �
�

Z̃11 Z̃12
Z̃ �12 Z̃22 � �

(18)

Suppose that the uncontrollable modes of
�
A
�
B
�

(if any) are nondefective and correspond to

imaginary eigenvalues. We will establish that we can find Z11 � 0 and K satisfying (17). By

assumption A22 is similar to a purely imaginary diagonal matrix. The pair
�
A11

�
B1

�
is controllable,

so there exists K1 such that the eigenvalues of A11
�

B1K1 are distinct, purely imaginary, and

different from the eigenvalues of A22. Therefore there exist V11 and V22 such that

V11
�
A11

�
B1K1

�
V

� 1
11 � Λ1

�
V22A22V

� 1
22 � Λ2

where Λ1 and Λ2 are diagonal and purely imaginary. The spectra of Λ1 and A22 are disjoint, so the

Sylvester equation � Λ1V12
�

V12A22 � � V11A12 has a unique solution V12 (see [37, Th. 4.4.5]). If

we take K2 � 0, it is easily verified that V �
�

V11 V12

0 V22 � satisfies

V
�
A

�
BK

�
V

� 1 ��
V11 V12

0 V22 � �
A11

�
B1K1 A12

�
B1K2

0 A22 � �
V11 V12

0 V22 � � 1

�
�

Λ1 0
0 Λ2 � �

i.e., A
�

BK is similar to a purely imaginary diagonal matrix. We can now proceed as in the proof

of Proposition 3 and show that the matrix Z11 � VV � satisfies (17).

Conversely, suppose that Z11 and K satisfy (17). In particular, Z̃22 � 0, and A22Z̃22
�

Z̃22A �22 �
0. As in the proof of Proposition 3 we can construct from Z̃22 a similarity transformation that

makes A22 diagonal with purely imaginary diagonal elements. Hence all the uncontrollable modes

are nondefective and correspond to imaginary eigenvalues. �

Proposition 6 Exactly one of the following two statements is true.

1. There exists P � Sn satisfying P 	 0, A � P �
PA
�

0, PB � 0
�

2. All uncontrollable modes of
�
A
�
B
�

correspond to eigenvalues with positive real part.

Proof. Follows from an application of Theorem ALT 2; see [22]. �

Finally, we present a condition for controllability. We first note the following result, which can

be interpreted as a theorem of alternatives for linear equations.

14



Proposition 7 Exactly one of the following two statements is true.

1. There exists P � Sn satisfying

P
�� 0

�
A � P �

PA � 0
�

PB � 0 (19)

2. With λ1
���������

λp denoting the uncontrollable modes of
�
A
�
B
�
, λi

�
λ � j �� 0, 1

�
i
�
j
�

p.

Proof. Without loss of generality we can assume that
�
A
�
B
�

is in the Kalman form (16), with

A22 � Cp � p. We partition P accordingly as

P �
�

P11 P12

P �12 P22 � �

First suppose λi
�

λ � j � 0 for two eigenvalues λi and λ j of A22. Then the Lyapunov equation

A �22P22
�

P22A22 � 0 has a nonzero solution P22 (see [37, Th. 4.4.5]). Taking P11 � 0 and P12 � 0,

we obtain a nonzero P that satisfies A � P �
PA � 0, PB � 0.

Conversely, if P satisfies (19), then

�
A

�
BK

�
P

�
P
�
A

�
BK

� � � 0

for all K. This is only possible if for all K,

A
�

BK �
�

A11
�

B1K1 A22
�

B1K2
0 A22 �

has eigenvalues µi and µ j that satisfy µi
�

µ � j � 0 (again, see [37, Th. 4.4.5]). The spectrum of

A
�

BK is the union of the spectrum of A11
�

B1K1 and the spectrum of A22. Therefore we must

have λi
�

λ � j � 0 for two eigenvalues of A22. �

Proposition 8 Exactly one of the following two statements is true.

1. There exists P � Sn satisfying P
�� 0

�
A � P �

PA
�

0
�

PB � 0.

2. The pair
�
A
�
B
�

is controllable.

Proof. Statement 1 is true if the statements 1a or 1b listed below are true.

1a. There exists P � Sn satisfying A � P �
PA � 0, PB � 0.

1b. There exists P � Sn satisfying P
�� 0, A � P �

PA � 0, PB � 0.
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By Propositions 7 and 5 the alternatives to these statements are the following:

2a. All uncontrollable modes are nondefective, and correspond to imaginary eigenvalues.

2b. With λ1
�������

λp denoting the uncontrollable modes of
�
A
�
B
�
, λi

�
λ � j �� 0, 1

�
i
�
j
�

p.

Thus the alternative to 1 is that 2a and 2b are true, i.e., that there are no uncontrollable modes. �

Remark 7 Alternative proofs of this result appeared in [46] and [47, Lemma 1]. �

4 Riccati inequalities

We next consider convex Riccati inequalities, which take the form�
A � P �

PA PB
B � P 0 � � M

�
0
�

(20)

with A � Cn � n, B � Cn � m. Let M be partitioned as M �
�

M11 M12

M �12 M22 � �
where M11 � M �11 � Sn.

Then, when M22 � 0, inequality (20) is equivalent to

A � P �
PA � M11

� �
PB � M12

�
M

� 1
22

�
B � P � M �12

� � 1 � 0
�

Such inequalities are widely encountered in quadratic optimal control, estimation theory, and H∞

control; see for example [48, 49, 50].

4.1 Strict Riccati inequalities

Proposition 9 Suppose M22 � 0. Then exactly one of the following two statements is true.

1. There exists P � Sn such that �
A � P �

PA PB
B � P 0 � � M � 0

�
(21)

2. For some full-rank U � Cn � r, V � Cm � r, and S � Cr � r with S
�

S � � 0,

US � AU � BV
�

Tr

�
� U � V � � M

�
U
V ��� � 0

�
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Proof. With A3 as in Example 8 and with A0 � M, the first statement of the theorem is equivalent to

the existence of P � Sn such that A3
�
P
� �

A0 � 0. Then, applying Theorem ALT 1, the alternative

is that there exists a Z � S n � m with

Z �
�

Z11 Z12

Z �12 Z22 � 	 0
�

Z11A � �
AZ11

�
Z12B � �

BZ �12 � 0
�

Tr ZM
�

0
(22)

We now show that this condition is equivalent to the existence of U � Cn � r , V � Cm � r, and S � Cr � r

with S
�

S � � 0 such that

US � AU � BV
�

Tr

�
� U � V � � M

�
U
V � � � 0

�
(23)

We must have Z11 	 0, as otherwise we would have Z12 � 0, and the last inequality in (22)

would imply that Z22 � 0, and consequently Z � 0, a contradiction. Therefore, there exist U � Cn � r

and V � Cm � r, where r � Rank Z11 � 1. such that�
Z11 Z12

Z �12 Z22 � �
�

U 0
V V̂ � �

U � V �
0 V̂ � �

where U has full rank. The equation Z11A � �
AZ11

�
Z12B � �

BZ �12 � 0, represented in terms of

U and V means that AUU � �
BVU � is skew-Hermitian, i.e., it can be written as AUU � �

BVU � �
USU � , where S is skew-Hermitian. Since U has full rank, this last equation implies AU

�
BV � US.

Expressing the inequality Tr ZM
�

0 in terms of U and V , we obtain

Tr

� �
U � V �
0 V̂ � � M

�
U 0
V V̂ ��� � 0

�

which, since M22 � 0, implies that

Tr

�
� U � V � � M

�
U
V � � � 0

�

completing the proof. �

The conclusion of Proposition 9 can be further developed to yield the Kalman-Yakubovich-

Popov Lemma.

Lemma 1 (KYP Lemma) Suppose M22 � 0. There exists P � Sn such that�
A � P �

PA PB
B � P 0 � � M � 0

�
(24)

if and only for all ω � R,

�
jωI � A

�
u � Bv

� �
u
�
v
� �� 0 � � � u � v � � M

�
u
v � � 0

�
(25)
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Proof. Suppose that there does not exist P � Sn such that (24) holds. From Proposition 9, this is

equivalent to the existence of a full-rank U � Cn � r, V � Cm � r, and S � Cr � r with S
�

S � � 0, such

that

US � AU � BV
�

Tr

�
� U � V � � M

�
U
V � � � 0

�
(26)

We show that (26) is equivalent to the existence of u � Cn and v � Cm, not both zero, such that (25)

does not hold at some ω.

Suppose there exist u � Cn and v � Cm, not both zero, such that (25) does not hold at some ω.

Then, it is easy to verify that (26) holds with

U � �
ℜu ℑu � � V � �

ℜv ℑv � � S �
�

0 � ω
ω 0 � �

Conversely suppose that there exist full-rank U � Cn � r , V � Cm � r, and S � Cr � r with S
�

S � �
0, such that (26) holds. We then take the Schur decomposition of S: S � ∑m

i � 1 jωiqiq �i , where

∑i qiq �i � I. We then have

0 � Tr

� �
U
V � �

M

�
U
V � �

� Tr

� �
U
V � �

M

�
U
V � ∑

i
qiq �i �

� m

∑
i � 1

q �i
�

U
V � �

M

�
U
V � qi

�

At least one of the m terms in this last expression must be less than or equal to zero. Let k be the

index of that term, and define u � Uqk, v � V qk. (u is nonzero because U has full rank.) We have

� u � v � � M
�

u
v � � 0

and, by multiplying US � AU � BV with qk on the right, Au
�

Bv � jωku. In other words we have

constructed a u and v showing that (25) does not hold at ω � ωk. �

Remark 8 Our statement of the KYP Lemma is more general than standard versions (see for

example, [16]), as we allow A to have imaginary eigenvalues. If A has no imaginary eigenvalues,

then (25) simply means that

� B � � � jωI � A � � � 1 I � M
� �

jωI � A
��� 1B

I � � 0
�

(27)
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The following form of the frequency-domain condition is more commonly found in the literature:

the inequality (27) holds for all ω where jωI � A is invertible. If A has imaginary eigenvalues,

then this condition is weaker than requiring that (25) holds for all ω, and it is not equivalent to

feasibility of the LMI (21). See [22] for a counterexample. �
We next use the theorem of alternatives to exhibit the well-known connection between the KYP

lemma and a certain Hamiltonian matrix.

Proposition 10 Suppose that A has no imaginary eigenvalues and that M22 � 0. Then, exactly one

of the following statements is true.

1. There exists P � Sn such that (21) holds.

2. The Hamiltonian matrix

H �
�

A � BM
� 1
22 M �12 BM

� 1
22 B �

M11 � M12M
� 1
22 M �12 � �

A � BM
� 1
22 M �12

� � �
has an imaginary eigenvalue.

Proof. We established in the proof of Proposition 9 that the condition that there does not exist

P � Sn such that (21) holds is equivalent to the existence of Z � S n � m such that (22) holds. It can

be shown (see [22]) that this condition is equivalent to H having imaginary eigenvalues. �

4.2 Strict Riccati inequality with positive definite P

Proposition 11 Suppose M22 � 0. Exactly one of the following two statements is true.

1. There exists P � Sn such that

P � 0
� �

A � P
�

PA PB
B � P 0 � � M � 0

�

2. For some full-rank U � Cn � r, V � Cm � r, and S � Cr � r with S
�

S � � 0,

US � AU � BV
�

Tr

�
� U � V � � M

�
U
V ��� � 0

�
(28)

Proof. Follows from an application of Theorem ALT 1; see [22]. �

Frequency-domain interpretation. Recall that we were able to extend Proposition 9 to yield the

KYP Lemma, which establishes the connection between an LMI and a certain frequency-domain
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condition. Unfortunately, as far we know, no such extensions are possible in general with Propo-

sition 11. However, when M satisfies additional constraints, it is possible to provide a frequency-

domain interpretation for Proposition 11.

Proposition 12 Suppose M22 � 0, M11
�

0, and all the eigenvalues of A have negative real part.

There exists P � Sn such that

P � 0
� �

A � P �
PA PB

B � P 0 � � M � 0 (29)

if and only if for all s � C with ℜs � 0,

� B � � sI � A
� � � I � M

� �
sI � A

� � 1B
I � � 0

�
(30)

Proof. See [22].

4.3 Nonstrict Riccati inequalities

Proposition 13 Suppose M22 � 0 and that all uncontrollable modes of
�
A
�
B
�

are nondefective and

correspond to imaginary eigenvalues. Then, exactly one of the following two statements is true.

1. There exists P � Sn such that �
A � P �

PA PB
B � P 0 � � M

�
0
�

(31)

2. For some full-rank U � Cn � n, V � Cm � r, and S � Cr � r with S
�

S � � 0,

US � AU � BV
�

Tr

�
� U � V � � M

�
U
V ��� � 0

�

Proof. Follows from an application of Theorem ALT 3 and Proposition 5; see [22]. �

Remark 9 The conclusions of Proposition 13 are closely related to conditions for the solvability

of Algebraic Riccati Equations (AREs) and Inequalities (ARIs), derived by Scherer [51, 52], for

systems with uncontrollable modes on the imaginary axis. Scherer’s approach is to reduce the

original problem to that of solvability of an ARE for a smaller controllable system, with auxiliary

LMIs of the form A � P �
PA

�
S � 0 where A has purely imaginary eigenvalues, and P is required

to be “arbitrarily large”. �
As with Proposition 9, the conclusion of Proposition 13 can be further developed to yield the

nonstrict version of the Kalman-Yakubovich-Popov Lemma.
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Lemma 2 (KYP Lemma, nonstrict version) Suppose that M22 � 0 and that all uncontrollable

modes of
�
A
�
B
�

are nondefective and correspond to imaginary eigenvalues. There exists P � Sn

such that �
A � P �

PA PB
B � P 0 � � M

�
0
�

if and only if for all ω � R,

�
jωI � A

�
u � Bv

� �
u
�
v
� �� 0 � � � u � v � � M

�
u
v � � 0

�

Next, we have another variation of Proposition 13, where we impose constraints on P.

Proposition 14 Suppose M22 � 0 and that all uncontrollable modes of
�
A
�
B
�

correspond to eigen-

values with positive real part. Then, exactly one of the following two statements is true.

1. Then there exists P � Sn such that

P � 0
� �

A � P
�

PA PB
B � P 0 � � M

�
0
�

(32)

2. For some full-rank U � Cn � n, V � Cm � r, and S � Cr � r with S
�

S � � 0,

US � AU � BV
�

Tr

�
� U � V � � M

�
U
V ��� � 0

�
(33)

Proof. Follows from an application of Theorem ALT 3 and Proposition 6; see [22]. �

5 The linear quadratic regulator problem

In � 4, we considered convex Riccati inequalities, and explored system-theoretic interpretations

of conditions for their feasibility via the theorems of alternatives. In this section, we consider the

Linear Quadratic Regulator (LQR) problem, which is a classical semidefinite program with convex

Riccati inequalities.

Consider the semidefinite program� ��� �����	� 
��
x �0Px0

����� � 
��	��� ��� �
A � P �

PA
�

Q PB
B � P I � � 0

�
P � 0

� (34)

with Q � 0. It can be shown (see [22]) that the dual problem of (34) is� �	�������	��
� � Tr QZ11 � Tr Z22������� 
��	�������
AZ11

�
BZ �12

�
Z11A � �

Z12B � �
x0x �0 � 0

��
Z11 Z12

Z �12 Z22 � � 0
� (35)
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with variables Z11 � Sn, Z12 � Cn � m, Z22 � Sm.

Interpretation of the primal problem. Consider the following optimal control problem: For the

system

ẋ � Ax
�

Bu
�

x
�
0
� � x0

�
(36)

find u � L2e that minimizes
J ��� ∞

0
�
x
�
t
� � Qx

�
t
� �

u
�
t
� � u

�
t
���

dt
� (37)

with Q � 0, subject to limt � ∞ x
�
t
� � 0. Let Jopt denote the minimum value.

We can write down a lower bound for Jopt using quadratic functions. Suppose for P � 0 we

have
d
dt

x
�
t
� � Px

�
t
� � � �

x
�
t
� � Qx

�
t
� �

u
�
t
� � u

�
t
�����

(38)

for all t � 0, and for all x and u satisfying ẋ � Ax
�

Bu, x
�
T

� � 0. Then, integrating both sides from

0 to T , we get

x �0Px0
��� T

0

�
x
�
t
� � Qx

�
t
���

u
�
t
� � u

�
t
���

dt
�

or we have a lower bound for Jopt.

Condition (38) holds for all x and u (not necessarily those that steer state to zero) if the LMI�
A � P

�
PA

�
Q PB

B � P I � � 0

is satisfied. Thus, the optimal value of the SDP (34) provides a lower bound to the optimal value

of Problem (37).

Interpretation of the dual problem. Consider system (36) with a constant, linear state-feedback

u � Kx such that the state trajectory of the feedback system ẋ � �
A

�
BK

�
x, x

�
0
� � x0, satisfies

x
�
t
� � 0 as t � ∞. Then the LQR objective J reduces to

JK � � ∞

0
x
�
t
� � �

Q
�

K � K �
x
�
t
�
dt

�

Clearly, for every K, JK yields an upper bound on the optimum LQR objective Jopt.

It can be shown using standard techniques from control theory that the condition that the solu-

tion x of ẋ � �
A

�
BK

�
x, x

�
0
� � x0, satisfies x

�
t
� � 0 as t � ∞ is equivalent to the feasibility of the

conditions �
A

�
BK

�
Z̃

�
Z̃
�
A

�
BK

� � �
x0x �0 � 0

�
Z̃ � 0

�
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Moreover, JK � Tr Z̃
�
Q

�
K � K �

. Thus, the best upper bound on Jopt, achievable using state-

feedback control, is given by the optimization problem with the optimization variables Z̃ and K:

minimize: Tr Z̃
�
Q

�
K � K �

������� 
��	�������
Z̃ � 0�
A

�
BK

�
Z̃

�
Z̃
�
A

�
BK

� � �
x0x �0 � 0

�
which has the same objective value as (35) evaluated at Z11 � Z̃, Z12 � Z̃K � , Z22 � KZ̃K � .
Condition for strict primal feasibility. From Proposition 11, strict primal feasibility is equivalent

to the condition that there does not exist a full-rank U � Cn � r, V � Cm � r, and S � Cr � r with

S
�

S � � 0, such that

US � AU � BV
�

TrU � QU
�

V � V � 0
�

(39)

As Q � 0, condition (39) is equivalent to QU � 0 and V � 0, or we have AU � US
�

QU �
0, which is equivalent to

�
Q

�
A
�

having unobservable modes in the closed-right half complex

plane [39]. In other words, strict primal feasibility is equivalent to
�
Q

�
A
�

having no unobserv-

able modes corresponding to eigenvalues with nonnegative real part.

Condition for strict dual feasibility. Suppose the dual problem is strictly feasible, that is, there

exist Z11 � Sn and Z12 � Cn � m such that Z11 � 0 and AZ11
�

BZ �12

�
Z11A � �

Z12B � �
x0x �0 � 0.

With K � Z �12Z
� 1
11 , we then have

Z11 � 0
� �

A
�

BK
�
Z11

�
Z11

�
A

�
BK

� � 0
�

or
�
A
�
B
�

is stabilizable, that is, all the uncontrollable modes are in the open left-half complex

plane [39].

Optimality conditions. If primal and dual are strictly feasible, then strong duality holds, and primal

and dual optima are attained. By complementary slackness, we have�
Z11 Z12
Z �12 Z22 � �

A � P �
PA

�
Q PB

B � P I � � 0
�

i.e., �
I
K � � I K � �

�
A � P �

PA
�

Q PB
B � P I � � 0

�
or

� I K � �
�

A � P
�

PA
�

Q PB
B � P I � � 0

�
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or K � � B � P, with all the eigenvalues of A
�

BK having negative real part, and

A � P �
PA

�
Q � PBB� P � 0

�
(40)

This is the classical LQR result, which states that when
�
A
�
B
�

is stabilizable and
�
Q

�
A
�

is

detectable, then the optimal control u that solves Problem (37) is a constant state-feedback, with

the feedback gain given via the stabilizing solution to the Algebraic Riccati Equation (40).

6 SDP duality and bounds on the H∞-norm

Consider the LTI system

ẋ � Ax
�

Bu
�

x
�
0
� � 0

�
y � Cx

�
(41)

where A � Cn � n, B � Cn � m, and C � Cp � n, with all the eigenvalues of A having a negative real

part. Let
�
A
�
B
�
C

�
be a minimal realization, and let H denote the transfer function, i.e., H

�
s
� �

C
�
sI � A

� � 1B.

The H∞ norm of H is defined as �
H

�
∞ � sup

ℜs � 0
σmax

�
H

�
s
��� �

where σmax
�����

denotes the maximum singular value. It turns out that we also have�
H

�
∞ � sup

ω � R
σmax

�
H

�
jω

���
(42)

�
�

sup
u � T1 � T2

� � T2

T1

y
�
t
� � y

�
t
�

dt ���� �
T2

T1

u
�
t
� � u �

t
�

dt
�

1 � � 1 � 2 �
(43)

Equality (43) means that

�
H

�
∞ is the L2 gain of system (41), and equality (42) means that

�
H

�
∞ is

the L2 gain of system (41) over all possible sinusoidal inputs, i.e., it is the L2-gain of system (41)

over all frequencies.

It is well-known (see for example [1]) that the the optimal value of the SDP��������������
�
β

������� 
���� � ��� �
A � P �

PA
�

C � C PB
B � P � βI � � 0

(44)

in the variables P � Sn and β � R is equal to

�
H

�
2
∞. It can be shown (see [22]) that the dual problem

of (44) is ���	� � ������
��
TrCZ11C ������ � 
���� � ���
Z11A � �

AZ11
�

Z12B � �
BZ �12 � 0

��
Z11 Z12

Z �12 Z22 � � 0
�

Tr Z22 � 1
� (45)
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with variables Z11 � Sn, Z12 � Cn � m, Z22 � Sm.

Control-theoretic interpretations of the lower bound

Any feasible point to Problem (45) yields a lower bound on

�
H

�
2
∞. We now provide control-

theoretic interpretations of such a lower bound.

Time-domain interpretation. Let u
�
t
�

be any input that steers the state of system (41) from x
�
T1

� � 0

to x
�
T2

� � 0 for some T1
�
T2 � R, with � T2

T1
u
�
t
� � u

�
t
�

dt � 1. Let y
�
t
�

be the corresponding output.

Then, from (43), the quantity � T2
T1

y
�
t
� � y

�
t
�

dt serves as a lower bound to

�
H

�
2
∞. Define

Z11 � � T2
T1

x
�
t
�
x
�
t
� � dt

�
Z12 � � T2

T1
x
�
t
�
u
�
t
� � dt

�
Z22 � � T2

T1
u
�
t
�
u
�
t
� � dt

�
It can be shown (see [22]) that Z11, Z12 and Z22 are dual feasible. The dual objective value is

TrCZ11C � � � T2
T1

y
�
t
� � y

�
t
�

dt, completing the connection between the control-theoretic interpreta-

tion (43), and the dual problem (45).

Frequency-domain interpretation. Let ω � R, and let U � Cm with U � U � 1. Define X � �
jωI �

A
� � 1BU , Z11 � ℜXX � , Z12 � ℜXU � , and Z22 � ℜUU � . It can be shown (see [22]) that Z11, Z12

and Z22 are dual feasible. The value of the dual objective function is

TrC � CZ11 � X � C � CX� U � B � � � jωI � A � ��� 1C � C �
jωI � A

�
BU

� (46)

which, from (42), is a lower bound on

�
H

�
2
∞. The control-theoretic interpretation of the above

development follows immediately from (42): As U � U � 1, (46) implies that σmax
�
H

�
jω

��� �
�

Tr C � CZ11, and consequently that

�
H

�
∞ � �

TrC � CZ11.

Relation to Enns-Glover lower bound

Let Wc and Wo be the controllability and observability Gramians of the system (41) respectively,

that is, AWc
�

WcA � �
BB � � 0, and WoA

�
A � Wo

�
C � C � 0. Let z be a unit-norm eigenvector

corresponding to the largest eigenvalue of W 1 � 2
c WoW 1 � 2

c , and let X and Y be the solutions of the

two Lyapunov equations
AY

�
YA � �

W 1 � 2
c zz � W 1 � 2

c � 0
�

A � X �
XA

�
W

� 1 � 2
c zz � W � 1 � 2

c � 0
�
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Define Z as

Z �
�

Z11 Z12
Z �12 Z22 � �

�
Y

�
WcXWc WcXB

B � XWc B � XB � �
It can be verified (see [22]) that Z is dual feasible. Moreover the dual objective value is

TrCZ11C � � TrCYC � �
TrCWcXWcC � � TrCYC � � σ̄

where σ̄ is the largest eigenvalue of WcWo. This lower bound on

�
H

�
2
∞ is the well-known Enns-

Glover lower bound [53, 54]. Note that the duality-based bound, TrCYC � �
Tr CWcXWcC � , is

guaranteed to be at least as good as the Enns Glover bound.

New duality-based upper and lower bounds

Noting that every primal feasible point gives an upper bound and every dual feasible point gives

a lower bound, it is possible to generate new bounds for

�
H

�
∞. It is readily checked that these

bounds are often better than existing bounds.

New upper bounds. It is easily checked that
�
2Wo

�
4λmax

�
WoBB � Wo

�
C � C ��� � Sn 
 R is a primal

feasible point, where λmax
�
R
�
S
�

is the maximum generalized eigenvalue of
�
R
�
S
�
. Therefore one

upper bound on

�
H

�
∞ is given by 2 � λmax

�
WoBB � Wo

�
C � C �

.

Let H̃ be defined by H̃
�
s
� � H

�
s
� T ; then we have

�
H

�
∞ �

�
H̃

�
∞, which yields another upper

found for

�
H

�
∞: 2 � λmax

�
WcC � CWc

�
BB � � .

New lower bounds. It is easily verified that Z11 � Wc � α, Z12 � B � �
2α

�
, Z22 � B � W � 1

c B � �
4α

�
,

where α � Tr
�
B � W � 1

c B � 4
�
, are dual feasible. Therefore a lower bound on

�
H

�
∞ is given by

2 � TrCWcC � � �
Tr B � W � 1

c B
�
.

Once again noting

�
H

�
∞ �

�
H̃

�
∞, where H̃

�
s
� � H

�
s
� T , we have another lower bound

�
H

�
∞:

2 � Tr B � WoB � �
Tr CW

� 1
o C � � �

7 Conclusions

We have explored the application of semidefinite programming duality in order to obtain new

insight, as well as to provide new and simple proofs for some classical results for linear time-

invariant systems. We have also shown how SDP duality can be used to derive new results, such as

new LMI criteria for controllability (and observability) properties, as well as new upper and lower

bounds for the H∞ norm.
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Duality theory also holds promise in devising more efficient numerical optimization algorithms

for certain classes of SDPs derived from the KYP lemma. For recent work in this direction, see

[55, 56, 57].

Finally, we note that duality theory and semidefinite programming underlie some of the most

promising methods for the study of nonconvex polynomial optimization problems. There is con-

siderable research effort along these directions; see for example [58, 59, 60].
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