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ABSTRACT

The paper discusses two methods of optimal excitation
signal design for identification with Maximum Likelihood
parameter estimation: The “classical”, dispersion function
based method, and a new, semidefinite programming based
one. It is shown that the dispersion function based algo-
rithm is a primal-dual method. The problem can be formu-
lated as matrix determinant maximization subject to linear
matrix inequalities. We introduce an interior point method
for excitation signal design. The implementations of the two
methods are compared in practical use. For general prob-
lems, the semidefinite programming based approach per-
forms better, while for practical optimal excitation signal
design, the dispersion function based one is recommended.
Keywords: semidefinite programming, matrix inequalities,
experiment design, optimal excitation signal design, deter-
minant maximization, system identification.

1. INTRODUCTION

In frequency domain system identification, the usual goal
is to identify a linear, time invariant system, that has a
transfer function expressible in rational fraction form:
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The parameters to be estimated can be arranged into a
vector:
:P:[bnn7 ey bl, QAndy --- , A1, T]T

We identify the system by exciting it with a periodic sig-
nal. The aim of excitation signal design is to distribute a
given amount of signal power among the harmonic compo-
nents so that the experiment is optimal in some sense.

Usually, the quality of the identified model is character-
ized by a scalar function of the Fisher information matrix
F of the estimated parameters P [1, 2].

The commonly used method for optimal excitation signal
design is based on the so-called dispersion function [1, 2, 3].

Semidefinite programming — or more generally, convex
optimization — is well suited to the above optimal exci-
tation signal design, since both the constraint set and the
typical functions to be optimized are convex.

2. OPTIMAL EXCITATION SIGNAL DESIGN

We apply a multi-sine excitation signal at predefined radian
frequencies wy, wa2, ... , Wr:

z(t) = Z (X cos (wr) + Yi sin (w))

The frequencies wi, w2, ..., wr are taken from a suffi-
ciently dense frequency grid.

We suppose that the delay parameter T is 0, or it has been
measured in advance. The excitation signal (when applied
to the system) and the measured output are distorted by
noise. The noise is assumed to conform to a noise model,
and some of the noise parameters are known [2], eg. they
are determined from a priori measurements.

From the input and the output of the system, we can cal-
culate the Maximum Likelihood estimate of the parameters
by minimizing the so-called cost function with respect to
P. The cost function depends on the input, the parame-
ters, and the known noise properties [2].

The Fisher information matrix of the parameters can be
expressed in the following way:
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where Fj; is a symmetric, positive semidefinite par-
tial information matrix belonging to frequency wg, and
(X,% + Y,?) /2 = Qp is the power carried by the excita-
tion signal at wg. The total signal power Zle Qr is 1.
The matrices F; are of the form F;, = J{Jk. The cost
function can be expressed as C' = %ETE, and from this,
Ji = O[Re(ex), Im(e)]" /OP, where ¢ is the k' ele-
ment of ¥ [1, 2, 3].

In excitation signal design, usually a scalar function of
the Fisher information matrix is optimized. This scalar
function is often the determinant of F'.

The inverse of the information matrix is the Cramér-Rao

bound on the covariance matrix of the parameters esti-
mated [1, 2]:

cov(P) > CR(P)=F(P)*

The covariance of the estimated parameter vector P in
most practical situations is close to the Cramér-Rao bound.



Therefore, an experiment that yields an information matrix

at is “maximal” in some sense (eg. its determinant) can
that is “ imal” i its det inant
give a low variance parameter estimate.

2.1. Problem Statement with Matrix Inequalities

Let us assume that the total signal power is 1, and the
partial information matrices F1, ... , Fr (each symmetric,
positive semidefinite with rank two) are given. We have to
design an experiment Q = [Q1, ... , QF], that satisfies the
following inequalities:

Q > 0 (1)
F(Q =Y QF, > 0 (2)
k=1

F
>
k=1

and |F (Q)| is maximal over the above constraint set. The
inequality sign > in (2) means that F (Q) is positive defi-
nite.

We can express the constraints in the following way:

g (Q) is defined as

g(Q) = l(l_ZQk> L Qi QF] (4)
k=1

As long as g (Q) is non-negative, (1) is satisfied. The non-
negativeness of (4) only yields that

F
> o<t
k=1

which does not equal to the constraint included in (3). To
show that the conditions are however equivalent, let us
suppose that g(Q) > 0 for a particular Q; F (Q) > 0;

Zle Qr = L < 1 for a positive L. From this, it comes that
+Q will satisfy (1) and (3); g (%Q) will be non-negative;
and
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Therefore, if (1) and (3) are replaced with g (Q) > 0, at the
optimum £ will equal 1.

3. CONVEX OPTIMIZATION

The problem statement has reduced to the following form:

maximize |F (Q)|
subject to F(Q) > 0 (5)
g@Q = 0
or equivalently, with the commonly used notations:
minimize —log|F (Q)|
subject to F(Q) > 0 (6)
g(Q) > 0

The problem above is a matrix determinant maximization
problem with linear matrix inequality constraints. Semidef-
inite programming — or more generally, convex optimiza-
tion — deals with these problems [4].

3.1. The Dual Problem
Associated with (6) is the so—called dual problem [4]:

maximize log |W|—glz+nn+nd+1

subject to  tr (FyW) +glz =0 k=1, ..., F
W=w">0
z >0

(7)
where W' (a matrix) and z (a vector) are the dual variables.
The vectors g are F' + 1 element long, and defined in the
following way:
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where ey, is the k** unity vector and go = e;. Note: g (Q)
can be expressed with go, ... , gr:

F
g(Q) =go+ Zngk

k=1

The duality gap is the difference between the primal and
the dual objective:

tr (F(Q) W) —log [F (Q) W| —nn—nd —1+g (Q)"z (9)

The duality gap is always non-negative [4].

3.2. Primal-Dual Methods

The primal-dual methods optimize the primal objective.
They calculate the dual variables, and then the duality gap.
They stop as soon as the duality gap has become less than
an “absolute tolerance” (that may be a parameter to the
algorithm). This feature provides us with a “certificate” of
the optimality of the results conveyed, since the optimum
is in between the primal and dual solutions.

Note: The primal-dual methods solve (6), therefore the
absolute tolerance is related to —log |F(Q)|. In optimal
excitation signal design (5) is to be solved. If the absolute
tolerance reached was ¢, then

|F(Qresult)| e
1 < Do result)]
= TFQop)l

holds, where Qop: is the vector that optimizes (6), and
Qesuit is the result of calculations.

4. METHODS OF DETERMINANT
MAXIMIZATION

In this section, two algorithms for solving (6) (or (5)) will be
discussed. One of them is known, the other one is presented
here. We will illustrate the differences between the two and
give suggestions when each one should be used.

4.1. Determinant Maximization using the Disper-
sion Function

The dispersion function is defined as [2, 3]
v(wg) = tr (F (Q)_le) (10)

provided that the total signal power is 1.
We can construct a simple iterative algorithm based on
the dispersion function [2, 3]. As the first step, an input



signal is constructed by distributing the total signal power
evenly among the frequencies wi, w2, ... , wp. In each
iteration, the dispersion of the current input signal is calcu-
lated for every frequency wg, and the next approximation
Qi1 of the optimal excitation signal amplitudes will be

v (wi)

Qs = Oni a1

where Qy,; is the k" element of Q.

The excitation signal amplitudes are always sum up to
1 (in other words, the first element of g (Q) is always 0).
This algorithm strictly monotonically converges to the op-
timum [1, 2].

The algorithm can be stopped as soon as

max (v (w)) —nn —nd — 1 (11)
k
becomes less than an “absolute tolerance”. Expression (11)
reduces in each iteration step.

From this point on, we refer to the dispersion function
based iterative algorithm as DF.

4.2. DF and Duality

DF is a primal-dual method, with (11) being the duality
gap. To prove this, first we need to construct a dual W
and z for the current iterate Q. Let W be F (Q)™". Then,
from (7) and (10),

tr (FxF(Q)7") =v(wr) = —gi 2

fork=1, ..., F. From (8), it follows that gl'z = 211 —z1,
that is

Zk+1 =21 — v (wg) = 21 — tr (FkF (Q)_l)
where z; is the i" element of z. Now, if we assign
z1 = max (v (wg))
k
we get a dual W and z, that satisfies the constraints in (7).

The duality gap (9) with these constructed W and z will
be

tr (FQF(Q7') ~log [F(QF Q)
—nn—nd—1+g(Q)"z
= nn+nd+1—-0—nn—nd—1+g(Q)"z

from (4), it further equals to

F

Z Zk+1Qk

k=1

= ZQk (21 —tr (FF(Q)7Y))

F F
= ZQkZl —Ztr (FkaF (Q)_l)
k=1 k=1

= a-tr(FQF(@Q™)

= ml?x(u(wk)) —nn—nd—1

which is the same as (11).

4.3. Properties of DF

Because the total signal power in each iteration is 1 (ze.
the first element of g (Q) is always 0), DF is not an interior
point method, unlike the one described later in section 4.4.
The theoretical convergence of DF has not yet been cov-
ered. Since it is a gradient-like method [1], and not a New-
ton or quasi-Newton one, its convergence is most probably
worse than that of the method introduced in section 4.4.,
at least in terms of complexity (number of iteration steps).
However, the exact statement needs further research.

4.4. An Interior Point Method

Recently, a more effective interior point primal-dual method

has been developed for determinant maximization. The de-

tailed description of the algorithm can be found in [4]. This

algorithm will be referred to as MAXDET in this paper.
MAXDET requires for a worst case run

(@] (mlog (5(0)/€)>

number of Newton iterations, where £© is the initial duality
gap, and ¢ is the desired absolute tolerance [4]. The term
log (5(0)/5) can be regarded as a constant value, since it
does not grow fast with reducing ¢ and, in most practical
situations, the achievable values of ¢ are limited below by
the computing platform accuracy and the roundoff noise of
calculations.

The complexity of one Newton step depends heavily
on the problem structure. Generally, the complexity is
O (F? ((F +1)* + (nn+nd + 1)%)).

Numerical experiments indicate that behavior is much
better in practice than the worst case. The number of iter-
ations usually lies between 5 and 50, almost independently
of problem dimensions [4].

5. IMPLEMENTATIONS OF DF AND MAXDET

In this section, the implementations of the two algorithms
are compared. Testing in a practical setting is very impor-
tant. A theoretically “good” implementation can perform
much worse in practice than a “bad” one if its goodness
only shows up with extremely large problem sizes.

The theoretical memory complezity of the programs is in
the range of the size of the matrices involved, independently
of the absolute tolerance required. Thus, we only measured
the teme complexity versus the absolute tolerance.

5.1. Comparability of Implementations

Both algorithms are primal-dual methods (see sections 4.1.
and 4.4.). They stop as soon as they have reached a suffi-
ciently small duality gap. In this sense, DF and MAXDET
are theoretically comparable.

However, implementation and algorithm always differ.
We prepared a list of aspects of implementation compara-
bility. In the testing, we paid particular care to the points
below:

o The two programs have to start their iterations from
the same Q.

o Convergence of MAXDET depends on a parame-
ter v [4]. We had to find the appropriate value of v
for excitation signal design.



e DF has an optimized Matlab implementation [5], while
that of MAXDET is only a pilot version.

e To the contrary, MAXDET has an optimized binary
executable (coded in C [4]), but DF does not.

e The implementation of DF [5] has to be slightly mod-
ified because it does not take into account the duality
gap in the stopping criterion. DF only exits if the max-
imum number of iterations (a parameter to the pro-
gram) has been exceeded.

e The implementation of MAXDET [4] also has to be
modified. Although it exits if the duality gap has be-
come less than the absolute tolerance but it also exits if
the “relative tolerance” has been reached or the “maxi-
mum number of Newton iterations” has been exceeded
(both are parameters to the program).

e For the comparison, we needed to run the programs on
the same platform.

e Other circumstances (eg. free memory, processor
time etc.) also have to be the “same”.

In the following sections, the points above will be addressed.

5.2. Input to the Implementations

DF starts iterating from the vector (see section 4.1.)

1 1
Qstart: [F, cee F:I

(kazl Qr = 1, since DF is not an interior point algorithm).
MAXDET only works with a particular Q, if that satisfies
the constraints of (6) and g (Q) > 0 (ze. kazl Qr < 1,
because MAXDET is an interior point algorithm). In other
words, MAXDET cannot start from Qstare. We overcame
the problem by providing MAXDET I%Qstart. Conver-
gence of MAXDET does not depend heavily on the start-
ing Q.

We run MAXDET with various values of the parameter
~. The range for v recommended in [4] was 10-1000. We
tested MAXDET for every problem and for every tolerance
with ~ values chosen evenly (with the difference of 50) from
this range. MAXDET did not show dramatic differences
in behavior to this parameter. The greatest difference in
runtime was less than twofold. The optimal value of v de-
pended upon the tolerance. We concluded that v — at least
in excitation signal design — would not affect seriously the
performance.

In its original form, MAXDET exits under 3 condi-
tions [4], namely either

e Absolute tolerance is reached
o “Relative tolerance” is reached

e Maximum number of Newton iterations is exceeded.

We had developed a “shell procedure” for MAXDET. This
procedure runs MAXDET in a loop as long as it does not
reach the absolute tolerance. If MAXDET exits under the
second condition, the “shell procedure” decreases the value
of relative tolerance parameter for the next run. Similarly, if
the third condition was true on exit, the maximum iteration
number parameter is increased. Note: In each iteration

of the “shell procedure”, MAXDET starts the iterations
from l—gontmt.

The original implementation of DF exits if the maximum
number of iterations has been exceeded. However, it calcu-
lates but ignores the duality gap in each iteration. We had
carried out a straightforward modification of the implemen-
tation to make it a “pure” primal-dual program.

5.3. Platform and Compilation
A PC (486 DX2 at 66MHz, 16Mb RAM) with Windows 3.1

operating system was chosen as a platform. The most im-
portant consideration of this selection was that this plat-
form provided more control over program running than
other platforms, because

e A process does not have to compete with other pro-
cesses for the processor, since Windows 3.1 is a single
user, single task environment.

o There are no operating system “daemon” processes, or
they can be killed in advance. And in general, the user
can check and determine which processes are running
in a given time instance.

e Matlab had been implemented under Windows.

In this way, we could provide that both programs had the
same processor power as the other, and as themselves had
had in the previous runs.

We had compiled DF to C using the Matlab to C com-
piler [6]. Before compilation, we had removed the conve-
nience features (eg. graphical output, convergence statis-
tics) and unnecessary calculations (eg. the calculation of the
determinants and the Cramér-Rao bound) from the Matlab
code. Also, preallocated matrix space and the so-called type
imputation [6] had been employed to further speed up the
program. The binary executable had been produced using
the Watcom C optimizing compiler.

MAXDET had been efficiently implemented in C [4]. We
had compiled it to the binary format using the same com-
piler with the same compiler options as for DF, providing
a comparable setting for testing.

The Matlab “shell procedure” that we had developed for
MAXDET had been compiled in the same way as DF, and
then it had been linked with the MAXDET executable.

5.4. Matlab versus Binary Executable Implemen-
tations

We had decided to compare both the Matlab and the bi-
nary executable implementations. As it has been pointed
out above, DF has not had a binary executable implemen-
tation, and MAXDET has not had an optimized Matlab
implementation. Thus, we decided to declare the compari-
son valid if the relative behavior of the Matlab implemen-
tations and the binary executable implementations are sim-
ilar. The Matlab implementations were tested on the PC.
We also tested the Matlab files on a Sun workstation to
further improve the validity of comparison.

Note: The term “binary executable” refers to the Mat-
lab MEX files. The reason behind choosing Matlab as the
outer testing environment was that Matlab provided a con-
sistent and platform independent interface over the actual
hardware.
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Figure 1. Results of runtime analysis on a PC with a sam-
ple system. Legend: solid line: MAXDET, dotted line: DF.
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Figure 2. Results of runtime analysis on a PC with a sam-

ple system. Legend: solid line: MAXDET, dotted line: DF.

6. COMPARISON OF THE
IMPLEMENTATIONS

We have tested the two programs using various inputs.
Runtime results of two experiments with the binary exe-
cutable versions can be seen in figures 1 and 2. The experi-
ment results with the Matlab versions are in figures 3 and 4.

The system identified can be found in [2], section 4.3.5,
page 179.

The frequency vector [wi, ... , wr]/(2m) used for fig-
ures 1 and 3 is [20Hz, 40 Hz, 60Hz, ... , 1000 Hz] — ie.,
the frequencies are uniformly distributed in a wide band.

In figures 2 and 4, the frequency grid of the spectrum has
five narrow bands: 340-360 Hz, 390-410 Hz, 490-520 Hz,
620-640 Hz, and 700-720 Hz. The difference between fre-
quency points in each band is 2Hz. This distribution of
frequency points results a more complex problem structure.

Note: the figures verify the fact that the Matlab imple-
mentation of DF is highly optimized even in comparison to
the binary executable implementations. The Matlab ver-
sion of DF exploits all the optimized features of the Mat-
lab interpreter, so compilation does not results tremendous
changes in runtime.

6.1. Discussion of the Results

The tolerance range used in the experiments was “typical”
with respect to usual problems in practice.

Matlab code, uniform freq. distr.

|
o
(=)

Time [s] (log scale)

-5 0
10 10
Absolute Tolerance (loa scale)
Figure 3. Results of runtime analysis with a sample sys-
tem. The relative behavior of the two programs is similar to

that of figure 1, although the curves cross elsewhere. Leg-

end: solid line: MAXDET, dotted line: DF.
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Figure 4. Results of runtime analysis with a sample sys-
tem. The relative behavior of the two programs is similar to
that of figure 2, although the curves cross elsewhere. Leg-

end: solid line: MAXDET, dotted line: DF.

After various experiments, we found the relative behavior
of Matlab implementations of MAXDET and DF similar to
the relative behavior of the binary executable implementa-
tions. Therefore, it is probable that the algorithms behave
in a similar way relative to each other in any implementa-
tion in the tolerance range inspected.

Typically, the curve of DF crosses the curve of MAXDET
and reveals an exponential behavior of DF to the tolerance
parameter. In some runs, MAXDET runtime was negligible
compared to that of DF (ie. DF was slower by orders of
magnitude), especially when small but sensible tolerance
had to be achieved.

On the contrary, runtime of MAXDET could have been
regarded as almost “constant”, in a wide tolerance range.

Both implementations turned out to be sensitive to the
problem structure. Again, MAXDET behaved relatively
better.

6.2. Conclusions for Excitation Signal Design

It can be concluded from the experiments that MAXDET is
generally faster, except for low tolerances and simple prob-
lems.



However, for excitation signal design, very low tolerances
are satisfactory [2, 3]. At low tolerances, DF is considerably
(up to orders of magnitude) faster than MAXDET. Thus,

DF is still useful for engineering purposes.

6.3.

Future Research

Some areas that have not yet been covered are the following:

Theoretical results on the convergence of DF.

MAXDET is a general program for determinant max-
imization. A version that is specifically developed for
optimal excitation signal design may perform much
better.

From the figures, it seems that MAXDET needs a lot
of iterations to achieve a low tolerance, but with only
a few number of additional iterations a high tolerance
range is covered. DF needs much less time (and itera-
tions) for low tolerances. The two algorithms might be
combined in such a way, that the initial Q estimates
are conveyed by DF, then MAXDET refines the so-
lution to a very high tolerance. The time needed for
this combined algorithm may be much less than that
of either one.

Future research will also include other approaches to op-
timal excitation signal design (eg. design of signals with
prescribed crest factor [2, 3]).
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