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Abstract

Several important problems in control theory can be
reformulated as convex optimization problems. From
duality theory in convex optimization, dual problems
can be derived for these convex optimization prob-
lems. These dual problems can in turn be reinter-
preted in control or system theoretic terms, often
yielding new results or new proofs for existing re-
sults from control theory. Moreover, the most efficient
algorithms for convex optimization solve the primal
and dual problems simultaneously. Insight into the
system-theoretic meaning of the dual problem can
therefore be very helpful in developing efficient al-
gorithms. We demonstrate these observations with
some examples.

1. Introduction

Over the past few years, convex optimization has
come to be recognized as a valuable tool for con-
trol system analysis and design via numerical meth-
ods. Convex optimization problems enjoy a number
of advantages over more general optimization prob-
lems: Every stationary point is also a global min-
imizer; they can be solved in polynomial-time; we
can immediately write down necessary and sufficient
optimality conditions; and there is a well-developed
duality theory.

From a practical standpoint, there are effective and
powerful algorithms for the solution of convex opti-
mization problems, that is, algorithms that rapidly
compute the global optimum, with non-heuristic
stopping criteria. These algorithms range from sim-
ple descent-type or quasi-Newton methods for smooth
problems to sophisticated cutting-plane or interior-
point methods for non-smooth problems. A compre-
hensive literature is available on algorithms for con-
vex programming; see for example, [1] and [2]; see

also [3].
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A typical application of convex optimization to a
problem from control theory proceeds as follows: The
control problem is reformulated (or in many cases, ap-
proximately reformulated) as a convex optimization
problem, which is then solved using convex program-
ming methods. Once the control problem is reformu-
lated into a convex optimization problem, then it is
straightforward to write down the dual convex opti-
mization problem. This dual problem can be often
be reinterpreted in control-theoretic terms, yielding
new insight. The control-theoretic interpretation of
the dual problem in turn helps in the efficient (nu-
merical) implementation of primal-dual algorithms,
which are among the most efficient techniques known
for solving convex optimization problems. In this pa-
per, we illustrate each of these points. First, we ex-
amine the standard LQR problem from control the-
ory, and show how convex duality provides insight
into its solution. We then discuss the implementa-
tion of primal-dual algorithms for another important
control problem, namely the Linear Quadratic Reg-
ulator problem for linear time-varying systems with
state-space parameters that lie in a polytope.

2. Convex programming duality

In the sequel, we will be concerned with convex opti-
mization problems involving linear matriz inequalities
or LMIs. These optimization problems have the form

minimize Tz

subject to  F(z) >0 (1
where
F(z) 2 Fo+ 21 F 4+ 2 Fn.

The problem data are the vector ¢ = R™ and m + 1
symmetric matrices Fy, Fy, ..., F, € R®*™  The
inequality F'(z) > 0 means that F'(x) is positive def-
inite. We call problem (1) a semidefinite program.?
Semidefinite programs can be solved efficiently using
recently developed interior-point methods (see [2, 4]).
The book [5] lists a large number of problems in

3Strictly speaking, the term “semidefinite program” refers
to problem (1) with the constraint F'(z) > 0 instead of F(z) >
0.



control and system theory that can be reduced to a
semidefinite program.

As a consequence of convexity, we have a complete du-
ality theory for semidefinite programs. For the special
form of problem (1) duality reduces to the following.
With every problem (1) we associate a dual problem

maximize — Tr FoZ
subject to Z >0 (2)
'I‘I‘FZ'ZICZ', 1= 1,...,m.

Here Tr X denotes the trace of a matrix X. The
variable in (2) is the matrix 7 = 7T € R We
have the following properties.

e If a matrix 7 is dual feasible, i.e., 7 > 0 and
Tr 57 =c¢;, i =1,...,m, then the dual objec-
tive — Tr FpZ is a lower bound for the optimal
value of (1):

—Tr FoZ < inf {¢'z|F(x) > 0}.

o If an # € R™ is primal feasible, i.e., F'(z) > 0,
then the primal objective ¢! & is an upper bound
for the optimal value of (2):

Z=27">0,
Fe>supl —TeFoZ| T FiZ = ¢,
i:l,...,m

e Under mild conditions, the optimal values of the
primal problem (1) and its dual (2) are equal.

3. Primal-dual algorithms

Primal-dual algorithms are a class of iterative nu-
merical algorithms for solving semidefinite programs.
These algorithms solve problems (1) and (2) simulta-
neously; as they proceed, they generate a sequence
of primal and dual feasible points z*) and Z®*)
(k=0,1,... denotes iteration number). This means
that for every k, we have an upper bound ¢? () and
a lower bound — Tr FyZ®) on the optimal value of
problem (1).

General primal-dual interior-point methods that solve
semidefinite programs are often more efficient than
methods that work on the primal problem only. Their
worst-case complexity is typically lower, and they are
often faster in practice as well.

An important class of interior-point methods is based
on the primal-dual potential function

o(x, Z) = (ndvv/n) log(c! e4+Tr Fy Z)—log det F(x)Z.

(v > 1is fixed.) If a method decreases this function
by at least a fixed amount, independent of the prob-
lem size, in every iteration, then it can be shown that
the number of iterations grows at most as O(+/n) with
the problem size. In practice the number of iterations
appears to grow slower with n. Moreover the amount
of work per iteration can be reduced considerably by
taking advantage of the structure in the equations

(see [6]).

An outline of a potential-reduction method due to
Nesterov and Todd [7]—this is the algorithm used for
solving the semidefinite programs that occur in this
paper—is as follows. The method starts at strictly
feasible # and Z. Each iteration consists of the fol-
lowing steps.

1. Compute a matrix R that simultaneously diag-
onalizes F'(z)~! and Z:

RTF(z)"'R=A"Y2 RTZR = AY/2.

The matrix A is diagonal, with as diagonal ele-
ments the eigenvalues of F'(z)Z.

2. Compute dz € R™ and 67 = §Z7 € R™*" from
RRTSZRRT + 37 $a;F; = —pF(2) + Z71
Te F;0Z =0, j=1,....m
with p = (n +vy/n)/(cTx + Tr Fy Z).

3. Find p, ¢ € R that minimize ¢(x+pdz, Z+¢d7)
and update v := x +pdx and Z := Z + ¢qd 2.

For details, we refer the reader to [7]; see also [4].

4. Convex duality and control theory

We first consider the standard Linear Quadratic Reg-
ulator problem, and show how convex duality de-
scribed in §2 can be used to reinterpret the standard
LQR solution. We then consider a multi-model (or
“robust”) version of the LQR problem, and describe
an application of the primal-dual algorithm of §3 for
computing bounds for this problelm.

4.1. The Linear Quadratic regulator
Consider the following optimal control problem: For
the system

&= Ax 4+ Bu, x(0) = o, (3)

find v that minimizes

J= /Ooo (z®)TQz(t) +u(t)” Ru(t)) dt, (4)

with @ > 0 and R > 0, subject to limy_ 2(t) = 0.
We assume the pair (A4, B) is controllable. Let Jop
denote the minimum value.



Lower bound via quadratic functions

We can write down a lower bound for Jop; us-
ing quadratic functions; the following is essentially
from [8, Theorem 2].

Suppose the quadratic function T Py with P > 0
satisfies

%x(t)TPx(t) > — (x(t)TQx(t) + u(t)TRu(t)) , (5)

for all £ > 0, and for all z and u satisfying ¢ = Az +
Bu, z(T) = 0. Then, integrating both sides from 0
to T', we get

T
el Pry < / (x(t)TQx(t) + u(t)TRu(t)) dt,
0
or we have a lower bound for Jgp.

Condition (5) holds for all  and u (not necessarily
those that steer state to zero) if the Linear Matrix
Inequality

ATP+ PA+(Q PB

BT p I >0 (6)

is satisfied. Thus, the problem of computing the best
lower bound using quadratic functions is

maximize: 3 Pxo

subject to: P >0, (6) Q)

The optimization variable in problem (7) is the sym-
metric matrix P.

Upper bound with state-feedback
Consider system (3) with a constant, linear state-
feedback u = Kx that stabilizes the system:

t=(A+ BK)z, z(0)==g, (8)

with A + BK stable. Then the LQR objective J re-
duces to

Jr = /Oo ()7 (Q+ KT RK) x(t) dt.

Clearly, for every K, Ji yields an upper bound on the
optimum LQR objective Jopt. From standard results
in control theory, Jix can be evaluated as

Tr Z(Q + KT RK),
where 7 satisfies
(A+ BK)Z + Z(A+ BK)" + zoz{ =0,
with A + BK stable.

It will be useful for us to rewrite this expression for
Ji as

inf Tr 7 K'RK

Inf (@+ K* RK),

where Z satisfies
(A+ BRK)Z + Z(A+ BEK)" + 2ozl <0. (9)

Thus, the best upper bound on Jgpt, achievable using
state-feedback control, 1s given by the optimization
problem with the optimization variables 7 and K:

minimize: Tr Z(Q + KT RK)

subject to: 7 >0, (9) (10)

Duality
We observe the following:
Problems (7) and (10) are duals of each other.

Proof: The proof is by direct verification. For prob-
lem (7), the dual problem is given by

o Q 0
minimize Tr[ 0 R Z, over Z,
subject to
Z1 Zi
Zz=z"= >0
[ 2y 2o ]

[A B]Z[é]—i—[[ o]z[éi]+xox§<o.

With the change of variables K = 71,7, and some
standard arguments, we get the equivalent problem
with variables Z;; and K:

minimize: Tr(Q + KT RK)Z1,,
subject to:  Z1; > 0,
(A + B[()le + Z11(A + B[()T
+xgzd <0,
(1)

O

which is the same as problem (10).

Note that this shows that the optimal solution to the
LQR problem is a linear state-feedback.

4.2. The multi-model LQR problem

Let us now consider a mutlti-model version of the
LQR problem. We consider the multi-model or poly-
topic system (see [5])

%x(t) =At)z(t) + Bt)u(t), x(0)=wzy, (12)
where for every time ¢,

[A(t) B(t)] € Q2 Co{[A Bil,...,[Ar Brl}.
(13)
Our objective now is to find v that minimizes
sup / (x(t)TQx(t) + u(t)TRu(t)) dt,
A(-),B(1)eqrJo

with @ > 0 and R > 0, subject to limy_ 2(t) = 0.
Let Jopt denote the minimum value.



Lower bound via quadratic functions

We now repeat the steps of the previous section to

write down a lower bound for Jop; using quadratic

functions. Suppose the quadratic function 7 P

with P > 0 satisfies

%x(t)TPx(t) > — (x(t)TQx(t) + u(t)TRu(t)) ,
(14)

for all t > 0, and for all # and u satisfying (12) with

z(T) = 0. Then, integrating both sides from 0 to T,

we get

T
el Pry < / (x(t)TQx(t) + u(t)TRu(t)) dt,
0
or we have a lower bound for Jgp.

Condition (14) holds for all z and w if the inequality

ADTP+PAR+Q PB(t
AP rA0TQ PR,

holds for all ¢ > 0, which in turn is equivalent to

[ ATP+ PA +Q PB

BT p = ]>0,i:1,...,L. (15)

Thus, the problem of computing the best lower bound
via quadratic functions is

maximize: l‘g Pzxg

subject to: P >0, (15) (16)

The optimization variable in problem (16) is the sym-
metric matrix P.

The dual of problem (16) is

minimize ZL:TI' Q0 Z;
0 R (3]

i=1
over Z;, i = 1,..., L, subject to

Z; Z;
277}1 1,12 >0
Zi,lZ Zi,22

K3

Zi:ZT:[

Y ([Az' B Z; [ é ]

AT
+I 0% [ BT D + zoag < 0.
With the change of variables K; = ZiT,12Zi_111’ and
some standard arguments, we get the equivalent prob-
lem with variables 7Z; 11 and Kj:

minimize: 'I‘lf‘Z:ZL:1 (Q+ K'RK;)Zi 1),
subject to: Z; 11 > 0,
Soicy ((Ai + BiKi) Zi 11
+Zi 11(Ai + BiKi)T) + ozl < 0.
(17)

We are not aware of a nice control-theoretic interpre-
tation of the dual problem at the time of writing of
this paper.

It is easy to calculate feasible points for (17) by solv-
ing an LQR problem (recall that this is important for
the application of the primal-dual algorithm of §3).
Select any system [A, B] from the convex hull (13),
1.e., choose

for some \; > 0,i=1,..., L, Zle A; = 1. By solv-
ing the LQR problem with A, B, we obtain matrices
Z11 > 0 and K that satisfy

(A4 BK)Z11 4+ Z11(A + BK)T + 2ozl < 0. (18)

From this it is clear that 7; 11 = AiZn, K; = K, are
feasible solutions in (17). Those dual solutions can be
used as starting points for a primal-dual algorithm.

Upper bound with state-feedback

Restricting u to be a constant, linear state-feedback
yields an upper bound on Jop;. With v = Kz, the
equations governing system (12) are

%x(t) =(AQ®)+ B@t)K) z(t), «(0) =xo, (19)

with the matrices A and B satisfying (13). Then the
LQR objective J reduces to

Jx = sup / ()T (Q + KTRK) =(t) dt.
A(),B()Jo

Once again, for every K, Jg yields an upper bound
on the optimum LQR objective J,p¢. Unlike with the
LQR problem however, Ji is not easy to compute.
We therefore present a simple upper bound for Jg
using quadratic functions.

Suppose the quadratic function ¥7 Py with P > 0
satisfies

%x(t)TPx(t) < -7 (Q+ K'RK) z(t), (20)

for all ¢ > 0, and for all # and w satisfying (12) with
z(T) = 0. Then, integrating both sides from 0 to T,
we get

T
xd Prg > / ()7 (Q + KT RK) 2(t) dt,
0

or we have an upper bound for Jops.

Condition (20) holds for all  and u (not necessarily
those that steer state to zero) if the inequality

(A()+ BOK)' P+ P(A(t)+ BOK)+Q+ K "RK <0



holds for all ¢ > 0, which in turn is equivalent to

P=Y(A;i + BiK)" + (A + BiK) P~
P (Q+ KTRK)P~1<0,i=1,...,L.

With the change of variables W = P~! and Y =
KP~! we get the matrix inequality (which can be
written as an LMT using Schur complements)

WAL + AW 4+ B;Y + YT BF

WQW +YTRY <0,i=1,..., L. (21)

Thus the best upper bound on J,p¢ using constant
state-feedback and quadratic functions can be ob-
tained by solving the semidefinite program with vari-

ables W = WT and Y:

minimize Trzf W1z,

subject to W >0, (21) (22)

The dual problem is

maximize — ZiL:l(Tr Zi 99+ Tr Z; 33) — 2:T 2,
Zinl Zinz  Zias

subject to: Z;=2Z = | ZLs Ziso Zipz | >0
Zz'j?w Zz'T,23 Zi,33

Zle (Zin1Ai + AT Z; 14
+Zi,12Q1/2 + Q1/2Zi7:12> > ZZT

ZZ'L:1 (BZ»TZZ;H + R1/2Z513) =0
(23)
where the variables are the L matrices Z; and the
vector z.

As with the lower bound, it 1s possible to obtain a
dual feasible solution by solving an LQR problem.
We omit the details here.

A Numerical Example

Figure 1 shows the results of a numerical example.
The data are five matrices A; € R5%5 and five matri-
ces B; € R5*3, The figures shows the objective values
of the four semidefinite programs that we discussed
above.

5. Conclusion

We have considered an optimal control problem with
a quadratic objective, and have shown how we may
obtain useful bounds for the optimal value using LMI-
based convex optimization. Convex duality can be
used to rederive the well-known LQR, solution; control
theory duality can be used to devise efficient primal-
dual convex optimization algorithms.

The results presented herein are preliminary; it would
be interesting to derive control-theoretic interpreta-
tions of the many primal-dual convex optimization
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Figure 1: Upper and lower bounds versus iteration num-
ber. Curve (a) shows the lower bound (16) during ex-
ecution of the primal-dual algorithm. Curve (b) shows
the value of the associated dual problem (17). Curve
(c) shows the upper bound (22) during execution of the
primal-dual algorithm. Curve (d) shows the value of the
associated dual problem (23).

problems presented here. Also of interest would be
a careful study of the numerical advantages gained
by wusing primal-dual algorithms over primal-only
solvers. The primal-dual method outlined in this pa-
per can be used to efficiently solve a large class of
semidefinite programs from system and control the-
ory, e.g., most of the ones presented in the book [5].
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