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A typical application of convex optimization to aproblem from control theory proceeds as follows: Thecontrol problem is reformulated (or in many cases, ap-proximately reformulated) as a convex optimizationproblem, which is then solved using convex program-ming methods. Once the control problem is reformu-lated into a convex optimization problem, then it isstraightforward to write down the dual convex opti-mization problem. This dual problem can be oftenbe reinterpreted in control-theoretic terms, yieldingnew insight. The control-theoretic interpretation ofthe dual problem in turn helps in the e�cient (nu-merical) implementation of primal-dual algorithms,which are among the most e�cient techniques knownfor solving convex optimization problems. In this pa-per, we illustrate each of these points. First, we ex-amine the standard LQR problem from control the-ory, and show how convex duality provides insightinto its solution. We then discuss the implementa-tion of primal-dual algorithms for another importantcontrol problem, namely the Linear Quadratic Reg-ulator problem for linear time-varying systems withstate-space parameters that lie in a polytope.2. Convex programming dualityIn the sequel, we will be concerned with convex opti-mization problems involving linear matrix inequalitiesor LMIs. These optimization problems have the formminimize cTxsubject to F (x) > 0 (1)where F (x) �= F0 + x1F1 + � � �+ xmFm:The problem data are the vector c = Rm and m + 1symmetric matrices F0, F1, . . . , Fm 2 Rn�n. Theinequality F (x) > 0 means that F (x) is positive def-inite. We call problem (1) a semide�nite program.3Semide�nite programs can be solved e�ciently usingrecently developed interior-point methods (see [2, 4]).The book [5] lists a large number of problems in3Strictly speaking, the term \semide�nite program" refersto problem (1) with the constraint F (x) � 0 instead of F (x) >0.



control and system theory that can be reduced to asemide�nite program.As a consequence of convexity, we have a complete du-ality theory for semide�nite programs. For the specialform of problem (1) duality reduces to the following.With every problem (1) we associate a dual problemmaximize �TrF0Zsubject to Z > 0TrFiZ = ci; i = 1; : : : ;m: (2)Here TrX denotes the trace of a matrix X. Thevariable in (2) is the matrix Z = ZT 2 Rn�n. Wehave the following properties.� If a matrix Z is dual feasible, i.e., Z > 0 andTrFiZ = ci, i = 1; : : : ;m, then the dual objec-tive �TrF0Z is a lower bound for the optimalvalue of (1):�TrF0Z � inf fcTxjF (x) > 0g:� If an x 2 Rm is primal feasible, i.e., F (x) > 0,then the primal objective cTx is an upper boundfor the optimal value of (2):cTx � sup8<:�TrF0Z ������ Z = ZT > 0;TrFiZ = ci;i = 1; : : : ;m 9=; :� Under mild conditions, the optimal values of theprimal problem (1) and its dual (2) are equal.3. Primal-dual algorithmsPrimal-dual algorithms are a class of iterative nu-merical algorithms for solving semide�nite programs.These algorithms solve problems (1) and (2) simulta-neously; as they proceed, they generate a sequenceof primal and dual feasible points x(k) and Z(k)(k = 0; 1; : : : denotes iteration number). This meansthat for every k, we have an upper bound cTx(k) anda lower bound �TrF0Z(k) on the optimal value ofproblem (1).General primal-dual interior-point methods that solvesemide�nite programs are often more e�cient thanmethods that work on the primal problem only. Theirworst-case complexity is typically lower, and they areoften faster in practice as well.An important class of interior-point methods is basedon the primal-dual potential function�(x; Z)=(n+�pn) log(cTx+TrF0Z)�log detF (x)Z:

(� � 1 is �xed.) If a method decreases this functionby at least a �xed amount, independent of the prob-lem size, in every iteration, then it can be shown thatthe number of iterations grows at most as O(pn) withthe problem size. In practice the number of iterationsappears to grow slower with n. Moreover the amountof work per iteration can be reduced considerably bytaking advantage of the structure in the equations(see [6]).An outline of a potential-reduction method due toNesterov and Todd [7]|this is the algorithm used forsolving the semide�nite programs that occur in thispaper|is as follows. The method starts at strictlyfeasible x and Z. Each iteration consists of the fol-lowing steps.1. Compute a matrix R that simultaneously diag-onalizes F (x)�1 and Z:RTF (x)�1R = ��1=2; RTZR = �1=2:The matrix � is diagonal, with as diagonal ele-ments the eigenvalues of F (x)Z.2. Compute �x 2 Rm and �Z = �ZT 2 Rn�n fromRRT �ZRRT +Pmi=1 �xiFi = ��F (x) + Z�1TrFj�Z = 0; j = 1; : : : ;mwith � = (n+ �pn)=(cTx+ TrF0Z).3. Find p; q 2 R that minimize �(x+p�x; Z+q�Z)and update x := x+ p�x and Z := Z + q�Z.For details, we refer the reader to [7]; see also [4].4. Convex duality and control theoryWe �rst consider the standard Linear Quadratic Reg-ulator problem, and show how convex duality de-scribed in x2 can be used to reinterpret the standardLQR solution. We then consider a multi-model (or\robust") version of the LQR problem, and describean application of the primal-dual algorithm of x3 forcomputing bounds for this problelm.4.1. The Linear Quadratic regulatorConsider the following optimal control problem: Forthe system _x = Ax+Bu; x(0) = x0; (3)�nd u that minimizesJ = Z 10 �x(t)TQx(t) + u(t)TRu(t)� dt; (4)with Q � 0 and R > 0, subject to limt!1 x(t) = 0.We assume the pair (A;B) is controllable. Let Joptdenote the minimum value.



Lower bound via quadratic functionsWe can write down a lower bound for Jopt us-ing quadratic functions; the following is essentiallyfrom [8, Theorem 2].Suppose the quadratic function  TP with P > 0satis�esddtx(t)TPx(t) > � �x(t)TQx(t) + u(t)TRu(t)� ; (5)for all t � 0, and for all x and u satisfying _x = Ax+Bu, x(T ) = 0. Then, integrating both sides from 0to T , we getxT0Px0 < Z T0 �x(t)TQx(t) + u(t)TRu(t)� dt;or we have a lower bound for Jopt.Condition (5) holds for all x and u (not necessarilythose that steer state to zero) if the Linear MatrixInequality � ATP + PA+ Q PBBTP R � > 0 (6)is satis�ed. Thus, the problem of computing the bestlower bound using quadratic functions ismaximize: xT0 Px0subject to: P > 0; (6) (7)The optimization variable in problem (7) is the sym-metric matrix P .Upper bound with state-feedbackConsider system (3) with a constant, linear state-feedback u = Kx that stabilizes the system:_x = (A+ BK)x; x(0) = x0; (8)with A + BK stable. Then the LQR objective J re-duces toJK = Z 10 x(t)T �Q+KTRK�x(t) dt:Clearly, for every K, JK yields an upper bound on theoptimum LQR objective Jopt. From standard resultsin control theory, JK can be evaluated asTrZ(Q +KTRK);where Z satis�es(A+ BK)Z + Z(A +BK)T + x0xT0 = 0;with A+ BK stable.It will be useful for us to rewrite this expression forJK as infZ>0TrZ(Q +KTRK);

where Z satis�es(A+ BK)Z + Z(A +BK)T + x0xT0 < 0: (9)Thus, the best upper bound on Jopt, achievable usingstate-feedback control, is given by the optimizationproblem with the optimization variables Z and K:minimize: TrZ(Q+KTRK)subject to: Z > 0; (9) (10)DualityWe observe the following:Problems (7) and (10) are duals of each other.Proof: The proof is by direct veri�cation. For prob-lem (7), the dual problem is given byminimize Tr � Q 00 R �Z; over Z;subject to Z = ZT = � Z11 Z12ZT12 Z22 � > 0[A B]Z � I0 �+ [I 0]Z � ATBT �+ x0xT0 < 0:With the change of variables K = ZT12Z�111 , and somestandard arguments, we get the equivalent problemwith variables Z11 and K:minimize: Tr(Q +KTRK)Z11;subject to: Z11 > 0;(A+ BK)Z11 + Z11(A +BK)T+x0xT0 < 0; (11)which is the same as problem (10). 2Note that this shows that the optimal solution to theLQR problem is a linear state-feedback.4.2. The multi-model LQR problemLet us now consider a mutlti-model version of theLQR problem. We consider the multi-model or poly-topic system (see [5])ddtx(t) = A(t)x(t) +B(t)u(t); x(0) = x0; (12)where for every time t,[A(t) B(t)] 2 
 �= Co f[A1 B1] ; : : : ; [AL BL]g :(13)Our objective now is to �nd u that minimizessupA(�);B(�)2
 Z 10 �x(t)TQx(t) + u(t)TRu(t)� dt;with Q � 0 and R > 0, subject to limt!1 x(t) = 0.Let Jopt denote the minimum value.



Lower bound via quadratic functionsWe now repeat the steps of the previous section towrite down a lower bound for Jopt using quadraticfunctions. Suppose the quadratic function  TP with P > 0 satis�esddtx(t)TPx(t) > � �x(t)TQx(t) + u(t)TRu(t)� ;(14)for all t � 0, and for all x and u satisfying (12) withx(T ) = 0. Then, integrating both sides from 0 to T ,we getxT0Px0 < Z T0 �x(t)TQx(t) + u(t)TRu(t)� dt;or we have a lower bound for Jopt.Condition (14) holds for all x and u if the inequality� A(t)TP + PA(t) + Q PB(t)B(t)TP R � > 0holds for all t � 0, which in turn is equivalent to� ATi P + PAi + Q PBiBTi P R � > 0; i = 1; : : : ; L: (15)Thus, the problem of computing the best lower boundvia quadratic functions ismaximize: xT0 Px0subject to: P > 0; (15) (16)The optimization variable in problem (16) is the sym-metric matrix P .The dual of problem (16) isminimize LXi=1 Tr � Q 00 R �Zi;over Zi, i = 1; : : : ; L, subject toZi = ZTi = � Zi;11 Zi;12ZTi;12 Zi;22 � > 0PLi=1�[Ai Bi]Zi � I0 �+ [I 0]Zi � ATiBTi ��+ x0xT0 < 0:With the change of variables Ki = ZTi;12Z�1i;11, andsome standard arguments, we get the equivalent prob-lem with variables Zi;11 and Ki:minimize: TrPLi=1 �(Q+KTi RKi)Zi;11� ;subject to: Zi;11 > 0;PLi=1 ((Ai +BiKi)Zi;11+Zi;11(Ai + BiKi)T � + x0xT0 < 0: (17)

We are not aware of a nice control-theoretic interpre-tation of the dual problem at the time of writing ofthis paper.It is easy to calculate feasible points for (17) by solv-ing an LQR problem (recall that this is important forthe application of the primal-dual algorithm of x3).Select any system [ �A; �B] from the convex hull (13),i.e., choose �A = LXi=1 �iAi; �B = LXi=1 �iBifor some �i � 0, i = 1; : : : ; L, PLi=1 �i = 1. By solv-ing the LQR problem with �A, �B, we obtain matrices�Z11 > 0 and �K that satisfy( �A+ �B �K) �Z11 + �Z11( �A + �B �K)T + x0xT0 < 0: (18)From this it is clear that Zi;11 = �i �Z11, Ki = �K, arefeasible solutions in (17). Those dual solutions can beused as starting points for a primal-dual algorithm.Upper bound with state-feedbackRestricting u to be a constant, linear state-feedbackyields an upper bound on Jopt. With u = Kx, theequations governing system (12) areddtx(t) = (A(t) +B(t)K) x(t); x(0) = x0; (19)with the matrices A and B satisfying (13). Then theLQR objective J reduces toJK = supA(�);B(�) Z 10 x(t)T �Q+KTRK�x(t) dt:Once again, for every K, JK yields an upper boundon the optimumLQR objective Jopt. Unlike with theLQR problem however, JK is not easy to compute.We therefore present a simple upper bound for JKusing quadratic functions.Suppose the quadratic function  TP with P > 0satis�esddtx(t)TPx(t) < �x(t)T �Q+KTRK�x(t); (20)for all t � 0, and for all x and u satisfying (12) withx(T ) = 0. Then, integrating both sides from 0 to T ,we getxT0 Px0 > Z T0 x(t)T �Q+KTRK�x(t) dt;or we have an upper bound for Jopt.Condition (20) holds for all x and u (not necessarilythose that steer state to zero) if the inequality(A(t) + B(t)K)T P +P (A(t) + B(t)K)+Q+KTRK < 0



holds for all t � 0, which in turn is equivalent toP�1 (Ai + BiK)T + (Ai +BiK)P�1+P�1 �Q+KTRK�P�1 < 0; i = 1; : : : ; L:With the change of variables W = P�1 and Y =KP�1, we get the matrix inequality (which can bewritten as an LMI using Schur complements)WATi + AiW +BiY + Y TBTiWQW + Y TRY < 0; i = 1; : : : ; L: (21)Thus the best upper bound on Jopt using constantstate-feedback and quadratic functions can be ob-tained by solving the semide�nite program with vari-ables W = WT and Y :minimize TrxT0W�1x0subject to W > 0; (21) (22)The dual problem ismaximize �PLi=1(TrZi;22 + TrZi;33)� 2zTx0;subject to : Zi=ZTi =24 Zi;11 Zi;12 Zi;13ZTi;12 Zi;22 Zi;23ZTi;13 ZTi;23 Zi;33 35 > 0PLi=1 �Zi;11Ai +ATi Zi;11+Zi;12Q1=2 +Q1=2ZTi;12� > zzTPLi=1 �BTi Zi;11 +R1=2ZTi;13� = 0 (23)where the variables are the L matrices Zi and thevector z.As with the lower bound, it is possible to obtain adual feasible solution by solving an LQR problem.We omit the details here.A Numerical ExampleFigure 1 shows the results of a numerical example.The data are �ve matrices Ai 2 R5�5 and �ve matri-ces Bi 2 R5�3. The �gures shows the objective valuesof the four semide�nite programs that we discussedabove. 5. ConclusionWe have considered an optimal control problem witha quadratic objective, and have shown how we mayobtain useful bounds for the optimal value using LMI-based convex optimization. Convex duality can beused to rederive the well-known LQR solution; controltheory duality can be used to devise e�cient primal-dual convex optimization algorithms.The results presented herein are preliminary; it wouldbe interesting to derive control-theoretic interpreta-tions of the many primal-dual convex optimization
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