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Abstract

We discuss convex optimization problems in which some of the variables are con-
strained to be finite autocorrelation sequences. Problems of this form arise in signal
processing and communications, and we describe applications in filter design and sys-
tem identification. Awutocorrelation constraints in optimization problems are often
approximated by sampling the corresponding power spectral density, which results in
a set of linear inequalities. They can also be cast as linear matrix inequalities via the
Kalman-Yakubovich-Popov lemma. The linear matrix inequality formulation is exact,
and results in convex optimization problems that can be solved using interior-point
methods for semidefinite programming. However, it has an important drawback: to
represent an autocorrelation sequence of length 7, it requires the introduction of a large
number (n(n + 1)/2) of auxiliary variables. This results in a high computational cost
when general-purpose semidefinite programming solvers are used. We present a more
efficient implementation based on duality and on interior-point methods for convex
problems with generalized linear inequalities.

This material is based upon work supported by the National Science Foundation under
Grant No. ECS-9733450.

The website http://www.ee.ucla.edu/~vandenbe/alvOlb.htm contains software and
other supporting materials.



1 Introduction

A vector x = (xg,T1,...,%,) € R"™ is a finite autocorrelation sequence if there exists a
vector ¥ = (Yo, Y1, ---,Yn) € R"™ such that

n—k
T = Zyiyi—l—kv k:()a"'vn' (]—)

=0

In this paper we study optimization problems with the constraint that some of the variables,
or an affine combination of the variables, form a finite autocorrelation sequence. As will
become clear in §2, this is a convex constraint, because the set of autocorrelation sequences
in R""! is a convex cone. Optimization problems involving autocorrelation sequences are
common in signal processing, system identification, and communications. We will discuss
several examples and applications in §4.

It is well known in system theory that the set of autocorrelation sequences can be de-
scribed using linear matrix inequalities (LMIs). Specifically, we will see that = is a finite
autocorrelation sequence if and only if there exists a matrix P € S™ (the set of symmetric

n X n-matrices) such that
P &) [oo
T xg 0 P

is positive semidefinite, where & € R" is defined as ¥ = [z, 7, 1 --- x1]T. This condition
is an LMI in z and the auxiliary variable P. As a consequence, many convex problems
involving autocorrelation sequences can be solved using interior-point methods for semidef-
inite programming (SDP). However this is not necessarily the most efficient solution, since
the conversion to an SDP requires the introduction of a large number of auxiliary variables
(the n(n + 1)/2 elements of P). The goal of this paper is to develop more direct and much
more efficient interior-point methods for handling autocorrelation sequences. For a typical
example, these techniques reduce the cost per iteration from O(n%) floating-point operations
when using the SDP formulation to O(n®) flops.

Two groups of researchers have recently and independently arrived at similar conclu-
sions. Dumitrescu, Tabus and Stoica in [DTS01] have noted that the computational cost of
representing autocorrelation sequences via the SDP embedding can be drastically reduced
(typically from O(n®) to O(n*)) by solving the dual SDP. The method presented here is based
on the same observation, and achieves a further reduction (from O(n*) to O(n?®)) by taking
advantage of the Toeplitz structure in the dual problem. Genin, Hachez, Nesterov and Van
Dooren in [GHNV00a, GHNV00b] have developed efficient algorithms for convex optimiza-
tion problems over pseudo-polynomial matrices, which include autocorrelation sequences as
a special case. Their method is similar, but not identical, to the method presented in this
paper. The idea in both methods is to take advantage of problem structure by evaluating
the second derivatives of the dual barrier function fast. In our case the barrier function is the
logarithmic barrier function of a positive definite Toeplitz matrix. We apply the Levinson-
Durbin algorithm to factor of the inverse of the matrix and the discrete Fourier transform
to assemble the gradient and Hessian fast. The method described in [GHNV00a] uses the
generalized Schur algorithm to factor the displacement of certain matrices that occur in



the expressions for the Hessian. This offers a more general method, as it applies to any
type of LMI constraint with low displacement rank, such as Hankel matrices. The tech-
niques presented in this paper provide an alternative and more direct approach, not based
on displacement rank techniques, and leading to algorithms with the same efficiency.

Outline

The outline of the paper is as follows. We start in the next paragraph by listing a number
of equivalent characterizations and geometrical properties of autocorrelation sequences. In
particular we show that the set of finite autocorrelation sequences forms a closed convex
cone. We also describe the corresponding dual cone. In §3 we describe the two most widely
used methods for handling autocorrelation cone constraints in optimization problems and
discuss their shortcomings. In §4 we present examples and applications in filter design and
system identification. The section includes a new formulation of piecewise-constant filter
magnitude constraints as linear generalized inequalities with respect to the autocorrelation
cone. In §5 we present general background on barrier methods for convex optimization
problems with cone constraints. In §6 we describe an efficient dual barrier method for
problems with autocorrelation cone constraints. The main contribution in this section is
an efficient method for evaluating the Hessian of the dual barrier function. We present
numerical results in §7, and conclude with a summary and some topics for future research
in §8.

Notation

Most of the notation is standard. We denote by R" the space of n-dimensional real vectors,
by R™*" the space of m x n real matrices, and S™ the space of real symmetric matrices of
size n x n. C" denotes the space of n-dimensional complex vectors and C™*" the space of
m X n complex matrices. If A, B € C™*", then C' = A o B denotes the Hadamard product
of A and B: C € C™" with Cij = A”BZ]

Cn+1 is the cone of finite autocorrelation sequences of length n + 1, and C;;, represents
the corresponding dual cone, defined in §2.2.

Indices for vectors and matrices start at 0. The first component of a vector = is xy. The
first element of the first row of a matrix X is Xp. If z € R™ and y € R", then (z,y) € R™™"
denotes the vector (z,y) = [zT yT]T. In §4 and in Appendix A we define j = v/—1. In the
rest of the paper j is only used as an index.

The symbols >, >, <, < will denote matrix inequality, or vector inequality with respect
to the cone of autocorrelation vectors, depending on the context. In other words, if z,y € S™,
then x > y means x — y is positive semidefinite, and =z > y means that x — y is positive
definite. If z,y € R™*", then 2 > y means £ —y € Cp41, and > y means x —y € int Cp, ;.
(This notation is justified by the fact that C,, is a convex cone; see §2.1.) The symbols >,
>+, Z«, <4 denote generalized inequality with respect to the dual cone C; ,: if z,w € R" ™,
then z >, w means z —w € C;;H, and z >, w means z —w € intC:H.



2 The cone of finite autocorrelation sequences

In this section we present a number of characterizations and interpretations of the set of
finite autocorrelation sequences C,1. These results (with the possible exception of the

LMI characterization, which is proved in the appendix) are well known (see, for example,
[KN77, BEFB94, Gra72, SM97]).

2.1 Equivalent definitions
Frequency-domain characterization [KN77]

The Fourier transform of the sequence
0,0, 0, Ty 1, T, Ty T1y e e Ty 0,0, 4L

is a function X : R — R defined as

X(w) =20+2) x4 cos kw.
k=1

We have the following property: =z € C,1; if and only if X is nonnegative, i.e.,
X(w)>0, wel0,n]. (2)

Note that X is periodic with period 27 and even, so it is sufficient to consider w € [0, 7.

This frequency-domain characterization of C,,; has several important consequences.
First, it immediately implies that C,,; is a cone: if x € C, .1, then obviously tx € C,
for all t > 0. Secondly, we can note that for fixed w, the inequality (2) is a linear inequality
in z, i.c., it defines a closed halfspace in R"*'. In (2) we express C,,; as the intersection
of infinitely many halfspaces, parametrized by w. As a consequence, C, 1 is a closed convex
cone.

Linear matrix inequality characterization

In the second characterization, we describe C,; as the image of the cone of positive semidef-
inite matrices in S"™' under a linear transformation. We first note that we can write the
equation (1) as

o =y Efy = Tr Efyyt, k=0,....n (3)

where Tr A denotes the trace of a square matrix A, and the matrix F is the unit-shift matrix
in RMHUX(+)  Jefined as

000 --- 00 07
100 ---000
010 ---000
E: . . 3 . . . (4)
000 - 000
000 - 1 00
L0 00 --- 01 0]




In (3), E* denotes the kth power of E, i.e., E° is the identity matrix, and for k > 0, E* has
zeros everywhere, except on the kth subdiagonal. Multiplying a vector y with E* corresponds
to shifting the components of y over k£ positions:

Efy=(0,...,0,90, Y1, - Yn_i)-

In (3) we represent C,,1 as the image of a non-convex set (the set of positive semidefinite
rank-one matrices yy?) under a linear transformation. Remarkably, we obtain the same set
if we relax the rank-one constraint. Indeed, we prove in the appendix that x € C,,, if and
only if

. =TrEFY, k=0,...,n (5)
for some Y € S"™! with Y > 0.

For given z, (5) is a set of n + 1 linear equations in Y, and it defines an affine set of
dimension n(n+1)/2 in the space of symmetric (n+1) x (n+1)-matrices. We can parametrize
the same set explicitly as follows. It can be shown that Y satisfies (5) if and only if there

exists a P € S™ such that
y_[P &]_[oo
o .i'T Ty 0 P

where 7 = [z, 2, 1 --- z1]7. We therefore obtain the following equivalent LMI characteri-
zation for C,1: x € Cyyq if and only if there exists a P € S™ such that

P z] [oo
7T @ 0 P

This is an LMI in the variables P and zx.
This second form can also be derived directly from the Kalman-Yakubovich-Popov lemma
in linear system theory; see the appendix for details.

=0 (6)

Solution set of an infinite LMI [Gra72]

We can also characterize C,,1 as the solution set of an ‘infinite’ linear matrix inequality. It
can be shown that = € C,, if and only if the Toeplitz matrices T (z) € SV, defined as
) mig if0<|i—jl<n
T (@) { 0 otherwise,
are positive semidefinite for all NV:
Ty(z) =0, N=1,2,.... (7)

Here we express C,11 as the intersection of the solution sets of infinitely many linear matrix
inequalities, which again confirms that C,,, is a convex set.

Stochastic interpretation [SM97]

Our use of the term ‘autocorrelation sequence’ is justified by the following property: = € C, 41
if and only if there exists a wide-sense stationary random sequence w(t), t = 0,1, ..., such

that
Tz, 0<k<nm

Ew(t)w(t+k) = { 0 ksn



Nonnegative polynomials on [—1, 1]
Any z € C, 1 can be associated with a polynomial of degree n, defined as
P(t) = zo + 2x1p1(t) + 2x9p2(t) + - - - + 22,0y (1)

where py(t) is the Chebyshev polynomial of degree k. We have the following result: P(t) > 0
for —1 <t <1 if and only if x € C,,,. This follows immediately from the definition of
Chebyshev polynomials [PM96, p.684],

pr(t) = cos(kcos™'(t)) for t € [-1,1].
As a consequence, we can identify C,; with the cone of polynomials of degree n that are
nonnegative on [—1,1].
2.2 The dual cone

The dual of the autocorrelation cone will play a fundamental role in the numerical techniques
we discuss later. The dual cone of C, 1 is defined as

ra={z¢€ R | "2 > 0for all x € Cpys}.

An explicit characterization of the dual cone can be derived as follows [KN77]: 2Tz > 0 for
all x € Cp44 if and only if

220 ~1 Zo ottt Zp
z 2z z Z Yo
n nk 1 1 0 1 n—1 "
D2k > Yilhik = 2 [ Yo Y Yn 2z 2% “n—2 .1 =0
k=0 =0 . :
L Zn  An—1 Zp-2 220 Yn

for all y € R™'. Therefore, z € C:., if and only if

220 21 29 Zn

z1 2Z0 z1 Zn—1

29 21 22 Zn-2 | =0
L Zn  Zpn—1 Ap—2 2ZO i

In other words, we can identify the dual cone with the cone of positive semidefinite Toeplitz
matrices in S" 1.

2.3 Spectral factorization

Returning to the original definition (1), the question arises of checking whether a given z
is a finite autocorrelation sequence. In other words, for a given z, we would like to be able



to either construct a y that satisfies (1), or find a hyperplane that separates x from C, 1.
This can be achieved very efficiently by a technique called spectral factorization. Several
very efficient methods for spectral factorization exist, and we refer to [WBV98, p.242] for a
brief survey.

For a given z, there may be multiple solutions y that satisfy (1). Spectral factorization
methods usually compute the unique minimum-phase spectral factor, which satisfies the
property that the complex function

Yo+ iz LAy "

is nonzero for |z| > 1.

3 Embedding or approximating the autocorrelation cone

The frequency-domain and the LMI characterization given in §2 are the basis of two widely
used methods for representing the autocorrelation cone. In this section we describe both
representations, and discuss their shortcomings, as a motivation for the methods discussed
later.

As a simple example, we will consider the optimization problem

minimize ||z — 7| (8)
subject to z > 0,

with variable 2 € R""!, in which we approximate a given vector 7 by the nearest autocorre-
lation sequence.

Sampling

The definition (2) describes C, 11 as the intersection of an infinite number of linear inequali-
ties, one for each value of w. A popular method of handling the constraint X (w) > 0, is to
sample this infinite set of linear inequalities. In this method we choose a large number of
frequencies w;, i = 0,..., N, in the interval [0, 7|, and replace the constraint (2) by a finite
set of N linear inequalities

To+2> xpcoskw; >0, i=0,...,N. (9)
k=1
Geometrically, we approximate the cone C,,.; with a polyhedral cone that contains it.
As an example, if we apply this approach to problem (8), we obtain a quadratic pro-
gramming problem

minimize ||z — Z|?
subject to o+ 2))_;xpcoskw; >0, ¢=0,...,N.

The sampling method works well in practice, provided we choose N sufficiently large (typi-
cally N = 15n). However, it is not exact; it is possible to satisfy (9), and still have X (w) < 0
for some w.



LMI embedding

The LMI characterizations (5) and (6) allow us to represent the constraint x € C,4; ezactly
by introducing new matrix variables Y or P. As an example, we can express (8) as the
optimization problem

minimize ||z — Z|?
subject to z, = TrE*Y, k=0,...,n
Y = 0.

with variables z € R*™! and Y € S™"!. An alternative form is

minimize ||z — Z||?

. P z 0 0
subject to le $0]_l0 P

>0 (10)

which has variables x and P € S™. In both cases we obtain a convex optimization problem
with a convex quadratic objective function and an LMI constraint.

No approximation is involved here, in contrast with the sampling method. The two repre-
sentations may have a different complexity, depending on the algorithm used to solve them,
but both suffer from the fact that a large number (O(n?)) of auxiliary variables is introduced.
(See [DTS01] for a detailed discussion of different SDP formulations of problem (8).)

4 Examples and applications

4.1 Enforcing nonnegativity of estimated spectral densities

Suppose we have measurements or estimates 7, of the first n + 1 autocorrelation coefficients
Ew(t)w(t + k) of a stationary time series w(t). The estimates 7, might be obtained, for
example, by taking an average of sampled values of w(t)w(t + k). Due to estimation errors,
we may not have equality 7, = Ew(t)w(t + k). Moreover, even if the values 7 are exact,
they only represent a finite part of an autocorrelation sequence of unknown and possibly
infinite length. So we do not expect the sequence 7y,...,7, to be a finite autocorrelation
sequence, and as a result, the estimated power spectral density

n
To+2)_ 7 cos(kw)
k=1

might be negative for some w. One approach to this problem is to approximate 7 by the
closest finite autocorrelation sequence, i.e., to solve the problem (8). This problem was
studied in [SMS93, ML91|, where it was solved using semi-infinite optimization methods.

Stoica, McKelvey, and Mari [SMMO00] mention similar constraints in the context of Mov-
ing Average (MA) signal estimation. For example, they consider the problem

minimize (z —7)"W(z — 7) (1)
subject to x > 0

8



where W € 8" and 7 € R"™ are given with W > 0, and z € R"™ is the variable. This
problem was solved via the SDP embedding and general-purpose SDP software in [SMMO00].
In [DTS01, AV00] it was pointed out that the dual of the resulting SDP has a much smaller
number of variables than the primal, so the problem can be solved more efficiently via the
dual. In [AV00] the complexity was further reduced by taking advantage of the Toeplitz
structure in the dual problem, as described below in §6.

4.2 Frequency-domain system identification

Consider the problem of fitting a rational function H : C — C,

n

ap+ a1zt 4+ agz
H(z) =
(2) bo+biz=t 4+ byz—™’

(12)

with real coefficients a;, b;, to measurements of its power spectrum |H (e’*)|?. Specifically,
we are interested in the problem

minimize max;—o, x| |H(e/*)|? — B
subject to bTb =1, (13)
where the variables are the coefficients a € R"** and b € R™"!, and the problem data are
the measurement pairs w;, P; for ¢ = 0,..., N. The equality constraint in (13) is added to
normalize the solution.

Problem (13) is not convex in the variables a and b, but can be reformulated as a quasi-
convex problem via a nonlinear change of variables. Define u € R"™, v € R™™ as

n—k m—k
Up =Y Qilirk, Uk = Y bibitk,

i.e., u and v are the autocorrelation sequences of the vectors a and b. It is easily shown that

: Uw)
H jwy|2 —
) =
for all w, where
Uw) = up~+2ujcosw+ -+ -+ 2u, cos nw,
V(w) = wvo+2v1cosw—+ -+ 20y COS MW.
We can therefore express problem (13) as
Ulws
minimize max (i) — P
i=0,...N | V (w;)

subject to vy =1
u>0, v=0,



|H ()]

Figure 1: Power spectrum of an order 15 rational transfer function obtained via a
minimax fit to the data shown with a dashed line.

This problem can be reformulated as

minimize 7y

subject to -V (w;) < U(w;) — PV (w;) <AV (w;), i=0,...,N
Vo = 1
u>=0, v=0,

(14)

and solved via bisection on ~. From the optimal u and v we can obtain a globally optimal
solution a and b by spectral factorization. Choosing minimum phase spectral factors yields
a function H with no poles and zeros outside the unit disk. Note that it is possible to have
poles on the unit circle at the optimal solution. This can be avoided by adding the constraint

V(w)—6>0, welo,n],
where ¢ is a small positive constant, That is, we replace the constraint v > 0 with
v—30e>0

where e = (1,0,...,0) € R™.
Figure 1 shows an example. The dimensions of the problem are N = 99, m = 15 and
n = 14. The data were generated by adding noise to a 25th order transfer function.

10



4.3 FIR magnitude filter design
A finite impulse response (FIR) filter is a linear system described by the input-output relation

y(t) = i hyu(t — k), teZ

where u(t) is the input at time ¢, y(¢) is the output at time ¢, and hy, ..., h, are the filter
coefficients. The transfer function H : C — C of the filter is

H(2) =ho+hiz7 +- -+ hpz™™

Pointwise upper and lower bounds on the magnitude of the frequency response |H (e)|, i.e.
constraints of the form

L<|H(@E¥)| <U, wela,f]

are usually not convex in the filter coefficients h. However, they are convex as a function of
the autocorrelation coefficients

n—k
T = Z hihk-i—i; k= 0, e,y (15)
1=0

and, as a consequence, a wide variety of FIR filter design problems can be solved via convex
optimization [Sam88, WBV96, WBV98, DLWO00].

As an example, consider the problem of designing a multiband FIR filter with N + 1
bands [ag, G|, £ = 0,1,..., N. We assume that 0 < a4 < fx < m, and that none of the
intervals overlap. In each band, we have a lower bound L; > 0 and an upper bound U, > L
on the filter magnitude. We are interested in minimizing the stopband energy (i.e. squared
error) subject to peak constraints on the magnitude response. This is a variation on the
peak-constrained least-squares filter design formulation introduced by Adams (see [AS98]).

The problem can be expressed as

L N Br 2
minimize Zwk/ ‘H(@JW)‘ dw
k=0 Ok
subject to Ly < |H(e9*)| < Uy, w € [au,Bk], k=0,...,N,

where w;, = 0 if band £ is a passband, and wy = 1, L, = 0 if band k£ is a stopband.
(Taking stopband weights wy, different from one allows us to trade-off the energy in different
stopbands.) This problem is not convex in the filter coefficients h. However, in terms of the
autocorrelation coefficients x, defined by (15), the problem reduces to

L N Br
minimize Zwk/ X (w)dw
k=0 &

subject to L2 < X(w) <UZ, wé€ [, B], k=0,...,N
X(w) >0, w e [0,7],

(16)

where X is defined as X (w) = x¢ + 221 cosw + - - - + 2z, cosnw. The objective function is
linear in x; the constraints are an infinite set of linear inequalities, so this problem is convex
in the variable z.

11



Two methods exist for dealing with the semi-infinite nature of the constraints in (16).
The most popular method is the sampling method of §3. We replace the constraint

L*<X(w)<U% wela,f] (17)
with a large finite set of inequality constraints
L*<X(w) <U% k=0,....,m

where o < wg < wy < -+ < Wy, < S

A second and more recent method is based on semidefinite programming. We have already
seen that for & = 0 and 5 = 7, the constraint (17) can be cast as two linear matrix inequal-
ities. Davidson et al. in [DLS00] and Genin et al. in [GHNV00a] have recently extended
this formulation, and derived LMI formulations of the constraints (17) for arbitrary o and
B. Using these methods, a problem such as (16) can be cast as a semidefinite programming
problem (SDP), without any approximation or sampling, and solved via general-purpose
semidefinite programming software.

The constraints (17) can also be represented as generalized linear inequalities with respect
to the cone C,1, as follows. We first consider the constraint

X(w) >0, wée|a,pl. (18)

To simplify notation, we make a change of variable ¢ = cosw. This maps the interval
0 <w < mto -1 <t <1, and the function coskw to the kth Chebyshev polynomial

pi(t) = cos(kcos™! t). Therefore X (w) is mapped to the polynomial

P(t) = copo(t) + 2 z i (1),

so it is clear that P(t) > 0 for t € [—1,1] if and only if z > 0. Now consider the con-
straint (18). It is satisfied if and only if P(¢) > 0 for ¢ € [cosB,cosa]. Let A(x, ) €
R+ DX+ he defined as follows: the components of A(a, B)z are the coordinates of P in
the basis

po(at —b), 2pi(at—10), ..., 2p,(at—0b),
where a = 2/(cos o — cos 3), and b = (cos o + cos ) /(cos o — cos ). In other words, if we
take y = A(q, B8)z, we can express P(t) as

P(t) = yopo(at — b) —l-Qiykpk(at—b). (19)

The matrix A(a, () is readily constructed based on the recursion for Chebyshev polynomials

po(t) =1, pi(t) =t, pe(t) =2tper(t) — pr2(t), k=2

We refer to the appendix for the details of constructing the matrix A(a, 8) for given «, 3.
From (19) and the definition of a and b, it is clear that P(t) > 0 for ¢ € [cos 3, cos o] if and
only if

Yo Po(T) + 2 Z yepe(T) >0, 7e€[-1,1].
k=1

12



Optimal Filter

10

o

Magnitude Response (dB)

_40 1 I I
0 0.5 1 15 2 2.5 3
Frequency (radians/sample)

Figure 2: Length 24 bandpass filter.

In other words, x satisfies the constraint (17) if and only if A(«, 8)z > 0, which is a gener-
alized linear inequality with respect to C,1.

More generally, we can express the magnitude constraints (17) as a pair of generalized
linear inequalities

L’e < Ao, B)z < U?e
where e = (1,0,...,0) € R*".

Returning to the multiband filter design example, we can now use the generalized in-
equality notation to express problem (16) as follows:

minimize ¢’z
subject to Lie < A(ay, Bp)xr < Uke, k=0,..
x>0

LN (20)

where
N N Bi
c():Zwi(ﬁi—ozi), ck:22wi/ coskwdw, k=1,...,n.
i=0 i=0 Qi
Figure 2 shows the magnitude response of a length n = 24 bandpass filter designed via
this formulation, and using the algorithm described later in this paper. The first stopband is
the interval [0, 0.27] (radians-per-sample), with an upper bound constraint of —13.2dB. The
passband is the interval [0.257, 0.457| (radians-per-sample), with passband gain constrained
to £0.5dB. The second stopband is the interval [0.527, 7] (radians-per-sample), with an
upper bound constraint of —23dB. We minimize the weighted sum of the two stopband
squared errors, with weights inversely proportional to the stop band widths. The problem

13



can be formulated in terms of the filter coefficients h as
0.2 . s .
minimize  (1/(0.27)) / |H (e7%)[2dw + (1/(0.48) / | H (e7)[2dw
0 0.52

subject to 20log;, |H (e/¥)| < —13.2, w € [0,0.27]
—0.5 < 20log;, |H ()] < 0.5, w € [0.25m,0.457]
20logo |H(e™)] < =23, w € [0.52, ).

We should mention that the conditioning of the matrices A(«, 5) appears to rapidly deterio-
riate with increasing n. Similar numerical problems were observed with the bandpass filter
design formulation of [GHNV00a].

4.4 1IR magnitude filter design

The techniques described in the previous paragraph are readily extended to magnitude design
of infinite impulse response (IIR) filter design, i.e. filters with a transfer function

H(z) = ap+a;z ' + ---+anz’".
bo+ bzt bype™
The design variables are the coefficientsd a;, b; € R. For example, we can design a lowpass

IIR filter with maximum stopband attenuation, subject to peak constraints on the magnitude
response in the passband, by solving

minimize  sup,c(,, . |4 ()]

subject to 1 —6 < |H(e)| <1+6, w € [0,w
b"h=1.

The variables are a € R*™' and b € R™"'. The problem data are the passband limit w,, the
stopband limit ws, and the allowable passband ripple a. The equality constraint is added to
normalize the solution.

This problem is not convex in the variables a and b, but can be reformulated as a quasi-
convex problem via the nonlinear change of variables described in §4.2. If we define u € R™" ™
and v € R™™ as the autocorrelation coefficients associated with a and b, respectively, the
problem can be reformulated as

minimize 7y

subject to (1 —60)?V(w) < U(w) < (1+40)*V(w), w € [0,w)]
—V(w) <U(w) <AV (w), w € |[ws, 7]
Vo = 1
v>=0, u=0

or equivalently (if for simplicity we assume m = n),

minimize 7y

subject to (1 —0)2A(0,w,)v <X A(0,wy)u < (1 +6)2A(0,w,)v
—yA(ws, m)v R Aws, m)u < yA(ws, T
Vo = 1
v>0, u>0
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where the matrices A(0,w,) and A(ws, ) are constructed as described in the appendix. This
is a quasiconvex problem with variables u, v and ~.

As in §4.2, it may be necessary to replace the constraint v > 0 with v > d e, in order to
avoid poles on or very close to the unit circle.

5 Cone programming

In the remainder of this paper we will use the cone programming framework as a standard
description of a general convex optimization problem. A cone program (CP) is defined as

minimize ¢’z
subject to Fix+g¢;, 2k, 0, i=1,...,L (21)
Ax = b,

where the optimization variable is z € R"™ and the problem parameters are ¢ € R", F; €
R™*" g, € R™, A € RP*", and b € RP. The inequalities are generalized inequalities
with respect to closed, pointed, and solid convex cones K;, i.e., Fix + ¢g; <k, 0 means
—Fix — g; € K; (see [NN94, §4.2], [BV99], [LSZ00]). Without loss of generality we can
assume that Rank A = p and that

Rank | FI Ff .- Ff AT ]=n

The most commonly used cones in cone programming are the nonnegative real axis
R, = {z € R | x > 0}, the positive semidefinite cone, and the second-order cone L,.; =
{(z,t) | x € R",||z|| < t}. However, cone programming is in fact very general, and any
convex optimization problem can be expressed as a cone program (see [NN94, p.103]).

The examples in §4 are all readily expressed as cone programs as follows. Problem (11)
can be reformulated as

minimize

1/2 -
R @)

t
subject to [
x

Y

0
where t is an auxiliary variable, i.e.,

1/2 N
[ W (tx 7 ] ZLnyy 0= ”Wl/Q(x - <t
To solve problem (14) we can solve a sequence of feasibility problems with (scalar) lin-
ear inequalities (i.e. inequalities with respect to the nonnegative real axis) and generalized
inequalities with respect to the cone of finite autocorrelation sequences. Problem (20) is
already a cone program.

Efficient interior-point methods for solving cone programs with scalar linear inequalities,
linear matrix inequalities (i.e. with respect to the positive semidefinite cone), and second-
order cone constraints can be found in the literature on linear, semidefinite, and second-order
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cone programming. In this paper, we focus on special techniques for problems where one or
more of the cones K, are autocorrelation cones.

We first briefly review the general theory on duality and interior-point methods for cone
programming. More details can be found in [NN94, BV99|. In §6 we discuss an efficient
method for problems with autocorrelation cone constraints.

5.1 The dual cone program

We can associate with the cone program (21) the dual cone program

L
maximize »_ gpzx— b v
k=1
L 23
subject to Y Flzy+ A"v+c=0 (23)
k=1

ZktKi*Oa kZl,...,L,
where K is the dual cone of K, i.e.,
Kf={zeR™ | 272> 0forall z € K}

We refer to (21) as the primal problem of the (dual) cone program (23).

It can be shown that if p* and d* are the optimal values of (21) and (23) respectively,
then p* > d*. Moreover, p* = d* if the primal or the dual problem is strictly feasible.

As an example, the dual of problem (22) is

maximize 7FLWY2y
subject to —WY2u—2=0, v=1

Uu
lU]tL;+20a Zt*oa

where the variables are v € R™', v € R, and z € R""". The dual cone L} 4o of the
second-order cone is itself, so the problem can be written more compactly as

maximize —77z
subject to ||W~2z|| < 1
z 7=, 0.

5.2 Logarithmic barrier functions

Let K C R™ be a closed, pointed, and solid convex cone. A logarithmic barrier function for
K is a function 9 : R™ — R with the following properties:

e dom1 = int K and ¥(y) — oo as y € int K approaches the boundary of K

e ) is smooth and strictly convex
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e there exists a constant 8 > 0 such that

P(sy) = ¥(y) — blogs
for all y € int K and all s > 0. The parameter @ is called the degree of .
It can be shown that for all y € int K,

Vip(y) <x« 0 (24)

and
y' Vip(y) = —0. (25)
In practice, some additional properties are necessary or desirable. It is important that ¢) and
its first and second derivatives can be cheaply evaluated. Secondly, polynomial worst-case
complexity results for barrier methods have only been developed under the assumption that
the barrier functions are self-concordant, i.e. satisfy a certain condition involving second and
third derivatives [NN94].
Examples of self-concordant logarithmic barriers include the function ¢ (y) = —logy,
which is a logarithmic barrier function for the nonnegative real axis and has degree 6 = 1,
Y(Y) = —logdet Y, which is a logarithmic barrier function for the positive semidefinite cone

K={ves' |y =0}

and has degree § = I, and ¥(y,t) = —log(t? — yTy), which is a logarithmic barrier for the
second-order cone, with degree 6 = 2.

5.3 Dual barrier method

The dual barrier method for solving (21) applies when the problem (21) and its dual (23)
are strictly feasible. It is based on the Sequential Unconstrained Minimization Technique
(SUMT) [FM68] and relies on the following observation.

Let v; be a logarithmic barrier function for the dual cone K in problem (23), with degree
0;. Consider the problem of minimizing a weighted sum of the dual objective in (23) and the
dual barrier functions

L L
minimize ¢(— Y gf2x + 0 V) + D Yr(zk)
k=1 k=1 (26)

L
subject to Y Flzz+A'v+c=0
k=1

where ¢ > 0 is a parameter. It can be shown that the minimum is attained and that the
minimizer (zy,..., 2, V) satisfies the following optimality conditions:

—tgk—i-Vl/Jk(zk)—Fky:O, k=1,...,L, tb—AyZO (27)
for some y € R?. We also have Vi (z;) <k, 0 (by the general property (24)), and therefore

Fe(y/t) + gx <k, 0, A(y/t) =b.
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In other words, x = y/t is strictly feasible for the primal problem (21). Furthermore, using
the property (25) we can evaluate the duality gap between this primal feasible point x = y/t
and the minimizer (zi,...,zr,v) of (26), i.e. the difference between the primal objective
evaluated at = and the dual objective evaluated at (zi,..., 21, v):

" (y/t) — ngzk+bT Z——szV?/fk k)

k=1

Zﬁk

This allows us to place a bound on how suboptimal x = y/t is:

L
Z g,fzk + le/) =
k=1

r—p<cz— (-

?g-/\
gl
s

where p* is the optimal value of (21). In summary, we can find primal feasible points with
'z — p* < ¢, by minimizing (26) with ¢ > ", 6;/e. Problem (26) is a smooth, convex
optimization problem with equality constraints, and can be efficiently solved using Newton’s
method.

The dual barrier method is based on this idea, but solves (26) for a sequence of increasing
values of ¢ until ¢ > 3, 6; /€, where € is the desired accuracy. This often requires a smaller
total number of Newton iterations than solving (26) directly for t = Y, 0y /€.

Dual barrier method

given tolerance ¢, initial ¢ > 0, u > 1.

repeat
1. Calculate the solution (z1,..., 25, v) of (26).
2. Determine z by solving Ax = b, Fyx = —gr + Voe(2k)/t, k=1,..., L.
3. If 3, 0/t < €, return x; otherwise set t = ut and go to step 1.

The minimization in step 1 is usually implemented using Newton’s method with a back-
tracking line search. It requires a strictly feasible starting point (z1,..., 2, v) in the first
iteration. In subsequent iterations we can use the previous minimizer as starting point. In
step 2 we solve x from an overdetermined set of linear equations, that is guaranteed to have
a solution if (21, ..., 21, ) satisfies the optimality conditions (27). The parameter y in step 3
controls the rate at which we increase ¢. Typical values are p = 20, ..., 50.

The complexity of the barrier method is dominated by the cost of calculating the Newton
directions (Azy, ..., Az, Av), which are given by the solution of the set of linear equations
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6 Dual barrier for autocorrelation cone constraints

In this section we apply the dual barrier method to problems of the form (21) and (23),
where some of the inequalities are with respect to the autocorrelation cone. This requires
a logarithmic barrier for the dual cone, and efficient methods to evaluate its gradient and
Hessian.

Recall from our discussion of the dual cone C; ; in §2.2 that z =, 0 if and only if

220 21 zZ9 Zn
21 2Z0 21 Zn—1 n
Fz)=| 2 = 2% 2 | =Y z(EF+ (BT =0, (28)
k=0
| Zn  Rp—1 Z<p—2 2ZO i
where the matrices E* are defined in (4). We will use the function
¥(z) = —logdet F(z2), (29)

with domain domv = {z | F'(z) > 0}, as a barrier function for the dual cone C; . This
is the standard log-det barrier for the cone of positive semidefinite matrices, and it is well
known that this function is convex and self-concordant. It is also logarithmic with degree
n + 1, since

V*(sz) = Y*(s) — (n+1)logs
for z <, 0 and s > 0. For future reference, we note that the first and second derivatives of
1 are given by

Vi(2); = = Te((B + (B))1)F(2) ') = -2 Te(EF(2) 1), (30)
and

Vi) = Te(F(z) (B + (B))F ()7 (B + (B)1)
= 2Tr(E'F(2)7'E'F(2)™") + 2 Tx(E'F(2) " (E)"F(2)™")

(31)

fore,7=0,1,...,n.
Note that for general (dense, unstructured) matrices A; € S
the function

("+1), the cost of evaluating

—logdet(z0Ao + 2141 + - - + 2 Ay),

and its gradient is O(n3) flops, and the cost of evaluating the Hessian is O(n*) flops. In
fact the cost of evaluating the Hessian in barrier methods for semidefinite programming
often dominates the cost of solving the Newton equations. The purpose of this section is to
describe an algorithm for evaluating the barrier 1(z) and its gradient in O(n?) flops, and
the Hessian in O(n?) flops, by taking advantage of the Toeplitz structure of F(z).
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The Levinson-Durbin algorithm

The Levinson-Durbin algorithm allows us to efficiently calculate the Cholesky factorization
of F(z)7!. We write the Cholesky factorization as

F(2)™' = RR"

where the matrix i i

Too Tor To2 -+ Tom—1 Ton

0 71 7112 - -1 Tin

0 0 rog - T2n—-1 Ton

R =
0 0 0 o Tn—1n—1 Tn—1,n

. 0 0 o --- 0 Tnn |

is upper triangular with positive diagonal elements. We denote the kth column of R as 7y
and the kth column flipped upside down and shifted up over n — k positions, as 7:

fk = (Tklc, Tk—l,k;'rk—Q,lc; ceey TOk,O,...,O).
The algorithm proceeds as follows.

Levinson-Durbin algorithm

Too = 1/\/220
for k=0ton—1{

1
Thk+1 = ﬁ(
1

Each new column 74, is constructed as a linear combination E7y, (i.e. the previous column
7y, shifted down over one position) and 7. It can be shown that || < 1 if F(z) > 0.
From the Cholesky factors we immediately obtain the value of the barrier function

Ery + ay7y) where oy, = —r2” Ey,

Y(z) = —logdet F(2) =2 log .
k=0

The cost of one iteration of the Levinson-Durbin algorithm is O(n) flops, so the total cost
is O(n?). The algorithm therefore provides a very efficient way of evaluating the barrier
function . Below we examine the cost of calculating the gradient and the Hessian of ).

Formulas for the gradient and Hessian of 1

We start by rewriting expressions (30) and (31) in terms of the Cholesky factors of F(z)~:
Vi(z); = —2Tr(RTE'R)

n
= -2 Z ’I‘EEJT]C
k=0
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V3)(2);; = 2Te(RTE'RRTE'R) +2Tr(RTE'RRTE R)

= 23 ((FER)OT B + (LB 0 B )

k=0 =0
= 2 Z Z (ri E'r)(r] E'ry + 1} E'r)).
k=0 =0
More compactly,
Vi(z) = -2 Zc (k,k) (32)
V() = 2 > clk +c(k, )7, (33)
k=0 =0

where c(k, 1) € R"™"! denotes the crosscorrelation between the vectors 7, and ry, i.e. a vector
with components

ci(k, ) =r{ E'r, = Zrk,ﬁzrl], i=0,1,...,n

The cost of a straightforward evaluation of the expressions (32) and (33) is O(n?®) flops and
O(n*) flops, respectively. It takes O(n®) flops to calculate the autocorrelation vectors c(k, k)
by working out the inner products in the definition, and the addition in (32) costs O(n?)
flops. Evaluating all crosscorrelation vectors c(k,l) would take O(n?) flops, and the sum
in (33) requires another O(n?) flops.

We now outline a more efficient method based on the discrete Fourier transform (DFT).
The DFT is defined as follows. We define a complex matrix W e CV X("“), where N >
2(n+ 1), and with elements

I/Vikze—ik(Qm/—_l/N)’ i=0,...,N—1, k=0,...,n.

(The choice of N is not important for our present purposes, as long as N > 2(n+1); we can

assume that N = 2(n + 1). In practice, if we use the fast Fourier transform to implement

the DFT, we choose for NV the smallest power of two greater than or equal to 2(n + 1).)
The DFT of a vector z € R™ is the vector X € CV, defined as

X =Wuz.

(More precisely, X is the DFT of the N-vector obtained by appending N —n — 1 zeros to
x.) The cost of evaluating the DFT or the inverse DFT is O(nlogn) flops (assuming that
N = 0(n)).

We now return to the expressions for the gradient and Hessian in (32) and (33). Let
R = Wry, be the DFT of r,. It is well known that

1 —
c(k,l) = NW*(R,C o Ry)
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where R; denotes the complex conjugate of R; and A o B denotes the Hadamard product of
two matrices or vectors A and B ((A o B);; = A;;Bi;) (see [0S89, §8]). We therefore have
the following identities:

=2 ek k) = —~W*Y" Ry o R, (34)
=0 N k=0

and

V() = 233 ek, )(elh, ) + el k)"
k=01=0
2 n n

= N2W*kzz RkORl RkORl'FRkORl)*W
=01=0

= W (S i) o (5 R0 (5 R o (5 Ry ) W (39

k=0

The formulas (34) and (35) suggest a much more efficient way of evaluating gradient and
Hessian. Calculating the gradient from the vectors Ry requires only O(n?) flops, while
calculating the Hessian via (35) takes O(n?) flops.

Summary

In summary, the proposed algorithm for evaluating the dual barrier function v(z), its gra-
dient V1)(z) and Hessian V?1(z), proceeds as follows:

1. calculate the Cholesky factorization F'(z)~! = RRT via the Levinson-Durbin algorithm
(O(n?) flops)
2. the value of the barrier function is given by 9(z) = 2 Y} _,log ik

3. choose an integer N > 2(n + 1) (for example, the smallest power of 2 greater than
2(n + 1)), and calculate the DFTs Ry, of the columns of R (O(n?logn) flops)

4. evaluate the gradient via the expression (34) (O(n?) flops)

5. evaluate the Hessian via (35) (O(n?®) flops)

The total cost is O(n?).

We note that several further improvements are possible. For example, we can eliminate
step 3 if we adapt the Levinson-Durbin algorithm so that it directly computes the DFTs Ry
rather than the vectors r;. Such a modification is straightforward, using basic properties of
the DFT. Other possible improvements of the basic algorithm would take advantage of the
fact that z and R are real, both in the implementation of the Levinson-Durbin algorithm
and the DFT. Finally, we could speed up the formation of the gradient and Hessian, by using
the recursion that relates the vectors Ry.

We also point out that the O(n*) to O(n?) reduction in complexity results from the use
of the DFT in forming the Hessian, and not from the application of the Levinson-Durbin
algorithm. In fact, for numerical reasons, a standard Cholesky algorithm (with a cost of
O(n®)) flops might be preferable. The Levinson-Durbin algorithm is interesting when only
the gradient is needed, for example, in line searches.
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7 Numerical results

The numerical results in this section were obtained using a laptop computer running the
Windows XP operating system and equipped with a 1GHz Pentium III processor and 256 MB
of RAM. The Matlab results were obtained using Matlab version V12.

The C and C++ codes were compiled using Microsoft Visual C++ version 6.0. External
libraries were used for Fourier transform and linear algebra operations. The FFTW library
version 2.1.3 was used for the Fourier transform operations (available at www.fftw.org). The
library was compiled from the C source code. BLAS and Lapack version 3 libraries were
used for the linear algebra operations (available at netlib.org). These libraries were compiled
from the Fortran source code using Digital Visual Fortran version 5.0. No attempt was made
to optimize the FFTW, BLAS or Lapack libraries for the computer architecture.

Dual barrier evaluations

Table 1 compares the performance of the fast O(n?®) algorithm for evaluating the Hessian of
the barrier, with a straightforward (O(n?)) evaluation, as used in most general-purpose SDP
solvers.

The middle column shows the CPU times for the fast algorithm as a function of n. The
algorithm was implemented in C++ with a Matlab mex-file interface. FFTs of length N
were used, where N is the smallest power of two greater than 2(n + 1). This explains the
jump in CPU time when the problem size exceeds a power of two.

The right column shows the CPU times required for the same evaluations using the
routines of the general purpose SDP solver SP [VB94|, which is implemented in C with calls
to BLAS and Lapack libraries. The elements of the Hessian (31) are computed as follows. An
efficient Fortran routine based on level 2 BLLAS is used to perform the congruence operations

, AT
Fy=F(z)" (EH— (&) )F(z)_l, i=0,....n
which takes O(n*) operations. We can then form the second derivatives as
V2(2)i; = Te((E' + (BY)T)Fy) = 2 Te(E'E}),  4,j=0,...,n,

in O(n?) operations, by adding the elements on the ith diagonal of F]
The results clearly demonstrate the gain in efficiency achieved by the fast algorithm of §6.

Projection on the autocorrelation cone

Table 2 lists typical CPU times required for solving (8). The results for each n are averaged
over five randomly generated vectors 7. The CPU time per Newton iteration is more relevant
than the total CPU time, because we used a basic implementation (taking 69 Newton itera-
tions on average) of the dual barrier method, with calls to the C++ code implementation of
the algorithm of §6 for evaluating the barrier, gradient and Hessian. A more sophisticated
interior-point method, with the same optimized code for evaluating the barrier function,
would require fewer iterations, and roughly the same amount of time per iteration.
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O(n?) algorithm | O(n*) algorithm

n+1 | CPU time (sec.) | CPU time (sec.)
100 0.11 3.06
200 2.54 04.34
300 15.24 481.94
400 20.29 1572.08
500 25.48 3896.21
600 125.32 8133.43
700 142.05 15062.33
800 158.41 28805.36
900 178.14 41270.38
1000 195.35 62968.16

Table 1: CPU times for evaluating the barrier, gradient and Hessian of the dual
barrier using the fast method presented in §6 and a straightforward method as used
in general-purpose SDP solvers.

Note that the CPU times per iteration listed in Table 2 are about the same as the CPU
times of Table 1. Indeed, assembling the Hessian of the barrier function dominates the
complexity of one Newton iteration in the dual barrier method. (The CPU times listed in
Table 1 are actually slightly higher than the times per iteration in Table 2 because they
include overhead for memory allocation. This overhead is only needed in the first iteration
of the barrier method, so in Table 2 it is averaged out over many iterations.)

These results illustrate that exploiting problem structure allows us to solve much larger
problems than via the SDP embedding and general-purpose SDP solvers. Note, for example,
that for n = 600 the SDP formulation (10) of this problem involves about 180,000 variables.

8 Conclusions

Semidefinite programming problems in system and control are often derived from the Kalman-
Yakubovich-Popov (KYP) lemma. These LMIs involve an auxiliary matrix variable, intro-
duced to express a semi-infinite frequency-domain inequality as a convex constraint in a
finite-dimensional space with a finite number of variables. The number of auxiliary variables
introduced this way is often very large compared to the number of original optimization
variables. This has important consequences for the computational efficiency of interior-point
methods, since the amount of work per iteration grows at least as the cube of the number
of variables. For this reason, several researchers have recently proposed using cutting-plane
methods as an efficient method to take advantage of the specific structure in LMI problems
derived from the KYP lemma (see, for example, [Par00, Chapter 3]). In this paper we have
shown for a specific constraint (the LMI representation (6) follows from the KYP lemma),
that the same goal can be achieved using interior-point methods. In a typical application
(such as problem (11)), the cost of applying a general-purpose SDP solver to the SDP derived
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n+ 1 | total time (sec.) | time/Newton iter. (sec.)
100 5.3 0.13
200 123.8 2.47
300 780.1 14.56
400 1510.6 19.27
500 2556.6 24.12
600 9599.2 114.28

Table 2: CPU times for solving the projection problem (8) using the dual barrier
method. The second column gives the total CPU time; the right column gives the
CPU time per Newton iteration. For each value of n the average over 5 randomly
generated problem instances is given.

from the KYP lemma is O(n®) flops per iteration. Using the implementation described in
this paper, the complexity is reduced to O(n?®) per iteration. This reduction in complexity
results from two observations. First, the number of variables in the dual problem is usually
much smaller than in the primal problem, so the complexity of solving the dual problem
is lower. Secondly, when solving the dual problem, one can take advantage of the Toeplitz
structure in the dual LMI constraints.

As an interesting topic for future research, we can mention the possibility of developing
primal or primal-dual methods (for example, using the primal-dual methods for nonsym-
metric cones developed by Tungel [TunO1]). A suitable logarithmic barrier for the (primal)
autocorrelation cone is the Legendre transform of the dual barrier v, which is defined as

o(z) = Sgp(—xTz —¥(2)),

for z > 0. It follows from [NN94, §2.4] that ¢ is a logarithmic and self-concordant barrier
function for the autocorrelation cone. Although it is not clear what the most efficient method
is to evaluate ¢, it can certainly be evaluated numerically, by maximizing —z%z — 1 (z) over
z using Newton’s method, at a cost of O(n?) operations per Newton iteration. This allows us
to implement a primal barrier method, with a similar gain in efficiency over general purpose
SDP methods, as the dual method described in this paper.
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A LMI characterization of autocorrelation sequences

In this appendix, we prove the two LMI characterizations of autocorrelation sequences given
in §2. We give two different proofs, although the results are equivalent, as mentioned in §2.

First form

We show that z € C, 1 if and only if there exists a positive semidefinite Y € S™*! such that
z =Tr E*Y for k=0,1,...,n.
The first part is obvious. Assume z € C,,+1. We can rewrite the definition (1) as

oy =y Efy =Tr E*yy", k=0,...,n,

i.e., (3) holds for Y = yy”.
Conversely, suppose that there exists a Y = Y7 = 0 that satisfies (2), i.e.,

z,=TrE*Y, k=0,...,n, Y=YT>0. (36)
One can verify that for any z € C,
To+zi(z P+ 2)+a(z P+ )+ a2 "+ 2") =Tr ZY

where Z is defined as

1 27! -2 27 ]
z 1 271 7z (n-1)
7122 =z 1 z—(n=2)
I Z'n Zn—l Zn.—2 1 ]

For z = €/* the matrix Z is Hermitian positive semidefinite. By assumption Y > 0. Therefore
the inner product Tr ZY > 0 for z = /%, i.e.,

X(w) =9+ .Il(e_jw -+ @jw) + .T2(6_2jw + €2jw) N xn(e—njw + 6njw) >0

for all w. Therefore x € Cp, 1.

Second form

We show that € C,1 if and only if there exists a P such that the LMI (6) holds.
First of all we can verify that for all w, and any P € S", the following identity holds:

eJnw
B ej(n—l)w
X(w)=[edne ednbe . giw ] (l fPT 5 ] _ lg ng :

0 oo
1

Therefore if P satisfies the LMI (6), then X (w) > 0 for all w.
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The converse can be derived from a theorem of alternatives for semidefinite programming
(see [BVO1, Theorem 3]), which states that if the LMI is infeasible, then there exists a
Z € 8™ such that Z > 0,

0 =z
fT

Ter <0 (37)

and [ I 0]2[%]:[0 In]ZlIi], (38)

i.e., the upper-left n x n block of Z is identical to its lower-right n x n block. In other words,
Z is Toeplitz. Let us write Z as

220~ 29 Zn

21 220 21 Zn—1

7 = 22 21 229 Zn—2
L Zn  Ap—1 Ap—2 220 i

We know that Z > 0 and, from (37),
To2o +T121+ - Tp2, <O

Now assume zx is a finite autocorrelation sequence, i.e., x; = >, ¥i¥x+i- LThen we have a

contradiction:
n

(1/2)y"Zy = Z Zk(ni Yillirk) = i z2prr < 0

k=0  i=0 k=0
and on the other hand, Z > 0, i.e., yT Zy > 0. In other words, if the LMI (6) is infeasible,
then & Cp1q.
Connection with the KYP-lemma

The Kalman-Yakubovich-Popov lemma [AMT79] states that a transfer function H = C'(2I —
A)"'B + D with A stable, (A, B) controllable, (A4, C) observable, and D + DT > 0 satisfies

H(e™)+ H(e /) >0
for all w, if and only if there exists a P € S™ such that

P—ATPA Cct — ATPB
C—-B"PA D+ DT - B'PB

This reduces to the LMI (6) if we take

|0

0
09 . 0 0 0
A= : eR”™, B=|:|eR" Cz[mn Tp_1 T :vl]
0 0 - 1 0 0
0 0 - 01 1
0 0 00 Lt
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and D = x4/2, for which
. 1 . .
H(eY) = %0 + T1€ i T

(see [WBV96, AHDT74]).

B Representing spectral mask constraints
We have shown in §4.3 that the constraint
X(w)>0, we€la,pl, (39)

where 0 < o < § < m, can be expressed as a generalized linear inequality A(c«, 8)z > 0,
where A(a, ) € ROTX®HD depends only on a and 3. (Some authors refer to (39) as a
spectral mask constraint [DLS00].) In this appendix we describe a method for constructing
A, B).

Recall that y = A(«, 8)z is the linear transformation defined by

xo + 221p1(t) + - - - + 2x,pp(t) = yo + 2y1p1(at — b) + - - - + 2y,pu(at — b),

where a = 2/(cosa — cos 8) and b = (cosa + cos )/(cosa — cos ), and pi(t) is the kth
Chebyshev polynomial.
The matrix A(«a, ) must satisfy

[ polt) [ polat —b) |
2p1 (1) 2p1(at — b)
2po(t) | = Ao, B)T 2ps(at — b)

I 2p7;(t) | I 2pn(a't —-b)

We can calculate A(a, 3) as A(a, 3) = C~'D where C and D are defined by

[ po(t) 1 po(at — b) 1
2p1 (t) t 2p1 (at - b) t
2p2(t) | = DT | ¥ |, 2pa(at —b) | =T | 2
| 2pn(t) | i | 2pn(at —b) | i
The columns of D = [dy d; --- d,] can be constructed recursively as
[ 1] [ 0 ] [ —2 ]
0 2 0
do=101], di=|01|, do= 41, dy=2Fdy_1 —dso, k=3,...,n,
| 0 | 0 | 0|
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where E is the unit-shift matrix defined in (4). This follows from the fact that po(t) = 1,
p1(t) = t, and from the recursion

pr(t) = 2tpp-1(t) — pe—2(t), k=2,...,n.

Similarly, the columns of C'=[¢y ¢; - -- ¢, can be constructed as
(1] [ —2b ] [ 462 — 2 ]
0 2a —8ab
=190 = 0 |, ¢= 4a? , ek =2(aE—=bl)cg_1—ck2, k=3,...,n.
| 0 | 0] 0]
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