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Abstract

An algorithm is presented for topology selection in graphical models of autoregressive
Gaussian time series. The graph topology of the model represents the sparsity pattern of
the inverse spectrum of the time series and characterizes conditional independence relations
between the variables. The method proposed in the paper is based on an ℓ1-type nonsmooth
regularization of the conditional maximum likelihood estimation problem. We show that
this reduces to a convex optimization problem and describe a large-scale algorithm that
solves the dual problem via the gradient projection method. Results of experiments with
randomly generated and real data sets are also included.

Keywords: topology selection, graphical models, convex optimization, time series

1 Introduction

We consider graphical models of autoregressive (AR) Gaussian processes

x(t) = −
p
∑

k=1

Akx(t− k) + w(t), w(t) ∼ N (0,Σ) (1)

where x(t) ∈ Rn, and w(t) ∈ Rn is Gaussian white noise. A graphical model of the time series is
an undirected graph with n nodes, one for each component xi(t), and an edge connecting nodes i
and j if the components xi(t) and xj(t) are conditionally dependent, given the other components
of the time series. The conditional independence property has a simple characterization (which
holds for general Gaussian stationary processes) in terms of the spectrum of the process: xi(t)
and xj(t) are independent, conditional on the other n− 2 components of x(t), if and only if

(S(ω)−1)ij = 0

for all ω, where S(ω) is the spectral density matrix [Bri81, Chapter 8], [Dah00]. This charac-
terization allows us to include the conditional independence relations in an estimation problem
by placing sparsity constraints on the inverse spectral density matrix.

In [SDV09] a convex optimization method was discussed for estimating the model param-
eters Ak, Σ from data, given the graph of conditional independence relations. The method is
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based on solving the convex optimization problem

minimize − log detX00 + tr(CX)

subject to Yk =
p−k
∑

i=0
Xi,i+k, k = 0, 1, . . . , p,

(Yk)ij = 0, (i, j) ∈ V, k = 0, 1, . . . , p,
X � 0.

(2)

Here C is the sample covariance matrix and V is the set of conditionally independent pairs of
variables. The optimization variables are X ∈ Sn(p+1) (the symmetric matrices of order n(p+
1)), Y0 ∈ Sn, and Yk ∈ Rn×n, k = 1, 2, . . . , p. Xij denotes the n× n subblock of X in position
i, j, where the indices i and j run from 0 to p. It was shown that if the sample covariance matrix
C is block-Toeplitz, then problem (2) is equivalent to the conditional maximum likelihood (ML)
estimation problem, and the ML estimates for Ak and Σ are easily obtained from the optimal
solution X. If C is not block-Toeplitz, the problem is a relaxation and in general not equivalent
to the conditional ML problem. However in practice, the relaxation often happens to be exact
[SDV09]. This will be discussed in more detail in §2.3.

In this paper we consider the more general problem of estimating the model parameters
and the topology of the graphical model. The topology selection problem can be solved by
enumerating all topologies, solving the ML estimation problem for each topology, and rank-
ing them via information-theoretic criteria such as the Akaike or Bayes information criteria;
see [Eic06, SDV09]. However this combinatorial approach is clearly limited to small graphs.
The goal of this paper is to present an efficient alternative based on convex optimization.

Topology selection for graphical models of time series is of interest in many applica-
tions [DES97, EDS03, SSSB05, GIF02, TLH+00, FMM+05, FHT08]. A common approach
is to formulate hypothesis testing problems to decide about the presence or absence of edges.
Dahlhaus [Dah00] derives a statistical test for the existence of an edge in the graph, based on
the maximum of a nonparametric estimate of the normalized inverse spectrum; see also [DES97,
EDS03, SSSB05, GIF02, TLH+00, FMM+05, FD03]. Eichler [Eic08] presents a more general
approach by introducing a hypothesis test based on the norm of some suitable function of the
spectral density matrix. A related problem was studied by Bach and Jordan [BJ04]. They use
an efficient search procedure to learn the graph structure from sample estimates of the joint
spectral density matrix.

If p = 0, the problem (2) reduces to

minimize − log detX + tr(CX)
subject to Xij = 0, (i, j) ∈ V (3)

with variable X ∈ Sn. (Throughout the paper we take the set of positive definite matrices as
the domain of the function log detX, so (3) includes an implicit constraint X ≻ 0.) Problem (3)
is known as the covariance selection problem, i.e., the problem of computing the ML estimate
of the inverse covariance matrix X = Σ−1 of a multivariate Gaussian variable N (0,Σ), subject
to conditional independence constraints (which, for a normal distribution, correspond to zeros
in the inverse covariance) [Dem72], [Lau96, Section 5.2]. Recently, new heuristic methods for
topology selection in large Gaussian graphical models have been developed. These methods are
based on augmenting the ML objective with an ℓ1-norm regularization term, i.e., on solving

minimize − log detX + tr(CX) + γ
∑

ij |Xij | (4)

(see [DRV05, MB06, BEd08, RWRY08, FHT08, Lu09, Lu10]). The optimization problem (4)
is convex but has n(n + 1)/2 variables (the elements of X) and is nondifferentiable, so it

2



can be challenging to solve when n is large. Several large-scale methods have been proposed.
Banerjee, El Ghaoui, and d’Aspremont [BEd08] apply a block coordinate descent method to
the dual problem. Each step of this method reduces to solving a quadratic program with
box constraints. They also apply Nesterov’s optimal gradient method [Nes05] to a smooth
approximation of (4). The authors of [FHT08] observe that the dual of the subproblems in
the coordinate descent algorithm can be regarded as a lasso-type problem and solved with a
method called graphical lasso. In [SR09] Scheinberg and Rish consider a coordinate ascent
method applied to the primal problem. A method based on column-wise updates is given
in [RBLZ08]. A related problem is explored in [YL07] where the authors make a connection
between (4) and more general determinant maximization problems [VBW98], and solve the
problem using interior-point methods. Lu [Lu09] observes that the dual of (4) is a smooth
problem and applies Nesterov’s method [Nes05] directly to the dual. The algorithm is further
extended in [Lu10] and compared with a projected spectral gradient method. Another closely
related paper is [DGK08] in which the gradient projection method is applied to the dual
problem.

The main purpose of this paper is to develop an efficient method for topology selection
in AR models, based on augmenting the estimation problem (2) with a convex regularization
term, similar to the ℓ1-norm regularization used in (4). We also discuss first-order methods for
solving the resulting large-scale and nondifferentiable convex optimization problem.

The paper is organized as follows. In §2 we review the definition of conditional independence
in time series and summarize the results from [SDV09]. In section 3 we set up the topology
selection problem as a regularized ML problem and discuss its properties. Examples and
applications are presented in sections 4 and 5. We conclude in section 6 with a discussion of
gradient projection algorithms for solving solve large instances of the regularized ML estimation
problem.

Notation Sn is the set of real symmetric matrices of order n. Sn
+ and Sn

++ are the sets of
symmetric positive semidefinite, respectively, positive definite, matrices of order n. Rm×n is
the set of m× n-matrices. Mn,p is the set of matrices

X =
[

X0 X1 · · · Xp

]

with X0 ∈ Sn and X1, . . . ,Xp ∈ Rn×n. The standard trace inner product 〈X,Y 〉 = tr(XTY ) is
used for the three vector spaces Sn, Rm×n, Mn,p. For a symmetric matrix X, the inequalities
X � 0 and X ≻ 0 mean X is positive semidefinite, resp., positive definite. Row and column
indices of submatrices in a block matrix start at 0. If X is a matrix with (block) entries Xij ,
then Xi:j,k:l will denote the submatrix formed by rows i through j and columns k through l:

Xi:j,k:l =











Xik Xi,k+1 · · · Xil

Xi+1,k Xi+1,k+1 · · · Xi+1,l
...

...
...

Xjk Xj,k+1 · · · Xj,l











.

The linear mapping T : Mn,p → Sn(p+1) constructs a symmetric block Toeplitz matrix from
its first block row: if X =

[

X0 X1 · · · Xp

]

∈ Mn,p, then

T(X) =











X0 X1 · · · Xp

XT
1 X0 · · · Xp−1
...

...
. . .

...
XT

p XT
p−1 · · · X0











. (5)
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The adjoint of T is a mapping D : Sn(p+1) → Mn,p defined as follows. If S ∈ Sn(p+1) is
partitioned as

S =











S00 S01 · · · S0p

ST
01 S11 · · · S1p
...

...
...

ST
0p ST

1p · · · Spp











,

then D(S) =
[

D0(S) D1(S) · · · Dp(S)
]

where

D0(S) =

p
∑

i=0

Sii, Dk(S) = 2

p−k
∑

i=0

Si,i+k, k = 1, . . . , p. (6)

A symmetric sparsity pattern of a sparse matrix X of order n will be associated with the
positions V ⊆ {1, . . . , n} × {1, . . . , n} of its zero entries. We assume (i, i) 6∈ V for i = 1, . . . , n,
i.e., the diagonal entries are not included among the zeros. PV(X) denotes the projection of a
matrix X ∈ Sn or X ∈ Rn×n on the complement of the sparsity pattern V:

PV(X)ij =

{

Xij (i, j) ∈ V
0 otherwise.

(7)

The same notation is used for PV as a mapping from Rn×n → Rn×n and as a mapping from
Sn → Sn. In both cases, PV is self-adjoint. If X is an r × s block matrix with i, j block Xij ,
and each block is square of order n, then PV(X) denotes the r× s block matrix with i, j block
PV(X)ij = PV(Xij). Similarly, PV(X) with X ∈ Mn,p denotes

[

PV(X0) PV(X1) · · · PV(Xp)
]

.

The subscript V in PV is omitted if the sparsity pattern is clear from the context.

2 Graphical models of autoregressive Gaussian processes

2.1 Conditional independence

Let x(t) be an n-dimensonal stationary zero-mean Gaussian process with spectrum S(ω):

S(ω) =

∞
∑

k=−∞

Rke
−jkω

where Rk = Ex(t+ k)x(t)T and j =
√
−1. We assume that S(ω) is invertible for all ω. Two

components xi(t) and xj(t) of x(t) are conditionally independent (i.e., conditional on the other
components of x(t)) if

(S(ω)−1)ij = 0

for all ω [Bri81, Dah00]. If we denote by V the set of index pairs i, j of conditionally independent
variables, then we can use the projection operator P = PV defined in (7) to express the
conditional independence relations as

P(S(ω)−1) = 0. (8)

In a graphical model of the process, the index set V is the set of missing edges in the graph.
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To apply this result to AR processes (1) we need to express the inverse spectrum in terms
of the model parameters. The notation will simplify if we first normalize the input covariance
and use the model

B0x(t) = −
p
∑

k=1

Bkx(t− k) + v(t), v(t) ∼ N (0, I), (9)

where B0 ∈ Sn
++ and Bk ∈ Rn×n, k = 1, . . . , p. If Σ is nonsingular, the two models are

equivalent, and related as B0 = Σ−1/2, Bk = Σ−1/2Ak for k ≥ 1. The inverse spectrum S(ω)
of the process (9) is a trigonometric matrix polynomial

S(ω)−1 = Y0 +
1

2

p
∑

k=1

(e−jkωYk + ejkωY T
k ) (10)

where Y0 =
∑p

l=0 B
T
l Bl, and Yk = 2

∑p−k
l=0 BT

l Bk+l for k = 1, . . . , p. If we define B =
[

B0 B1 · · · Bp

]

, we can use the operator D defined in (6) to express Yk as

[

Y0 Y1 · · · Yp

]

= D(BTB). (11)

The expression (10) shows that (S(ω)−1)ij is identically zero if and only if the i, j and j, i
entries of Yk are zero for k = 0, . . . , p. The conditional independence condition (8) is therefore
equivalent to a quadratic equation in the model parameters Bk:

P
(

D(BTB)
)

= 0. (12)

(Recall from the Notation section that if Y is a block matrix with square submatrices Yk of
order n, then P(Y ) denotes the block matrix with submatrices P(Yk).)

2.2 Conditional maximum likelihood estimation

We now consider the problem of estimating the model parameters B from an observed se-
quence x̃(1), x̃(2), . . . , x̃(N) of the AR process, subject to known conditional independence
constraints (12). In [SDV09] the estimation problem was formulated as the optimization prob-
lem

minimize −2 log detB0 + tr(CBTB)
subject to P(D(BTB)) = 0.

(13)

The matrix C ∈ S
n(p+1)
+ is a sample estimate of the covariance matrix, i.e., its blocks Cij ,

i ≤ j, are estimates of the covariances Rj−i = Ex(t+ j− i)x(t)T , calculated from the observed
sequence. Two choices of C are common. The first choice is the non-windowed estimate

C =
1

N − p
HHT , H =











x̃(p+ 1) x̃(p+ 2) · · · x̃(N)
x̃(p) x̃(p+ 1) · · · x̃(N − 1)
...

...
...

x̃(1) x̃(2) · · · x̃(N − p)











. (14)

With this choice the estimation problem (13) can be interpreted as a maximum likelihood
problem. Indeed, from (9), the conditional density of a sequence x(t1), x(t1 + 1), . . . x(t2),
given x(t1 − p), . . . , x(t1 − 1), is given by

(

detB0

(2π)n/2

)t2−t1+1

exp

(

−1

2

t2
∑

t=t1

x(t)TBTBx(t)

)

, (15)
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where x(t) denotes the n(p + 1)-vector x(t) = (x(t), x(t − 1), . . . , x(t − p)). From this it can
be shown that the cost function in (13) with C defined as in (14), is essentially the negative
conditional log-likelihood function of the observed sequence x̃(p+1), x̃(p+2), . . . , x̃(N), given
x̃(1), . . . , x̃(p). We therefore refer to (13) as the conditional maximum likelihood problem.
For AR processes, the conditional ML formulation is substantially simpler and more often
used than the exact ML formulation. Moreover, when the data length N is sufficiently large
compared to p, the difference between the exact and conditional ML formulations is small.

The second choice for C is the windowed estimate

C =
1

N
HHT , (16)

where

H =











x̃(1) x̃(2) · · · x̃(p+ 1) · · · x̃(N) 0 · · · 0
0 x̃(1) · · · x̃(p) · · · x̃(N − 1) x̃(N) · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · x̃(1) · · · x̃(N − p) x̃(N − p+ 1) · · · x̃(N)











.

The windowed estimate C is block-Toeplitz, and this guarantees several useful properties of the
resulting model B (for example, stability; see [SDV09]). In practice, the differences between
the windowed and non-windowed estimates are small when N ≫ p.

We will assume that C is positive definite. If n is small compared to N , this is a reasonable
assumption but not guaranteed to be true. (As a counterexample, assume x̃(1), . . . , x̃(n) are
the first n unit vectors and the remainder of the sequence is zero. The matrix C in (16) then
has rank n + p.) If C is not positive definite, it may be necessary to add a small multiple of
the identity. This is equivalent to a quadratic regularization term proportional to ‖B‖2F in the
objective of (13).

When there are no sparsity constraints in (13), the solution can be found by setting the
gradient of the cost function equal to zero, which gives











C00 C01 · · · C0p

C10 C11 · · · C1p
...

...
. . .

...
Cp0 Cp1 · · · Cpp





















B0

BT
1
...

BT
p











=











B−1
0

0
...
0











.

Written in terms of the original variables Σ = B−2
0 , Ak = B−1

0 Bk, this gives










C00 C01 · · · C0p

C10 C11 · · · C1p
...

...
. . .

...
Cp0 Cp1 · · · Cpp





















I
AT

1
...

AT
p











=











Σ
0
...
0











, (17)

with unknowns Σ = B−2
0 , Ak = B−1

0 Bk. The bottom p equations form a set of linear equations
from which A1, . . . , Ap can be determined. Plugging the solution in in the first equation gives
Σ. Later in the paper we will refer to the solution as the least-squares estimate because the
bottom p equations can be interpreted as normal equations for the least-squares problem

minimize tr(ACAT )

with variable A =
[

I A1 · · · Ap

]

. This method is also known as the covariance method
if C is the non-windowed sample covariance (14), and as the correlation method if C is the
windowed sample covariance (16) [SM97].
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2.3 Convex formulation

The optimization problem (13) is non-convex because of the quadratic equality constraint. A
convex relaxation is

minimize − log detX00 + tr(CX)
subject to P(D(X)) = 0

X � 0
(18)

with variable X ∈ Sn(p+1). The relaxation is exact, i.e., the two problems (18) and (13) are
equivalent, if the optimal solution X of (18) has rank n. In that case, the solution B of (18)
can be calculated by factoring X as X = BTB.

A condition for exactness of the relaxation follows from the dual problem of (18), which is

maximize log detW + n

subject to

[

W 0
0 0

]

� C +T(P(Z)),
(19)

with variables W ∈ Sn and Z ∈ Mn,p (see [SDV09] for the derivation). The variable Z is the
Lagrange multiplier associated with the equality constraint in (18); the slack matrix in the
inequality in (19) is the multiplier associated with the primal inequality X � 0. To find the
relation between primal and dual solutions, we first note that the primal and dual problems
are strictly feasible: X = I is strictly feasible in the primal problem (18), since by assumption
V does not contain any diagonal entries; in the dual problem Z = 0 and a sufficiently small
positive definite W are strictly feasible, because C ≻ 0 by assumption. From convex duality,
strict primal and dual feasibility imply that the primal and dual problems are solvable, and
that their optimal solutions are related by the optimality conditions

X−1
00 = W, tr

(

X

(

C +T(P(Z))−
[

W 0
0 0

]))

= 0 (20)

[BV04, chapter 5]. The second condition is known as complementary slackness between the
optimal X and the dual variable associated with the inequality X � 0. From these optimality
conditions, it can be shown that the relaxation is exact when the trailing principal submatrix
of order np in the matrix C +T(P(Z)) ∈ Sn(p+1) is positive definite at the optimum, i.e.,

(C +T(P(Z)))1:p,1:p ≻ 0. (21)

Under this condition, the rank of

C +T(P(Z))−
[

W 0
0 0

]

is at least np. Since X has order n(p + 1), the two conditions in (20) imply that the optimal
X has rank n.

In general it is difficult to guarantee a priori that the condition (21) holds at optimum.
However, when C is block-Toeplitz, then (21) can be shown to hold for all dual feasible Z. This
follows from the following easily established property of block-Toeplitz matrices: if V ∈ Sn(p+1)

is a symmetric block-Toeplitz matrix with n× n blocks Vij , and

V =

[

V00 V0,1:p

V1:p,0 V1:p,1:p

]

�
[

W 0
0 0

]
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for some W ≻ 0, then V is positive definite (see [SDV09, §3.3.3]). We therefore conclude that
for positive definite block-Toeplitz C (for example, the windowed sample covariance (16) or the
true covariance), the problems (13) and (18) are equivalent. For general non-block-Toeplitz C
(for example, the non-windowed sample covariance (14)), we cannot guarantee that (21) holds
at the optimum. However, we can note that the non-windowed sample covariance approaches a
block-Toeplitz matrix as N → ∞. It is therefore not surprising that even for the non-windowed
estimate, the relaxation is often exact, as was observed in the experimental results in [SDV09].

3 Topology selection via nonsmooth regularization

In the previous section we have described a convex formulation of the (conditional) ML esti-
mation problem with given conditional independence constraints, i.e., a given graph topology.
In many applications the topology is not known, and needs to be discovered from the data.
Information theoretic model selection criteria such as the Akaike, second-order Akaike, or
Bayes information criteria can be used for this purpose. They require enumerating all possible
topologies, solving the ML problem for each topology, and ranking the ML estimates according
to their information criterion score. These scores are defined as

AIC = −2L+ 2k, AICc = −2L+
2Nk

N − k − 1
, BIC = −2L+ k logN (22)

where L is the log-likelihood of the ML estimate, N is the sample size, and k is the effective
number of parameters. In our application, L is given by

L =
(N − p)

2
(log detX00 − tr(CX))

where X is the optimal solution of (18), and we use for k the total number of parameters in
the estimation problem,

k =
n(n+ 1)

2
− |V|+ p(n2 − 2|V|), (23)

where |V| is the number of conditionally independent pairs of variables. This topology selection
method based on information-theoretic criteria is feasible if the number of possible topologies
is not too large, but quickly becomes intractable even for small values of n. In this section and
the next we describe a more scalable approach based on a convex optimization problem that
extends the ℓ1-norm heuristic (4) for sparse covariance selection.

3.1 Regularized ML problem

In analogy with the convex heuristic for covariance selection (4), we can formulate a regularized
ML problem by adding a nonsmooth ℓ1-type penalty:

minimize − log detX00 + tr(CX) + γh(D(X))
subject to X � 0,

(24)

where γ > 0 is a weighting parameter. The penalty h : Mn,p → R is a convex function, chosen
to encourage a sparse solution X with a common, symmetric sparsity pattern for the p + 1
blocks of D(X). We will use the penalty function

h∞(Y ) =
∑

j>i

max

{

|(Y0)ij | , max
k=1,...,p

|(Yk)ij | , max
k=1,...,p

|(Yk)ji|
}

(25)
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i.e., a sum of the ℓ∞-norms of vectors of i, j and j, i-entries of the coefficients Yk. In the
examples (section 4) we will also discuss penalty functions defined as sums of ℓα-norms, with
α = 1, 2.

Regularization with a convex sum-of-norms penalty is a popular technique for achieving
sparsity of groups of variables. Examples from statistics are the composite absolute penalties
(CAP) [ZRY09] and the group lasso [YL06, KKK06]. When p = 0 and X ∈ Sn in (24)
the penalty term reduces to

∑

i>j |Xij | and we obtain problem (4), studied in [BEd08, Lu09,
FHT08], with the minor difference that we do not penalize the diagonal entries of X.

We now derive the dual problem of (24) which will be important in section 6. To simplify
the derivation we introduce a variable Y = D(X) and write the problem as

minimize − log detX00 + tr(CX) + γh∞(Y )
subject to Y = D(X)

X � 0.

If we use a multiplier Z ∈ Mn,p for the equality constraint Y = D(X) and a multiplier
U ∈ Sn(p+1) for the inequality X � 0, the Lagrangian of the problem is

L(X,Y,Z,U)

= − log detX00 + tr(CX) + γh∞(Y )− tr(UX) + tr(ZT (D(X) − Y )) (26)

= − log detX00 + tr((C +T(Z)− U)X) + γh∞(Y )− tr(ZTY ).

(Recall that the mappings T and D defined in (5) and (6) are adjoints, i.e., tr(ZT D(X)) =
tr(T(Z)X).) The dual function is the infimum of the Lagrangian over X and Y . We first
minimize over Y . The nonlinear penalty term does not depend on the diagonal entries of the
blocks Yk. The minimization over the diagonal entries of Yk is therefore unbounded below
unless

diag(Zk) = 0, k = 0, 1, . . . , p. (27)

The minimization over the off-diagonal part of the blocks Yk decomposes into independent
minimizations of the functions

−
p
∑

k=0

((Zk)ij(Yk)ij + (Zk)ji(Yk)ji) + γmax

{

|(Y0)ij |, max
k=1,...,p

|(Yk)ij |, max
k=1,...,p

|(Yk)ji|
}

for each element i, j with i > j. This expression is unbounded below unless

2|(Z0)ij |+
p
∑

k=1

(|(Zk)ij |+ |(Zk)ji|) ≤ γ, i 6= j, (28)

and, if this condition holds, the infimum over Y is zero. The result of the partial minimization
of the Lagrangian over Y can be summarized as

inf
Y

L(X,Y,Z,U) =

{

− log detX00 + tr((C +T(Z)− U)X) (27), (28)
−∞ otherwise.

Next, we carry out the minimization over X. The terms in X00 are bounded below if only if
(C + T(Z) − U)00 ≻ 0, and if this holds, they are minimized by X00 = (C + T(Z) − U)−1

00 .
The Lagrangian is linear in the other blocks Xij, and therefore bounded below (and identically
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zero) only if (C + T(Z) − U)ij = 0 for blocks (i, j) 6= (0, 0). This gives a third set of dual
feasibility conditions:

(C +T(Z)− U)00 ≻ 0, (C +T(Z)− U)ij = 0, (i, j) 6= 0, (29)

and an expression for the dual function

g(Z,U) = inf
X,Y

L(X,Y,Z,U) =

{

log det(C +T(Z)− U)00 + n (27), (28), (29)
−∞ otherwise.

The dual problem is to maximize g(Z,U) subject to U � 0. If we add a variable W =
C00 + Z0 − U00 and eliminate the slack variable U , we can express the dual problem as

maximize log detW + n

subject to

[

W 0
0 0

]

� C +T(Z)

p
∑

k=0

(|(Zk)ij |+ |(Zk)ji|) ≤ γ, i 6= j

diag(Zk) = 0, k = 0, . . . , p.

(30)

The variables are W ∈ Sn and Z ∈ Mn,p. When p = 0, the problem reduces to

maximize log det(C + Z) + n
subject to |Zij | ≤ γ/2, i 6= j

diag(Z) = 0,

Except for the equality constraint, this is the problem considered in [Lu09, DGK08].
If a sum of ℓα-norms

hα(Y ) =
∑

j>i

(

p
∑

k=0

(|(Yk)ij |α + |(Yk)ji|α)
)1/α

(31)

is used as penalty function in (24), the second constraint in the corresponding dual problem (30)
is replaced by

(

p
∑

k=0

(

|(Zk)ij|β + |(Zk)ji|β
)

)1/β

≤ γ, i 6= j

with β = (α− 1)/α.

3.2 Optimality conditions

The primal problem (24) is always strictly feasible (X = I is strictly feasible). The dual
problem (24) is strictly feasible if C ≻ 0 (we can take Z = 0 and W positive definite and
sufficiently small). It follows that the primal and dual problems are solvable, have equal
optimal values, and that their solutions are characterized by the following set of necessary and
sufficient optimality (or KKT) conditions.

Primal feasibility. X and Y satisfy

X � 0, X00 ≻ 0, Y = D(X).

10



Dual feasibility. W and Z satisfy

W ≻ 0, C +T(Z) �
[

W 0
0 0

]

,

p
∑

k=0

(|(Zk)ij |+ |(Zk)ji|) ≤ γ, i 6= j, diag(Zk) = 0, k = 0, 1, . . . p.

Zero duality gap. The Lagrangian evaluated at the primal and dual optimal solutions is
equal to the primal objective at the optimal X, Y , and equal to the dual objective
evaluated at the optimal W , Z. From (26), we have equality between the Lagrangian and
the primal objective if tr(UX) = 0. Therefore the complementary slackness condition

tr

(

X

(

C +T(Z)−
[

W 0
0 0

]))

= 0 (32)

holds at the optimum. Equality between the Lagrangian and the dual objective requires
that the primal optimal X, Y minimize the Lagrangian evaluated at the dual optimal
W , Z. Reviewing the derivation of the dual problem, we see that X00 minimizes the
Lagrangian if

X−1
00 = W. (33)

To express the conditions from the minimization over Y , we define

tij = max

{

|(Y0)ij |, max
k=1,...,p

|(Yk)ij |, max
k=1,...,p

|(Yk)ji|
}

.

Then we see that Y minimizes the Lagrangian if for all i 6= j, we either have

p
∑

k=0

(|(Zk)ij |+ |(Zk)ji|) < γ,

or we have
∑p

k=0(|(Zk)ij|+ |(Zk)ji|) = γ and

(Zk)ij = 0, |(Yk)ij | ≤ tij or (Zk)ij < 0, (Yk)ij = −tij or (Zk)ij > 0, (Yk)ij = tij

for k = 0, . . . , p.

The conditions (32)–(33) show that the optimal X has rank n under the same conditions as
for the problem with given sparsity pattern (18). If

(C +T(Z))1:p,1:p ≻ 0

then the optimal X has rank n, and this is always the case if C is block-Toeplitz. Under
these conditions, the optimization problem (24) is equivalent to a regularized (conditional)
ML estimation problem for the model parameters B:

minimize −2 log detB0 + tr(CBTB) + γh∞(D(BTB)).
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4 Examples with randomly generated data

Our interest in the regularized ML formulation (24) is motivated by the fact that the resulting
AR model typically has a sparse inverse spectrum S(ω)−1. Since the regularized problem
is convex, it is interesting as an efficient heuristic for topology selection. In this section we
illustrate several aspects of this approach using experiments with randomly generated data.
In section 5 we will apply the method to real data sets. Numerical algorithms for solving the
regularized problem (24) are discussed in section 6.

4.1 Method

We first explain in greater detail how we will use the results of the regularized ML problem
for model selection.

Choice of regularization parameter γ The sparsity in the inverse spectrum of the solu-
tion of the regularized ML problem is controlled by the weighting coefficient γ. As γ varies,
the sparsity pattern varies from dense (γ small) to diagonal (γ large). Several authors have
discussed the choice of γ in the context of covariance selection (i.e., heuristics based on solving
problem (4) or closely related problems). A common approach is to select γ via cross-validation;
see, for example, [FHT08, HLPL06, BEd08]. Meinshausen and Bühlmann [MB06] give explicit
formulas for γ based on a statistical analysis of the probability of errors in the topology (see also
[YL07, BEd08]). Asadi et al. [ARS+09] consider γ as a random variable and use a maximum
a posteriori probability (MAP) estimation to choose γ and the covariance matrix.

In the examples of this section we will use the following method for selecting γ. We first
compute the entire trade-off curve between the two terms in the objective of (24), i.e., between
the log-likelihood and the penalty function h∞(D(X)). The trade-off curve can be computed
by solving (24) for a number of different values of γ (see below). We collect the topologies
of the solutions along the trade-off curve, and solve the ML problem (18) for each of these
topologies. We then rank the models using the Bayes information criterion (BIC), as discussed
at the beginning of section 3, and select the model with the lowest score. In this approach,
the convex heuristic is used as a preprocessing step to reduce the number of topologies that
are examined using the BIC, and to filter out topologies that are unlikely to be competitive.

Tracing trade-off curves The trade-off curves are computed by solving (24) for a sequence
of values of γ. To obtain an accurate estimate of the curve with only a small number of values
γ we use a method which is illustrated in figure 1 for a generic trade-off between two convex
cost functions f1 and f2. We first solve the scalarized problem

minimize f1(x) + γf2(x) (34)

for two positive values γ1, γ2 near the opposite ends of the trade-off curve. This gives the
points labeled 1 and 2 on the trade-off curve. The values of γ1 and γ2 also define the slopes
of straight lines that support the trade-off curve at points 1 and 2. Since the trade-off curve
is convex, we can conclude that the curve between 1 and 2 lies somewhere in the shaded
triangular region. As γ3, we choose the value that corresponds to the slope of the straight line
between 1 and 2. Solving problem (34) with γ = γ3 gives point 3 on the trade-off curve and a
straight line that supports the curve at point 3. The trade-off curve between points 1 and 2
is now known to lie in the union of the two shaded triangles. Next, we solve the problem (34)
for a value γ4 corresponding to the slope of the straight line between points 1 and 3, and a
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Figure 1: Method for approximating the trade-off curve between two convex objectives.

value γ5 corresponding to the slope of the straight line between 3 and 2. In this example, we
obtain fairly accurate upper and lower bounds of the actual trade-off curve after solving five
scalarized problems (34).

Thresholding With a proper value of γ, the regularized ML problem (24) has a sparse
solution Y , resulting in a sparse inverse spectrum S−1(ω). When solved with a limited accuracy,
the entries of Y are not exactly zero. We will use the following method to determine the
topology from the computed solution.

We calculate the inverse spectrum S(ω)−1 and normalize it by scaling its rows and columns
so that the diagonal is one:

R(ω) = diag(S(ω)−1)−1/2S(ω)−1 diag(S(ω)−1)−1/2.

The normalized inverse spectrum R(ω) is known as the partial coherence [Bri81, Dah00]. Its
entries are between 0 and 1 in magnitude, and measure the conditional dependence between
the corresponding variables, after removing the linear effects from the other variables. In the
static case (p = 0), R(ω) reduces to the normalized concentration matrix. To estimate the
graph topology we compare the L∞-norms of the entries of R(ω),

ρij = sup
ω

|R(ω)ij | (35)

with a given threshold. (This thresholding step is similar to thresholding in other sparse
methods, for example the thresholded lasso and Dantzig estimators [Lou08].)

To simplify the interpretation we will use the same threshold value (10−1) in all the exper-
iments, i.e., we remove edge (i, j) from the graph if ρij ≤ 10−1.

4.2 Experiment 1

In the first series of experiments we generate AR models with sparse inverse spectra by setting
B0 = I and randomly choosing sparse lower triangular matrices Bk with entries ±0.5. The
random trials are continued until a stable AR model is found. The AR process is then used to
generate N samples of the time series. The model dimensions are n = 20 and p = 2.

Topology selection We first illustrate the basic topology selection method outlined above
using the correct model order (p = 2). The sample size is N = 512.

Figure 2 shows the trade-off curve between the penalty h∞(D(X)) and the log-likelihood
L(X). We calculate the inverse spectra (10) for the computed points on the trade-off curve,
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Figure 2: Trade-off curve between the log-likelihood L(X) and h∞(D(X)).

and apply a threshold to them (as explained above, by setting entries with ρij ≤ 10−1 to zero).
The resulting topologies are shown in figure 3. The patterns range from quite dense (small
γ) to very sparse (large γ). The sparsity of the densest solution (γ = 10−5) is identical to
the sparsity of the least-squares estimate (i.e., the solution of the equations (17) with C given
in (14) or, equivalently, the ML solution of (13) without the sparsity constraints). For each
of the nine sparsity patterns, we solve the ML problem subject to sparsity constraints (18).
We rank the nine solutions using the AICc and BIC scores defined in (22). Figure 4 shows
the two scores and the negative log-likelihood as functions of γ. The models that minimize
the AICc/BIC scores turn out to be the same in this example (the models for γ = 0.15) and
the corresponding topology is shown in figure 5 (left). Only seven entries are misclassified
(six entries are misclassified as zeros; one as nonzero). The sparsity pattern in the middle
is the topology estimated by thresholding the partial coherence spectrum of the least-squares
solution with the correct model order (p = 2). This pattern is computed by solving the ML
problem (13) without constraints, and then thresholding the partial coherence (using the same
threshold value 0.1 as in the other experiments). The difference between the two patterns
clearly shows the benefits of the nonsmooth regularization for estimating a sparse topology.
The sparsity pattern on the right of figure 5 is obtained from the covariance selection method
with ℓ1-norm regularization (i.e., by setting p = 0 in the regularized ML problem (24)) and
thresholding the partial coherence. Ignoring the model dynamics substantially increased the
error in the topology selection.

Comparison with other types of regularization To compare the quality of the sparse
models with the models obtained from other estimation methods we evaluate the Kullback-
Leibler (KL) divergence [BJ04] between the true and the estimated spectra as a function of
the sample size N for the following six methods.

1. ML estimation without conditional independence constraints (or least-squares estimate).
This is the solution of (13) without the constraints, and it can be computed by solving
the normal equations (17).
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Figure 5: Left. The sparsity pattern from the regularized ML problem with γ = 0.15. Middle.
The sparsity pattern estimated from the least-squares solution. Right. The sparsity pattern
from the regularized ML problem for a static model (p = 0). The blue squares are the correctly
identified nonzero entries (true positives). The red circles are the entries that are misclassified
as nonzero (false positives). The black crosses are entries that are misclassified as zeros (false
negatives).

2. ML estimation with conditional independence constraints determined by thresholding
the partial coherence matrix of the least-squares estimate (solution 1).

3. ML estimation with Tikhonov regularization and without conditional independence con-
straints. Tikhonov regularization (also known as ridge regression or ℓ2-regularization)
is widely used in statistics and estimation [HTF09, §3.4]. A Tikhonov-regularized ML
estimate is the solution of

minimize −2 log detB0 + tr(CBTB) + γ‖B‖2F .

The solution can be computed from the normal equations (17) with C replaced by C +
γI. The solution of this problem can therefore also be viewed as a ML estimate using
a perturbed sample covariance matrix C + γI. In the experiment, the value of γ is
determined by performing a five-fold cross-validation [HTF09, §7.10].

4. ML estimation with conditional independence constraints determined by thresholding
the inverse spectral density for the Tikhonov estimate (solution 3).

5. Regularized ML estimation with h∞-penalty. This is the solution of problem (24) with
penalty (25).

6. ML estimation with conditional independence constraints determined by thresholding
the inverse spectral density for the h∞-regularized ML estimate (solution 5).

The total number of variables in this example is n(n + 1)/2 + pn2 = 1010 variables. We
show the results in figure 6 in two different settings: with small sample sizes (N < 1010) and
with moderate to large sample sizes (N ≥ 1010). We can note that for small sample sizes N
the constrained ML estimates (models 2,4,6) are not better than the unconstrained estimates
(models 1,3,5), and much worse in the case of the Tikhonov-regularized estimates. This can be
explained by large errors in the estimated topology. For larger N the constrained estimates are
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(2) constrained ML estimate with topology estimated by thresholding solution 1, (3) ML
estimate with Tikhonov regularization, (4) constrained ML estimate with topology estimated
by thresholding solution 3, (5) regularized ML estimate with h∞-penalty, (6) constrained ML
estimate with topology estimated by thresholding solution 5.
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consistently better than the unconstrained models, and for very large N the three constrained
ML estimates give the same accuracy. For small and moderate N we also see that model 6
(ML estimate for the topology selected via nonsmooth regularization) is much more accurate
than the other methods.

Errors in topology as a function of sample size In the last figure (Figure 7) we examine
how fast the error in the topology selection decreases with increasing sample length N for
three topology selection methods: LS estimation followed by thresholding, ML estimation
with Tikhonov regularization followed by thresholding, and ML estimation with nonsmooth
regularization followed by thresholding. For each sample size N we show the errors averaged
over 50 sample sequences (i.e., 50 different sample covariance matrices C). “False positives”
refers to entries that are incorrectly classified as nonzeros (i.e., incorrectly added edges in the
graphical model). “False negatives” are entries that are incorrectly classified as zeros (i.e.,
incorrectly deleted edges). The top graphs in figure 7 show the fraction of false positives
and false negatives versus the sample size. The bottom graphs show the total fraction of
misclassified entries. We compare the three methods listed above. As can be seen, the total
error in the estimated topology is reduced in the regularized estimates, and the errors decrease
more rapidly when we regularize with the sum-of-norms penalty h∞.

4.3 Experiment 2

In the second experiment we compare different penalty functions h for the regularized ML
problem (24): the ‘sum-of-ℓ∞-norms’ penalty h∞ defined in (25), the ‘sum-of-ℓ2-norms’ penalty
h2 defined in (31) with α = 2, and the ‘sum-of-ℓ1-norms’ penalty h1 defined in (31) with α = 1.
These penalty functions all yield models with a sparse inverse spectrum

S(ω)−1 = Y0 +
1

2

p
∑

k=1

(e−jkωYk + ejkωY T
k ),

but have different degrees of sparsity for the entries (Yk)ij within each group i, j.
The data are generated by randomly choosing sparse coefficients Yk of an inverse spec-

trum (10). For each (i, j) of nonzero locations in S(ω)−1, we select random values (Yk)ij with
about the same magnitude for all k. If necessary, a multiple of the identity matrix is added
to Y0 to guarantee the positiveness of the spectrum. An AR realization of the spectrum is
then computed by spectral factorization and used to generate sample time series. The model
dimensions are n = 5, p = 7.

Figure 8 shows typical values for the estimated coefficients (Yk)ij . The three penalty
functions all give the same topology, but a different sparsity with the same group i, j of
coefficients. The sparsity within each group is largest for the h1-penalty and smallest for
the h∞-penalty.

Table 1 shows the results of topology selection with the three penalties, for sample size
N = 512 and averaged over 50 sample sequences. The h∞-penalty gives the models with
the smallest KL divergence and smallest error in topology. This is to be expected, given the
distribution of the nonzero coefficients (Yk)ij in the AR models that were used to generate
the data. The results also agree with a comparison of different norms in a composite penalty
function [ZRY09]. In general the best choice of norm will depend on how the coefficients are
distributed within each group.
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Figure 7: Top left. Fraction of incorrectly added edges in the estimated graph (number of
upper triangular nonzeros in the estimated pattern that are incorrect, divided by the number
of upper triangular zeros in the correct pattern). Top right. Fraction of incorrectly removed
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Figure 8: Nonzero coefficients |(Yk)ij | for regularized ML estimates with penalty hα, for α =
1, 2,∞.

Dimensions
KL divergence Error in topology (%)
h1 h2 h∞ h1 h2 h∞

n = 20, p = 2 0.24 0.22 0.21 11.8 11.9 11.6
n = 20, p = 4 0.33 0.24 0.19 1.65 1.19 0.51
n = 30, p = 2 0.40 0.35 0.30 9.95 8.83 7.96
n = 30, p = 4 0.59 0.46 0.40 5.18 3.97 3.53

Table 1: Accuracy of topology selection methods with penalty hα for α = 1, 2,∞. The table
shows the average KL divergence with respect to the true model and the average percentage
error in the estimated topology (defined as the sum of the false positives and false negatives
divided by the number of upper triangular entries in the pattern), averaged over 50 instances.
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Input n = 7 n = 50 n = 100 n = 190

Picture p = 1 p = 1 p = 0 p = 0
Sentence p = 1 p = 1 p = 0 p = 0

Table 2: AR model orders for the fMRI data set.

Input
Static models (p = 0) Time series models (p = 1)
ℓ1 Tikhonov LS ℓ1 Tikhonov LS

Picture 991 4116 4203 0 13467 13465
Sentence 922 4021 4131 0 13240 13238

Table 3: Relative BIC scores of six models fitted to two fMRI time series of size n = 50.
The ‘static’ models are Gaussian graphical models (i.e., AR models of order p = 0), the time
series models are AR models of order p = 1. The models are constrained ML estimates with
topologies estimated using three different methods: Regularized ML estimate with hα-penalty,
Tikhonov-regularized ML estimate, and the least-squares estimate. The BIC scores are relative
to the score of the best model (time series models of regularized ML estimate with hα-penalty).

5 Applications

5.1 Functional magnetic resonance imaging (fMRI) data

In this section we apply the topology selection method to a functional magnetic resonance
imaging (fMRI) time series. We use the StarPlus fMRI data set1 [MHN+04], which was
analyzed using covariance selection in [SR09]. The data consists of 80 time series (runs) of
brain image scans. In half of the 80 runs the input stimulus shown to the subject is a picture;
in the other half it is a sentence. Each run contains 16 images, resulting in 640 images for each
input. The authors of [MHN+04] suggest a region of interest (ROI) of 1718 voxels. To reduce
the dimension we took averages over groups of voxels in the ROI and considered four reduced
graphs with n = 7, 50, 100, and 190 nodes, respectively.

We fit two different AR models, one for each input. The AR model orders selected by the
BIC are shown in Table 2. As the problem size (n) becomes larger, the BIC tends to pick a
static model (p = 0). Table 3 shows the BIC scores of different models for the experiment with
size n = 50.

The topologies selected by the BIC are the regularized ML estimates with h∞-penalty. Fig-
ure 9 shows the sparsity of the estimated graphs from the least-squares, Tikhonov-regularized
ML, and h∞-regularized ML methods. The plots show that the h∞-regularization produces
much sparser graphs than the other two methods.

To get an idea of the accuracy of the estimated network structure, we validated the result
with a simple classification experiment. For each input we keep one fMRI run as a test problem
and use the 39 remaining runs to estimate a sparse AR model. The two models are then used
to guess the inputs shown to the subject during the test run. The classification algorithm
computes the likelihood of each input, based on the two models, and selects the input with
the highest likelihood. We repeat this for each of the 40 choices of test run. Table 4 shows the
classification error versus the number of nodes in the graph. We see that the classification is
quite successful and achieves an error in the range 6–20%. The error tends to be smaller if we
use less averaging (larger n). We also note that for each n, the AR model of order p chosen in

1www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
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Figure 9: Density of the graphical models of fMRI data for ‘picture’ stimulus (left) and for
‘sentence’ stimulus (right). The density is computed as the number of nonzero entries in the
estimated inverse spectrum divided by n2.

model order n = 7 n = 50 n = 100 n = 190

p = 0 0.21 0.16 0.11 0.06

p = 1 0.20 0.16 0.16 0.11

Table 4: Classification error of fMRI data versus model size. The error is the number of runs
for which the stimulus input is correctly identified divided by the total number of runs (40).

Table 2 also performs slightly better in the classification experiment.

5.2 International stock market data

We consider a multivariate time series of 17 stock market indices: the S&P 5000 composite
index (U.S.), Toronto stock exchange 300 index (Canada), the All ordinary composite stock
index (Australia), the Nikkei 225 stock index (Japan), the Hang Seng stock composite index
(Hong Kong), the FTSE 100 share index (United Kingdom), the Frankfurt DAX 30 compos-
ite index (German), the CAC 40 stock composite index (France), MIBTEL index (Italy), the
Zurich Swiss Market composite index (Switzerland), the Amsterdam exchange index (Nether-
lands), the Austrian traded index (Austria), IBEX 35 (Spain), BEL 20 (Belgium), the OMX
Helsinki 25 index (Finland), the Portugese stock index (Portugal), the Irish stock exchange
index (Ireland). The data were stock index closing prices recorded from June 3, 1997 to June
30, 1999 and obtained from www.globalfinancialdata.com. The data were converted to US
dollars. Missing data due to national holidays were replaced by the most recent values. For
each market we use as variable the return between trading day k − 1 and k, defined as

rk = 100 log(πk/πk−1),

where πk is the closing price on day k. This results in 17-dimensional time series of length 540.
Similar time series for a smaller number of markets were analyzed in [BY03, AAA08].

We solve the h∞-regularized ML problem with model orders ranging from p = 0 to p = 3,
and for each value collect the topologies along the trade-off curve, as in the previous examples.
The AICc and BIC criteria were then used to select a model. Both criteria selected a model
of order p = 1 and the same sparsity pattern (corresponding to a value γ = 0.34). Figure 10
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Figure 10: The maximum magnitude ρij of the partial coherence for three models of the stock
exchange data. Left: Thresholded nonparametric sample estimate using Welch’s method.
Middle: Constrained ML estimate with topology determined from the LS solution. Right:
Constrained ML estimate with topology determined from the h∞-regularized ML estimate.

(right) shows ρij, the maximum magnitude of the partial coherence of the model, and compares
it with a thresholded nonparametric estimate obtained with Welch’s method [Pro01] and the
constrained ML model with topology obtained by thresholding the least-squares estimate. We
note that the graph topologies suggested by the nonparametric and least-squares estimates are
much denser than the regularized ML estimate.

Figure 11 shows the graphical model estimated by the h∞-regularized ML problem. The
thickness of the edges is proportional to ρij . We recognize many connections that can be
explained from geographic proximity or economic ties between the countries. For example, we
see strong connections between the U.S. and Canada, between Australia, Japan, and Hong
Kong, between Hong Kong and U.K., between the southern European countries, et cetera.
Overall the graphical model seems plausible, and the experiment suggests that the topology
selection method is quite effective.

6 First-order optimization algorithms

In the preceding sections we have considered four convex optimization problems. The con-
strained ML estimation problem (18) and its dual (19) have differentiable objectives and linear
equality and matrix inequality constraints. The regularized ML problem (24) also includes a
nondifferentiable term in the objective, and its dual (30) has a differentiable objective but con-
straints that involve nondifferentiable functions. These optimization problems can be solved
by interior-point methods, for example, the path-following methods developed for convex de-
terminant maximization problems [Toh99, VBW98]. In practice, however, the problems are
often too large for interior-point methods because they involve matrix variables (X or Z) of
high dimension. In this section we therefore investigate less expensive first-order algorithms
applied to a reformulation of the dual problems (19) and (30). The dual approach avoids
several difficulties that arise in first-order methods applied to the primal problems: the com-
plicated constraints in the constrained ML problem (18), the fact that its objective, which is
also the first term in the objective of the regularized ML problem (24), is not strictly convex,
the nondifferentiability of the penalty term in (24), and, most important, the fact the solution
X has low rank and therefore lies on the boundary of the feasible set. (For the regularized
ML problem (24), these difficulties could be addressed as in the covariance selection method
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Figure 11: A graphical model of stock market data. The strength of connections is represented
by the width of the blue links, which is proportional to ρij = supω |R(ω)ij | if it is greater than
0.15.
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of [BEd08], by applying Nesterov’s fast gradient method to an approximation of the primal
problem with a smoothed objective and a closed bounded constraint set [Nes05]. In our limited
experience, with a fixed and conservative choice of the smoothing and bounding parameters,
this algorithm was slower than the dual gradient projection method described in this section,
so we will not pursue it here.)

6.1 Reformulated dual problems

To reformulate the dual problems we eliminate the variable W in (19) and (30). Let V =
C +T(P(Z)), respectively, V = C +T(Z). The inequality

V −
[

W 0
0 0

]

=

[

V00 −W V T
1:p,0

V1:p,0 V1:p,1:p

]

� 0,

is equivalent to

V1:p,1:p � 0, range(V1:p,0) ⊆ range(V1:p,1:p), V00 − V T
1:p,0V

†
1:p,1:pV1:p,0 � W, (36)

where V †
1:p,1:p is the pseudo-inverse of V1:p,1:p. If V � 0, then the matrix W with maximum

determinant that satisfies (36) is equal to V00 − V T
1:p,0V

†
1:p,1:pV1:p,0, the Schur complement of

V1:p,1:p in V . This observation allows us to eliminate W from (19) and (30). Problem (19) can
be written as an unconstrained problem

maximize −φ(C +T(P(Z))), (37)

and problem (30) as a problem with simple constraints

maximize −φ(C +T(Z))

subject to
p
∑

k=0

(|(Zk)ij |+ |(Zk)ji|) ≤ γ, i 6= j

diag(Zk) = 0, k = 0, . . . , p.

(38)

Here φ : Sn(p+1) → R is defined as

φ(V ) = − log det
(

V00 − V T
1:p,0V

†
1:p,1:pV1:p,0

)

− n, (39)

with domain domφ = {V ∈ S
n(p+1)
+ | V00 − V T

1:p,0V
†
1:p,1:pV1:p,0 ≻ 0}. This function is convex,

since it can be expressed as

φ(V ) = inf

{

− log detW

∣

∣

∣

∣

[

W 0
0 0

]

� V

}

− n,

and convexity of this expression follows from results in convex analysis [BV04, §3.2.5]. It is
also a smooth function on the interior of its domain and its gradient at a positive definite V
can be expressed as

∇φ(V ) = −V −1 +

[

0 0

0 V −1
1:p,1:p

]

. (40)

This can be seen, for example, from the identity detV = detV1:p,1:p det(V00−V T
1:p,0V

−1
1:p,1:pV1:p,0),

which gives φ(V ) = − log detV +log detV1:p,1:p−n, and the fact that the gradient of log detX
is X−1.
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If V = C + T(P(Z)) ≻ 0 at the optimum of (37) then the primal optimal solution can be
computed from Z via the expressions

X = V −1 −
[

0 0

0 V −1
1:p,1:p

]

=

[ −I

V −1
1:p,1:pV1:p,0

]

W−1

[ −I

V −1
1:p,1:pV1:p,0

]T

(41)

where V = C +T(P(Z)) and W = V00 − V T
1:p,0V

−1
1:p,1:pV1:p,0. The expression for X follows from

the optimality condition (20) and the identities

V =

[

V00 − V T
1:p,0V

−1
1:p,1:pV1:p,0 0

0 0

]

+

[

V T
1:p,0V

−1
1:p,1:p

I

]

V1:p,1:p

[

V T
1:p,0V

−1
1:p,1:p

I

]T

, (42)

V −1 =

[

0 0

0 V −1
1:p,1:p

]

+

[ −I

V −1
1:p,1:pV1:p,0

]

(V00 − V T
1:p,0V

−1
1:p,1:pV1:p,0)

−1

[ −I

V −1
1:p,1:pV1:p,0

]T

. (43)

The formula for V −1 also provides an alternative form of the gradient (40).
Similarly, if C + T(Z) ≻ 0 at the optimum of (38) then the primal optimal X can be

computed from (41) with V = C +T(Z).
The reformulated dual problems are interesting because they can often be solved by gradient

algorithms for unconstrained optimization or gradient projection algorithms for problems with
simple constraints. To explain this, we again distinguish between Toeplitz and non-Toeplitz C.
If C is block-Toeplitz, then it can be shown that the functions φ(C+T(P(Z))) and φ(C+T(Z))
are closed convex functions (i.e., with closed sublevel sets) and that their domains are open.
Consider the function φ restricted to the set of block-Toeplitz matrices, i.e., φ(T(R)), where
R ∈ Mn,p. By definition, R is in the domain of φ(T(R)) if T(R) � 0 and there exists a positive
definite W with

T(R) �
[

W 0
0 0

]

.

From the property of block-Toeplitz matrices mentioned in section 2.3, this implies T(R) ≻ 0.
In other words, the domain of φ(T(R)) is the open set {R | T(R) ≻ 0}. By a similar argument,
if a sequence of matrices R in the domain of φ(T(R)) converges to a point R̄ in the boundary
of the domain, then the Schur complement of T(R̄)1:p,1:p in T(R̄) must be singular, and hence
φ(T(R)) → ∞. For a continuous function with an open domain this is equivalent to closedness
[BV04, p.639].

If C is not block-Toeplitz, then the functions φ(C + T(P(Z))) and φ(C + T(Z)) are not
necessarily closed, and their domains not necessarily open. One implication is that it is possible
that the optimal solution of (37) or (38) is at a point in the boundary of the domain of the
cost function, i.e., a point where C +T(P(Z)) or C +T(Z) are singular. However in practice,
C is usually approximately block-Toeplitz and one can expect that the functions are often
closed. Moreover, in order to apply unconstrained minimization algorithms it is sufficient that
the algorithm is started at a point Z(0) for which the sublevel set {Z | φ(C + T(P(Z))) ≤
φ(C+T(P(Z(0))))} is closed. This condition is considerably weaker than the requirement that
all sublevel sets are closed.

6.2 Gradient projection algorithms

We now present some details on first-order algorithms for the reformulated dual problems. We
focus on the constrained problem (38) since the unconstrained problem (37) can be handled as a
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special case. We first describe a version of the classical gradient projection with a backtracking
line search [Pol87, Ber99]. To simplify the notation we will use a generic problem format

minimize f(x)
subject to x ∈ C

where f : Rn → R is convex and continuously differentiable with an open domain, and C is a
closed convex set. We assume that a feasible point x(0) is known and that the sublevel set

S = {x ∈ dom f ∩ C | f(x) ≤ f(x(0))}

is closed and bounded. The closedness assumption is satisfied if f is a closed function. (See
the previous paragraph on the validity of this assumption for problems (37) and (38).) We
assume that projections on C are inexpensive and we denote the projection operator by P:

P(y) = argmin
x∈C

‖x− y‖2.

The gradient map associated with f and C is defined as

Gt(x) =
1

t
(x− P(x− t∇f(x)))

for t > 0. For an unconstrained problem, the gradient map is Gt(x) = ∇f(x), independent
of t.

Basic gradient projection The basic gradient projection method starts at x(0) and con-
tinues the iteration

x(k) = P
(

x(k−1) − tk∇f(x(k−1))
)

= x(k−1) − tkGtk(x
(k−1)) (44)

until a stopping criterion is satisfied. A classical convergence result states that x(k) converges
to an optimal solution if tk is fixed and equal to 1/L, where L is a constant that satisfies

‖∇f(u)−∇f(v)‖2 ≤ L‖u− v‖2 ∀u, v ∈ S, (45)

[Pol87, §7.2.1]. Although our assumptions (S is closed and bounded, and dom f is open)
imply that the Lipschitz condition (45) holds for some constant L > 0, its value is not known
in practice, so the fixed step size rule tk = 1/L cannot be used. We therefore determine tk
using a backtracking search [BT09]. The step size search algorithm in iteration k starts at a
value tk := t̄k where

t̄k = min{s
T s

sT y
, tmax}, (46)

where
s = x(k−1) − x(k−2), y = ∇f(x(k−1))−∇f(x(k−2)),

and tmax is a positive constant. (In the first iteration we initialize the step size as t1 = tmax.)
The search then repeats the update tk := βtk (where β ∈ (0, 1) is an algorithm parameter)
until x(k−1) − tkGtk(x

(k−1)) ∈ dom f and

f(x(k−1) − tkGtk(x
(k−1))) ≤ f(x(k−1))− tk∇f(x(k−1))TGtk(x

(k−1)) +
tk
2
‖Gtk (x

(k−1))‖22. (47)
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The resulting step size tk is used in the update to x(k) in (44). Note that the trial points

x(k−1) − tkGtk(x
(k−1)) = P

(

x(k−1) − tk∇f(x(k−1))
)

generated during the step size search are not necessarily on a straight line. The trajectory is
sometimes referred to as the projection arc [Ber99, §2.3].

The step length ‖s‖22/sT y is known as the Barzilai-Borwein step size and forms the basis
of spectral gradient methods [BB88, BMR03, FNW07, WNF09]. It can be motivated by the
easily established fact that ‖s‖22/sT y ≥ 1/L if f satisfies (45), so it is a readily computed upper
bound for 1/L.

Variations The basic gradient projection method can be varied in several ways, some of
which will be compared in the numerical experiments below. To avoid computing a projection
for each trial step size tk in the step size search, we can replace the gradient update with

x(k) = x(k−1) − tkGt̄k(x
(k−1)) (48)

where t̄k is held fixed at the value (46) and tk is determined by a backtracking search: we take
tk := t̄k and then backtrack (tk := βtk) until x

(k−1) − tkGt̄k(x
(k−1)) ∈ dom f and

f(x(k−1) − tkGt̄k(x
(k−1))) ≤ f(x(k−1))− tk∇f(x(k−1))TGt̄k(x

(k−1)) +
tk
2
‖Gt̄k (x

(k−1))‖22. (49)

In this method the trial points during the step size selection follow a straight line, and each
step only requires a function evaluation.

Many alternatives to the step size rules (44) and (48) are available in the literature, for
example, the Armijo rule [Ber99, §2.3], and conditions that allow non-monotone convergence
[BMR00, LZ09]. In our experiments these variations gave similar results as the step size rules
outlined above.

Another attractive class of gradient projection algorithms are the optimal first-order meth-
ods originated by Nesterov [Nes04, Tse08, BT09]. For functions whose gradient is Lipschitz
continuous on C, these algorithms have a better complexity than the classical gradient projec-
tion method (at most O(

√

1/ǫ) iterations are needed to reach an accuracy ǫ, as opposed to
O(1/ǫ) for the gradient projection method). These theoretical complexity results are valid if a
constant step size tk = 1/L is used where L is the Lipschitz constant for the gradient, or if the
step sizes form an nonincreasing sequence (tk+1 ≤ tk) determined by a backtracking line search
[BT09, Tse08]. The assumption that the gradient is Lipschitz continuous on C does not hold
for the problem considered here, and it is not clear if the convergence analysis can be extended
to the case when the gradient is Lipschitz continuous only on the initial sublevel set. Nev-
ertheless, an implementation with a backtracking line search worked well in our experiments
(see next section).

Implementation details The most important steps in the gradient projection algorithms
applied to (37) are the evaluations of the gradient of the objective function and the projections
on the set defined by the constraints. We now explain these two steps and the stopping criterion
in more detail.

The gradient (40) of φ at a point V can be evaluated from a Cholesky factorization V = LTL
with L lower triangular. If we partition L as

L =

[

L00 0
L1:p,0 L1:p,1:p

]
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then

∇φ(V ) =

[

I

−L−1
1:p,1:pL1:p,0

]

L−1
00 L

−T
00

[

I

−L−1
1:p,1:pL1:p,0

]T

.

The projection P(U) of a matrix U ∈ Mp,n on the set defined by the constraints in (38)
can be efficiently computed as follows. Clearly, the diagonal entries of P(U)k are zero for
k = 0, . . . , p. To find the off-diagonal entries we can solve an independent problem

minimize 2((Z0)ij − (U0)ij)
2 +

p
∑

k=1

(

((Zk)ij − (Uk)ij)
2 + ((Zk)ji − (Uk)ji)

2
)

subject to
p
∑

k=0

(|(Zk)ij |+ |(Zk)ji|) ≤ γ

for each i, j with j > i. This is the problem of projecting a vector on the ℓ1-norm ball. The
solution is easily derived from duality and can be calculated by applying to the entries (Uk)ij
the shrinkage operation familiar in sparse optimization (see, for example, [Tib96]).

The following stopping criterion will be used in the experiments. At each iteration, we
compute X in (41) from the current iterate Z. This matrix X is primal feasible, as can be seen
from the identity (43) and the fact that C + T(Z) ≻ 0. By taking the Schur complement of
(C +T(Z))1:p,1:p we also find a dual feasible W in (30). The duality gap between this primal
feasible X and the dual feasible Z, W is

η = − log detX00 + tr(CX) + γh(D(X))− log detW − n

= tr(CX)− n+ γh(D(X))

= tr((C +T(Z))X) − n− tr(X T(Z)) + γh(D(X))

= − tr(X T(Z)) + γh(D(X)). (50)

We terminate when the duality gap is below a given tolerance.

6.3 Numerical example

We generate AR models as in the experiment described in section 4.2. In the first experiment,
the model dimensions are n = 300, p = 2, N = 2n(p + 1). The true inverse spectrum has
10428 non-zero entries in the upper triangular part (a density of about 12%). The penalty
parameter γ is set at γ = 0.1. The variable Z in the reformulated dual problem (38) is a
matrix in M300,2, so the problem has n(n + 1)/2 + pn2 = 225150 optimization variables. We
start the gradient projection algorithm at a strictly feasible Z(0) = 0, and terminate when the
duality gap is below 10−2 (the optimal value is on the order of hundreds).

Figure 12 shows the relative error (f(Z(k))− f⋆)/|f⋆| where f(Z) = φ(C + T(P(Z))) and
f⋆ is the optimal value. It also shows the duality gap η(k) versus the iteration number for
a typical instance. ‘GP with arc search’ refers to the gradient projection method (44) with
step size rule (47). ‘GP with line search’ refers to the gradient projection method (48) with
step size rule (49). The step size searches required at most 15 backtracking steps to find an
acceptable step size. As can be seen, a solution with a moderate accuracy (relative error in
the range 10−4–10−3) is obtained after a number of iterations that is only a fraction of the
problem size. The convergence of the ‘arc search’ method is slightly faster, but it should be
kept in mind that this method is more expensive than the ‘line search’.

The ‘Exact FISTA’ method is the gradient projection algorithm with backtracking line
search from [BT09] using monotonically decreasing step sizes (tk ≤ tk−1, as required by the
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Figure 12: Convergence of gradient projection algorithms. Left: Relative error (f(Z(k)) −
f⋆)/|f⋆| versus the number of iterations. Right: Duality gap versus the number of iterations.

theory in [BT09]). As can be seen the convergence was not faster than the classical gradient
projection method. A heuristic modification in which the step sizes are not forced to be
nonincreasing, but at each iteration the line searches is initialized at the Barzilai and Borwein
steplength (46), was often about five times faster. This algorithm is referred to as ‘Modified
FISTA’ in the figure.

Figure 13 shows the CPU time versus problem size on a 3GHz Intel Pentium(R) 4 processor
with 2.94 GB of RAM, for the ‘GP with arc search’ and ‘GP with line search’ algorithms. The
test problems are generated as in the previous experiment, with p = 2 and varying n. The
algorithms stop when it achieves a duality gap less than ǫ = 0.1. This yields a solution with
a moderate accuracy (relative gap in the range 10−4–10−3). The plot shows that the times
needed to solving the regularized ML estimation using both algorithms are fairly comparable
with a slight advantage for ‘GP with arc search’ when n is large. Although the backtracking
steps in the arc search method are more expensive, the gradient projection method with this
step size selection required fewer iterations in most cases.

7 Conclusion

We have presented a convex optimization method for topology selection in graphical models
of autoregressive Gaussian processes. The method is based on augmenting the maximum
likelihood estimation problem with an ℓ1-type penalty function, chosen to promote sparsity
in the inverse spectrum. By tracing the trade-off curve between the log-likelihood and the
penalty function, we obtain a small set of sparse graph topologies, that can then be ranked
according to information-theoretic criteria such as the AIC or BIC. This procedure avoids
the combinatorial complexity of enumerating all possible topologies, and produces accurate
results for smaller sample sizes than methods based on empirical or least-squares estimates.
To solve the large, nonsmooth convex optimization problems that result from this formulation,
we have investigated a gradient projection method applied to a reformulated dual problem.
Experiments with randomly generated examples, and an analysis of an fMRI time series and
a time series of international stock market indices were included to confirm the effectiveness
of this approach.
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