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We consider the problem of fitting a Gaussian autoregressive model to a time

series, subject to conditional independence constraints. This is an extension of

the classical covariance selection problem to times series. The conditional inde-

pendence constraints impose a sparsity pattern on the inverse of the spectral

density matrix, and result in nonconvex quadratic equality constraints in the

maximum likelihood formulation of the model estimation problem. We present a

semidefinite relaxation, and prove that the relaxation is exact when the sample

covariance matrix is block-Toeplitz. We also give experimental results suggesting

that the relaxation is often exact when the sample covariance matrix is not block-

Toeplitz. In combination with model selection criteria the estimation method can

be used for topology selection. Experiments with randomly generated and several

real data sets are also included.

1.1 Introduction

Graphical models give a graph representation of relations between random vari-

ables. The simplest example is a Gaussian graphical model, in which an undi-

rected graph with n nodes is used to describe conditional independence relations

between the components of an n-dimensional random variable x ∼ N(0,Σ). The

absence of an edge between two nodes of the graph indicates that the corre-

sponding components of x are independent, conditional on the other components.

Other common examples of graphical models include contingency tables, which

describe conditional independence relations in multinomial distributions, and

Bayesian networks, which use directed acyclic graphs to represent causal or tem-

poral relations. Graphical models find applications in bioinformatics, speech and

image processing, combinatorial optimization, coding theory, and many other

fields. Graphical representations of probability distributions not only offer insight

in the structure of the distribution, they can also be exploited to improve the

efficiency of statistical calculations, such as the computation of conditional or

marginal probabilities. For further background we refer the reader to several

books and survey papers on the subject [1, 2, 3, 4, 5, 6, 7].
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Estimation problems in graphical modeling can be divided in two classes,

depending on whether the topology of the graph is given or not. In a Gaus-

sian graphical model of x ∼ N(0,Σ), for example, the conditional independence

relations between components of x correspond to zero entries in the inverse

covariance matrix [8]. This follows from the fact that the conditional distribu-

tion of two variables xi, xj , given the remaining variables, is Gaussian, with

covariance matrix
[

(Σ−1)ii (Σ−1)ij

(Σ−1)ji (Σ−1)jj

]−1

.

Hence xi and xj are conditionally independent if and only if

(Σ−1)ij = 0.

Specifying the graph topology of a Gaussian graphical model is therefore equiv-

alent to specifying the sparsity pattern of the inverse covariance matrix. This

property allows us to formulate the maximum likelihood (ML) estimation prob-

lem of a Gaussian graphical model, for a given graph topology, as

maximize − log det Σ − tr(CΣ−1)

subject to (Σ−1)ij = 0, (i, j) ∈ V,
(1.1)

where C is the sample covariance matrix, and V are the pairs of nodes (i, j)

that are not connected by an edge, i.e., for which xi and xj are conditionally

independent. (Throughout the chapter we take as the domain of the function

log detX the set of positive definite matrices.) A change of variables X = Σ−1

results in a convex problem

maximize log det X − tr(CX)

subject to Xij = 0, (i, j) ∈ V.
(1.2)

This is known as the covariance selection problem [8], [2, Section 5.2]. The cor-

responding dual problem is

minimize log det Z−1

subject to Zij = Cij , (i, j) 6∈ V,
(1.3)

with variable Z ∈ Sn (the set of symmetric matrices of order n). It can be shown

that Z = X−1 = Σ at the optimum of (1.1), (1.2), and (1.3). The ML estimate of

the covariance matrix in a Gaussian graphical model is the maximum determi-

nant (or maximum entropy) completion of the sample covariance matrix [9, 10].

The problem of estimating the topology in a Gaussian graphical model is more

involved. One approach is to formulate hypothesis testing problems to decide

about the presence or absence of edges between two nodes [2, §5.3.3]. Another

possibility is to enumerate different topologies, and use information-theoretic

criteria (such as the Akaike or Bayes information criteria) to rank the models.
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A more recent development is the use of convex methods based on ℓ1-norm

regularization to estimate sparse inverse covariance matrices; see [11, 12, 13].

In this chapter we address the extension of estimation methods for Gaussian

graphical models to autoregressive (AR) Gaussian processes

x(t) = −
p
∑

k=1

Akx(t − k) + w(t), (1.4)

where x(t) ∈ Rn and w(t) ∼ N(0,Σ) is Gaussian white noise. It is known that

conditional independence between components of a multivariate stationary Gaus-

sian process can be characterized in terms of the inverse of the spectral density

matrix S(ω): Two components xi(t) and xj(t) are independent, conditional on

the other components of x(t), if and only if

(S(ω)−1)ij = 0

for all ω [14, 15]. This connection allows us to include conditional independence

constraints in AR estimation methods by placing restrictions on the sparsity

pattern of the inverse spectral density matrix. As we will see in section 1.3.1, the

conditional independence constraints impose quadratic equality constraints on

the AR parameters. The main contribution of the chapter is to show that under

certain conditions the constrained estimation problem can be solved efficiently

via a convex (semidefinite programming) relaxation. This convex formulations

can be used to estimate graphical models where the AR parameters are con-

strained with respect to a given graph structure. In combination with model

selection criteria they can also be used to identify the conditional independence

structure of an AR process. In section 1.4 we present experimental results using

randomly generated and real data sets.

Graphical models of AR processes have several applications; see [16, 17, 18, 19,

20, 21, 22]. Most previous work on this subject is concerned with statistical tests

for topology selection. Dahlhaus [15] derives a statistical test for the existence

of an edge in the graph, based on the maximum of a nonparametric estimate

of the normalized inverse spectrum S(ω)−1; see [16, 17, 18, 19, 20, 21, 22] for

applications of this approach. Eichler [23] presents a more general approach by

introducing a hypothesis test based on the norm of some suitable function of the

spectral density matrix. Related problems have also been studied in [24, 25]. Bach

and Jordan [24] consider the problem of learning the structure of the graphical

model of a time series from sample estimates of the joint spectral density matrix.

Eichler [25] uses Whittle’s approximation of the exact likelihood function, and

imposes sparsity constraints on the inverse covariance functions via algorithms

extended from covariance selection. Numerical algorithms for the estimation of

graphical AR models have been explored in [22, 25, 26]. The convex framework

proposed in this chapter provides an alternative and more direct approach and

readily leads to efficient estimation algorithms.
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Notation

Rm×n denotes the set of real matrices of size m × n, Sn is the set of real sym-

metric matrices of order n, and Mn,p is the set of matrices

X =
[

X0 X1 · · · Xp

]

with X0 ∈ Sn and X1, . . . ,Xp ∈ Rn×n. The standard trace inner product

tr(XT Y ) is used on each of these three vector spaces. Sn
+ (Sn

++) is the set

of symmetric positive semidefinite (positive definite) matrices of order n. XH

denotes the complex conjugate transpose of X.

The linear mapping T : Mn,p → Sn(p+1) constructs a symmetric block Toeplitz

matrix from its first block row: if X ∈ Mn,p, then

T(X) =











X0 X1 · · · Xp

XT
1 X0 · · · Xp−1

...
...

. . .
...

XT
p XT

p−1 · · · X0











. (1.5)

The adjoint of T is a mapping D : Sn(p+1) → Mn,p defined as follows. If S ∈
Sn(p+1) is partitioned as

S =











S00 S01 · · · S0p

ST
10 S11 · · · S1p

...
...

...

ST
p0 ST

p1 · · · Spp











,

then D(S) =
[

D0(S) D1(S) · · · Dp(S)
]

where

D0(S) =

p
∑

i=0

Sii, Dk(S) = 2

p−k
∑

i=0

Si,i+k, k = 1, . . . , p. (1.6)

A symmetric sparsity pattern of a sparse matrix X of order n will be defined

by giving the set of indices V ⊆ {1, . . . , n} × {1, . . . , n} of its zero entries. PV(X)

denotes the projection of a matrix X ∈ Sn or X ∈ Rn×n on the complement of

the sparsity pattern V:

PV(X)ij =

{

Xij (i, j) ∈ V
0 otherwise.

(1.7)

The same notation will be used for PV as a mapping from Rn×n → Rn×n and

as a mapping from Sn → Sn. In both cases, PV is self-adjoint. If X is a p × q

block matrix with i, j block Xij , and each block is square of order n, then PV(X)

denotes the p × q block matrix with i, j block PV(X)ij = PV(Xij). The subscript

of PV is omitted if the sparsity pattern V is clear from the context.
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1.2 Autoregressive processes

This section provides some necessary background on AR processes and AR esti-

mation methods. The material is standard and can be found in many textbooks

[27, 28, 29, 30, 31].

We use the notation (1.4) for an AR model of order p. Occasionally the equiv-

alent model

B0x(t) = −
p
∑

k=1

Bkx(t − k) + v(t), (1.8)

with v(t) ∼ N(0, I), will also be useful. The coefficients in the two models are

related by B0 = Σ−1/2, Bk = Σ−1/2Ak for k = 1, . . . , p.

The autocovariance sequence of the AR process is defined as

Rk = Ex(t + k)x(t)T ,

where E denotes the expected value. We have R−k = RT
k since x(t) is real. It is

easily shown that the AR model parameters Ak, Σ, and the first p + 1 covariance

matrices Rk are related by the linear equations










R0 R1 · · · Rp

RT
1 R0 · · · Rp−1

...
...

. . .
...

RT
p RT

p−1 · · · R0





















I

AT
1
...

AT
p











=











Σ

0
...

0











. (1.9)

These equations are called the Yule-Walker equations or normal equations.

The transfer function from w to x is A(z)−1 where

A(z) = I + z−1A1 + · · · + z−pAp.

The AR process is stationary if the poles of A are inside the unit circle. The

spectral density matrix is defined as the Fourier transform of the autocovariance

sequence,

S(ω) =

∞
∑

k=−∞
Rke−jkω

(where j =
√
−1), and can be expressed as S(ω) = A(ejω)−1ΣA(ejω)−H . The

inverse spectrum of an AR process is therefore a trigonometric matrix polynomial

S(ω)−1 = A(ejω)HΣ−1A(ejω) = Y0 +

p
∑

k=1

(e−jkωYk + ejkωY T
k ) (1.10)

where

Yk =

p−k
∑

i=0

AT
i Σ−1Ai+k =

p−k
∑

i=0

BT
i Bi+k (1.11)

(with A0 = I).
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1.2.1 Least squares linear prediction

Suppose x(t) is a stationary process (not necessarily autoregressive). Consider

the problem of finding an optimal linear prediction

x̂(t) = −
p
∑

k=1

Akx(t − k),

of x(t), based on past values x(t − 1), . . . , x(t − p). This problem can also be

interpreted as approximating the process x(t) by the AR model with coefficients

Ak. The prediction error between x(t) and x̂(t) is

e(t) = x(t) − x̂(t) = x(t) +

p
∑

k=1

Akx(t − k).

To find the coefficients A1, . . . , Ap, we can minimize the mean squared predic-

tion error E ‖e(t)‖2
2. The mean squared error can be expressed in terms of the

coefficients Ak and the covariance function of x as E ‖e(t)‖2
2 = tr(AT(R)AT )

where

A =
[

I A1 · · · Ap

]

, R =
[

R0 R1 · · · Rp

]

,

Rk = Ex(t + k)x(t)T , and T(R) is the block-Toeplitz matrix with R as its first

block row (see the Notation section at the end of section 1.1). Minimizing the

prediction error is therefore equivalent to the quadratic optimization problem

minimize tr(AT(R)AT ) (1.12)

with variables A1, . . . , Ap.

In practice, the covariance matrix T(R) in (1.12) is replaced by an estimate

C computed from samples of x(t). Two common choices are as follows. Suppose

samples x(1), x(2), . . . , x(N) are available.

r The autocorrelation method uses the windowed estimate

C =
1

N
HHT , (1.13)

where

H =











x(1) x(2) · · · x(p + 1) · · · x(N) 0 · · · 0

0 x(1) · · · x(p) · · · x(N − 1) x(N) · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · x(1) · · · x(N − p) x(N − p + 1) · · · x(N)











. (1.14)

Note that the matrix C is block-Toeplitz, and that it is positive definite (unless

the sequence x(1), . . . , x(N) is identically zero).
r The covariance method uses the non-windowed estimate

C =
1

N − p
HHT , (1.15)



Graphical models of autoregressive processes 7

where

H =











x(p + 1) x(p + 2) · · · x(N)

x(p) x(p + 1) · · · x(N − 1)
...

...
...

x(1) x(2) · · · x(N − p)











. (1.16)

In this case the matrix C is not block-Toeplitz.

To summarize, least-squares estimation of AR models reduces to an uncon-

strained quadratic optimization problem

minimize tr(ACAT ). (1.17)

Here, C is the exact covariance matrix, if available, or one of the two sam-

ple estimates (1.13) and (1.15). The first of these estimates is a block-Toeplitz

matrix, while the second one is in general not block-Toeplitz. The covariance

method is known to be slightly more accurate in practice if N is small [31, page

94]. The correlation method on the other hand has some important theoretical

and practical properties, that are easily explained from the optimality condi-

tions of (1.17). If we define Σ̂ = ACAT (i.e., the estimate of the prediction error

E ‖e(t)‖2
2 obtained by substituting C for T(R)), then the optimality conditions

can be expressed as










C00 C01 · · · Cpp

C10 C11 · · · C1p

...
...

...

Cp0 Cp1 · · · Cpp





















I

AT
1
...

AT
p











=











Σ̂

0
...

0











. (1.18)

If C is block-Toeplitz, these equations have the same form as the Yule-Walker

equations (1.9), and can be solved more efficiently than when C is not block-

Toeplitz. Another advantage is that the solution of (1.18) always provides a

stable model if C is block Toeplitz and positive definite. This can be proved

as follows (see [32]). Suppose z is a zero of A(z), i.e., there exists a nonzero w

such that wHA(z) = 0. Define u1 = w and uk = AT
k−1w + zuk−1 for k = 2, . . . , p.

Then we have

u = AT w + zũ

where u = (u1, u2, . . . , up, 0), ũ = (0, u1, u2, . . . , up). From this and (1.18),

uHCu = wHΣ̂w + |z|2ũHCũ.

The first term on the righthand side is positive because Σ̂ ≻ 0. Also, uHCu =

ũHCũ since C is block-Toeplitz. Therefore |z| < 1.

In the following two sections we give alternative interpretations of the covari-

ance and correlation variants of the least-squares estimation method, in terms

of maximum likelihood and maximum entropy estimation, respectively.
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1.2.2 Maximum likelihood estimation

The exact likelihood function of an AR model (1.4), based on observations x(1),

. . . , x(N), is complicated to derive and difficult to maximize [28, 33]. A standard

simplification is to treat x(1), x(2), . . . , x(p) as fixed, and to define the likelihood

function in terms of the conditional distribution of a sequence x(t), x(t + 1),

. . . , x(t + N − p − 1), given x(t − 1), . . . , x(t − p). This is called the conditional

maximum likelihood estimation method [33, §5.1].

The conditional likelihood function of the AR process (1.4) is

1

((2π)n det Σ)(N−p)/2
exp

(

−1

2

N
∑

t=p+1

x(t)T AT Σ−1Ax(t)

)

=

(

det B0

(2π)n/2

)N−p

exp

(

−1

2

N
∑

t=p+1

x(t)T BT Bx(t)

)

(1.19)

where x(t) is the ((p + 1)n)-vector x(t) = (x(t), x(t − 1), . . . , x(t − p)) and

A =
[

I A1 · · · Ap

]

, B =
[

B0 B1 · · · Bp

]

,

with B0 = Σ−1/2, Bk = Σ−1/2Ak, k = 1, . . . , p. Taking the logarithm of (1.19) we

obtain the conditional log-likelihood function (up to constant terms and factors)

L(B) = (N − p) log detB0 −
1

2
tr(BHHT BT )

where H is the matrix (1.16). If we define C = (1/(N − p))HHT , we can then

write the conditional ML estimation problem as

minimize −2 log detB0 + tr(CBT B) (1.20)

with variable B ∈ Mn,p. This problem is easily solved by setting the gradient

equal to zero: the optimal B satisfies CBT = (B−1
0 , 0, . . . , 0). Written in terms

of the model parameters Ak = B−1
0 Bk, Σ = B−2

0 , this yields

C











I

AT
1
...

AT
p











=











Σ

0
...

0











,

i.e., the Yule-Walker equations with the block Toeplitz coefficient matrix

replaced by C. The conditional ML estimate is therefore equal to the least-

squares estimate from the covariance method.

1.2.3 Maximum entropy estimation

Consider the maximum entropy (ME) problem introduced by Burg [34]:

maximize 1
2π

∫ π

−π log detS(ω)dω

subject to 1
2π

∫ π

−π S(ω)ejkωdω = R̄k, 0 ≤ k ≤ p.
(1.21)



Graphical models of autoregressive processes 9

The matrices R̄k are given. The variable is the spectral density S(ω) of a real

stationary Gaussian process x(t), i.e., the Fourier transform of the covariance

function Rk = Ex(t + k)x(t)T :

S(ω) = R0 +

∞
∑

k=0

(

Rke−jkω + RT
k ejkω

)

, Rk =
1

2π

∫ π

−π

S(ω)ejkωdω.

The constraints in (1.21) therefore fix the first p + 1 covariance matrices to be

equal to R̄k. The problem is to extend these covariances so that the entropy rate

of the process is maximized. It is known that the solution of (1.21) is a Gaussian

AR process of order p, and that the model parameters Ak, Σ follow from the

Yule-Walker equations (1.9) with R̄k substituted for Rk.

To relate the ME problem to the estimation methods of the preceding sections,

we derive a dual problem. To simplify the notation later on, we multiply the two

sides of the equality constraints k = 1, . . . , p by 2. We introduce a Lagrange

multiplier Y0 ∈ Sn for the first equality constraint (k = 0), and multipliers Yk ∈
Rn×n, k = 1, . . . , p, for the other p equality constraints. If we change the sign of

the objective, the Lagrangian is

− 1

2π

∫ π

−π

log detS(ω)dω + tr(Y0(R0 − R̄0) + 2

p
∑

k=1

tr(Y T
k (Rk − R̄k)).

Differentiating with respect to Rk gives

1

2π

∫ π

−π

S−1(ω)ejωkdω = Yk, 0 ≤ k ≤ p (1.22)

and hence

S−1(ω) = Y0 +

p
∑

k=1

(

Yke−jkω + Y T
k ejkω

)

, Y (ω).

Substituting this in the Lagrangian gives the dual problem

minimize − 1

2π

∫ π

−π

log detY (ω) + tr(Y T
0 R̄0) + 2

p
∑

k=1

tr(Y T
k R̄k) − n, (1.23)

with variables Yk. The first term in the objective can be rewritten by using

Kolmogorov’s formula [35]:

1

2π

∫ π

−π

log detY (ω)dω = log det(BT
0 B0),

where Y (ω) = B(ejω)HB(ejω) and B(z) =
∑p

k=0 z−kBk is the minimum-phase

spectral factor of Y . The second term in the objective of the dual problem (1.23)

can also be expressed in terms of the coefficients Bk, using the relations Yk =
∑p−k

i=0 BT
i Bi+k for 0 ≤ k ≤ p. This gives

tr(Y0R̄0) + 2

p
∑

k=1

tr(Y T
k R̄k) = tr(T(R̄)BT B),
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where R̄ =
[

R̄0 R̄1 · · · R̄p

]

and B =
[

B0 B1 · · · Bp

]

. The dual problem (1.23)

thus reduces to

minimize −2 log detB0 + tr(CBT B) (1.24)

where C = T(R̄). Without loss of generality, we can choose B0 to be symmetric

positive definite. The problem is then formally the same as the ML estimation

problem (1.20), except for the definition of C. In (1.24) C is a block-Toeplitz

matrix. If we choose for R̄k the sample estimates

R̄k =
1

N

N−k
∑

t=1

x(t + k)x(t)T ,

then C is identical to the block-Toeplitz matrix (1.13) used in the autocorrelation

variant of the least-squares method.

1.3 Autoregressive graphical models

In this section we first characterize conditional independence relations in mul-

tivariate Gaussian processes, and specialize the definition to AR processes. We

then add the conditional independence constraints to the ML and ME estimation

problems derived in the previous section, and investigate convex optimization

techniques for solving the modified estimation problems.

1.3.1 Conditional independence in time series

Let x(t) be an n-dimensonal stationary zero-mean Gaussian process with spec-

trum S(ω):

S(ω) =

∞
∑

k=−∞
Rke−jkω, Rk = Ex(t + k)x(t)T .

We assume that S is invertible for all ω. Components xi(t) and xj(t) are said to

be independent, conditional on the other components of x(t), if

(S(ω)−1)ij = 0

for all ω. This definition can be interpreted and justified as follows (see

Brillinger [36, §8.1]). Let u(t) = (xi(t), xj(t)) and let v(t) be the (n − 2)-vector

containing the remaining components of x(t). Define e(t) as the error

e(t) = u(t) −
∞
∑

k=−∞
Hkv(t − k)
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between u(t) and the linear filter of v(t) that minimizes E ‖e(t)‖2
2. Then it can

be shown that the spectrum of the error process e(t) is

[

(S(ω)−1)ii (S(ω)−1)ij

(S(ω)−1)ji (S(ω)−1)jj

]−1

. (1.25)

This is the Schur complement of the submatrix in S(ω) indexed by {1, . . . , n} \
{i, j}. The off-diagonal entry in the error spectrum (1.25) is called the partial

cross-spectrum of xi and xj , after removing the effects of v. The partial cross-

spectrum is zero if and only if the error covariances E e(t + k)e(t)T are diagonal,

i.e., the two components of the error process e(t) are independent.

We can apply this to an AR process (1.4) using the relation between the

inverse spectrum S(ω) and the AR coefficients given in (1.10) and (1.11). These

expressions show that (S(ω)−1)ij = 0 if and only if the i, j entries of Yk are zero

for k = 0, . . . , p, where Yk is given in (1.11). Using the notation defined in (1.6),

we can write this as (Dk(AT Σ−1A))ij = 0, where A =
[

I A1 · · · Ap

]

, or as
(

Dk(BT B)
)

ij
= 0, k = 0, . . . , p, (1.26)

where B =
[

B0 B1 · · · Bp

]

.

1.3.2 Maximum likelihood and maximum entropy estimation

We now return to the ML and ME estimation methods for AR processes,

described in sections 1.2.2 and 1.2.3, and extend the methods to include con-

ditional independence constraints. As we have seen, the ML and ME estimation

problems can be expressed as a convex optimization problem (1.20) and (1.24),

with different choices of the matrix C. The distinction will turn out to be impor-

tant later, but for now we make no assumptions on C, except that it is positive

definite.

As for the Gaussian graphical models mentioned in the introduction, we

assume that the conditional independence constraints are specified via an index

set V, with (i, j) ∈ V if the processes xi(t) and xj(t) are conditionally indepen-

dent. We write the constraints (1.26) for (i, j) ∈ V as

PV
(

D(BT B)
)

= 0,

where PV is the projection operator defined in (1.7). We assume that V does

not contain the diagonal entries (i, i) and that it is symmetric (if (i, j) ∈ V,

then (j, i) ∈ V). The ML and ME estimation with conditional independence con-

straints can therefore be expressed as

minimize −2 log detB0 + tr(CBT B)

subject to P(D(BT B)) = 0.
(1.27)

(Henceforth we drop the subscript of PV .) The variable is B =
[

B0 B1 · · · Bp

]

∈
Mn,p.
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The problem (1.27) includes quadratic equality constraints and is therefore

nonconvex. The quadratic terms in B suggest the convex relaxation

minimize − log detX00 + tr(CX)

subject to P(D(X)) = 0

X � 0

(1.28)

with variable X ∈ Sn(p+1) (X00 denotes the leading n × n subblock of X). The

convex optimization problem (1.28) is a relaxation of (1.27) and only equivalent

to (1.27) if the optimal solution X has rank n, so that it can be factored as

X = BT B. We will see later that this is the case if C is block-Toeplitz.

The proof of exactness of the relaxation under assumption of block-Toeplitz

structure will follow from the dual of (1.28). We introduce a Lagrange multiplier

Z =
[

Z0 Z1 · · · Zp

]

∈ Mn,p for the equality constraints and a multiplier U ∈
Sn(p+1) for the inequality constraint. The Lagrangian is

L(X,Z,U) = − log detX00 + tr(CX) + tr(ZT P(D(X))) − tr(UX)

= − log detX00 + tr ((C + T(P(Z)) − U)X) .

Here we made use of the fact that the mappings T and D are adjoints, and that

P is self-adjoint. The dual function is the infimum of L over all X with X00 ≻ 0.

Setting the gradient with respect to X equal to zero gives

C + T(P(Z)) − U =











X−1
00 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0











.

This shows that Z, U are dual feasible if C + T(P(Z)) − U is zero, except for the

0, 0 block, which must be positive definite. If U and Z satisfy these conditions,

the Lagrangian is minimized by any X with X00 = (C00 + P(Z0) − U00)
−1 (where

C00 and U00 denote the leading n × n blocks of C and U). Hence we arrive at

the dual problem

maximize log det(C00 + P(Z0) − U00) + n

subject to Ci,i+k + P(Zk) − Ui,i+k = 0, k = 1, . . . , p, i = 0, . . . , p − k

U � 0.

If we define W = C00 + P(Z0) − U00 and eliminate the slack variable U , we can

write this more simply as

maximize log det W + n

subject to

[

W 0

0 0

]

� C + T(P(Z)).
(1.29)

Note that for p = 0 problem (1.28) reduces to the covariance selection prob-

lem (1.2), and the dual problem reduces to the maximum determinant comple-
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tion problem

maximize log det(C + P(Z)) + n,

which is equivalent to (1.3).

We note the following properties of the primal problem (1.28) and the dual

problem (1.29).

r The primal problem is strictly feasible (X = I is strictly feasible), so Slater’s

condition holds. This implies strong duality, and also that the dual optimum

is attained if the optimal value is finite.
r We have assumed that C ≻ 0, and this implies that the primal objective func-

tion is bounded below, and that the primal optimum is attained. This also

follows from the fact that the dual is strictly feasible (Z = 0 is strictly feasible

if we take W small enough), so Slater’s condition holds for the dual.

Therefore, if C ≻ 0, we have strong duality and the primal and dual optimal

values are attained. The Karush-Kuhn-Tucker (KKT) conditions are therefore

necessary and sufficient for optimality of X, Z, W . The KKT conditions are:

1. Primal feasibility.

X � 0, X00 ≻ 0, P(D(X)) = 0, (1.30)

2. Dual feasibility.

W ≻ 0, C + T(P(Z)) �
[

W 0

0 0

]

. (1.31)

3. Zero duality gap.

X−1
00 = W, tr

(

X

(

C + T(P(Z)) −
[

W 0

0 0

]))

= 0. (1.32)

The last condition can also be written as

X

(

C + T(P(Z)) −
[

W 0

0 0

])

= 0. (1.33)

1.3.3 Properties of block-Toeplitz sample covariances

In this section we study in more detail the solution of the primal and dual

problems (1.28) and (1.29) if C is block-Toeplitz. The results can be derived

from connections between spectral factorization, semidefinite programming, and

orthogonal matrix polynomials discussed in [37, §6.1.1]. In this section, we pro-

vide alternative and self-contained proofs.

Assume C = T(R) for some R ∈ Mn,p and that C is positive definite.
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Exactness of the relaxation
We first show that the relaxation (1.28) is exact when C is block-Toeplitz, i.e.,

the optimal X∗ has rank n and the optimal B can be computed by factoring X∗

as X∗ = BT B. We prove this result from the optimality conditions (1.30)–(1.33).

Assume X∗, W ∗, Z∗ are optimal. Clearly rankX∗ ≥ n, since its 0, 0 block is

nonsingular. We will show that C + T(P(Z∗)) ≻ 0. Therefore the rank of

C + T(P(Z∗)) −
[

W ∗ 0

0 0

]

is at least np, and the complementary slackness condition (1.33) implies that X∗

has rank at most n, so we can conclude that

rankX∗ = n.

The positive definitess of C + T(P(Z∗)) follows from the dual feasibility con-

dition (1.31) and the following basic property of block-Toeplitz matrices: If T(S)

is a symmetric block-Toeplitz matrix, with S ∈ Mn,p, and

T(S) �
[

Q 0

0 0

]

(1.34)

for some Q ∈ Sn
++, then T(S) ≻ 0. We can verify this by induction on p. The

property is obviously true for p = 0, since the inequality (1.34) then reduces to

S = S0 � Q. Suppose the property holds for p − 1. Then (1.34) implies that the

leading np × np submatrix of T(S), which is a block Toeplitz matrix with first

row
[

S0 · · · Sp−1

]

, is positive definite. Let us denote this matrix by V . Using

the Toeplitz structure, we can partition T (S) as

T(S) =

[

S0 UT

U V

]

,

where V ≻ 0. The inequality (1.34) implies that the Schur complement of V in

the matrix T(S) satisfies

S0 − UT V −1U � Q ≻ 0

Combined with V ≻ 0 this shows that T(S) ≻ 0.

Stability of estimated models
It follows from (1.30)–(1.33) and the factorization X∗ = BT B, that

(C + T(P(Z)))











I

AT
1
...

AT
p











=











Σ

0
...

0











, (1.35)

if we define Σ = B−2
0 , Ak = B−1

0 Bk. These equations are Yule-Walker equations

with a positive definite block-Toeplitz coefficient matrix. As mentioned at the
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end of section 1.2.1, this imples that the zeros of A(z) = I + z−1A1 + · · · + z−pAp

are inside the unit circle. Therefore the solution to the convex problem (1.28)

provides a stable AR model.

1.3.4 Summary

We have proposed convex relaxations for the problems of conditional ML and

ME estimation of AR models with conditional independent constraints. The two

problems have the same form with different choices for the sample covariance

matrix C. For the ME problem, C is given by (1.13), while for the conditional

ML problem, it is given by (1.15). In both cases, C is positive definite if the

information matrix H has full rank. This is sufficient to guarantee that the

relaxed problem (1.28) is bouned below.

The relaxation is exact if the matrix C is block-Toeplitz, i.e., for the ME prob-

lem. The Toeplitz structure also ensures stability of the estimated AR model. In

the conditional ML problem, C is in general not block-Toeplitz, but approaches

a block-Toeplitz matrix as N goes to infinity. We conjecture that the relaxation

of the ML problem is exact with high probability even for moderate values of N .

This will be illustrated by the experimental results in the next section.

1.4 Numerical examples

In this section we evaluate the ML and ME estimation methods on several data

sets. The convex optimization package CVX [38, 39] was used to solve the ML and

ME estimation problems.

1.4.1 Randomly generated data

The first set of experiments uses data randomly generated from AR models with

sparse inverse spectra. The purpose is to examine the quality of the semidefinite

relaxation (1.28) of the ML estimation problem for finite N . We generated 50

sets of time series from four AR models of different dimensions. We solved (1.28)

for different N . Figure 1.1 shows the percentage of the 50 data sets for which the

relaxation was exact (the optimal X in (1.28) had rank n.) The results illustrate

that the relaxation is often exact for moderate values of N , even when the matrix

C is not block-Toeplitz.

The next figure shows the convergence rate of the ML and ME estimates, with

and without imposed conditional independence constraints, to the true model, as

a function of the number of samples. The data were generated from an AR model

of dimension n = p = 6 with nine zeros in the inverse spectrum. Figure 1.2 shows

the Kullback-Leibler (KL) divergence [24] between the estimated and the true

spectra as a function of N , for four estimation methods: the ML and ME estima-
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Figure 1.2 KL divergence between estimated AR models and the true model (n = 6,
p = 6) versus the number of samples.

tion methods without conditional independence constraints, and the ML and ME

estimation methods with the correct conditional independence constraints. We

notice that the KL divergences decrease at the same rate for the four estimates.

However, the ML and ME estimates without the sparsity constraints give models
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with substantially larger values of KL divergence when N is small. For sample

size under 3000, the ME estimates (with and without the sparsity constraints)

are also found to be less accurate than their ML counterparts. This effect is well

known in spectral analysis (see, for example, [31, page 94]). As N increases, the

difference between the ME and ML methods disappears.

1.4.2 Model selection

The next experiment is concerned with the problem of topology selection in

graphical AR models.

Three popular model selection criteria are the Akaike Information Criterion

(AIC), the second-order variant of AIC (AICc), and the Bayes information cri-

terion (BIC) [40]. These criteria are used to make a fair comparison between

models of different complexity. They assign to an estimated model a score equal

to −2L, where L is the likelihood of the model, augmented with a term that

depends on the effective number of parameters k in the model:

AIC = −2L + 2k, AICc = −2L +
2kN

N − k − 1
, BIC = −2L + k log N.

The second term places a penalty on models with high complexity. When com-

paring different models, we rank them according to one of the criteria and select

the model with the lowest score. Of these three criteria, the AIC is known to

perform poorly if N is small compared to the number of parameters k. The AICc

was developed as a correction to the AIC for small N . For large N the BIC favors

simpler models than the AIC or AICc.

To select a suitable graphical AR model for observed samples of an n-

dimensional time series, we can enumerate models of different lengths p and

with different graphs. For each model, we solve the ML estimation problem, cal-

culate the AIC, AICc, or BIC score, and select the model with the best (lowest)

score. Obviously, an exhaustive search of all sparsity patterns is only feasible for

small n (say, n ≤ 6), since there are

n(n−1)/2
∑

m=0

(

n(n − 1)/2

m

)

= 2n(n−1)/2 (1.36)

different graphs with n nodes.

In the experiment we generate N = 1000 samples from an AR model of dimen-

sion n = 5, p = 4, and zeros in positions (1, 2), (1, 3), (1, 4), (2, 4), (2, 5), (4, 5) of

the inverse spectrum. We show only results for the BIC. In the BIC we substi-

tute the conditional likelihood discussed in section 1.2.2 for the exact likelihood

L. (For sufficiently large N the difference is negligible.) As effective number of

parameters we take

k =
n(n + 1)

2
− |V| + p(n2 − 2|V|)
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Figure 1.4 Seven best ranked topologies according to the BIC.

where |V| is the number of conditional independence constraints, i.e., the number

of zeros in the lower triangular part of the inverse spectrum.

Figure 1.3 shows the scores of the estimated models as a function of p. For each

p the score shown is the best score among all graph topologies. The BIC selects

the correct model order p = 4. Figure 1.4 shows the seven best models according

to the BIC. The subgraphs labeled #1 to #7 show the estimated model order



Graphical models of autoregressive processes 19

−1 0 1
−1

0

1

Figure 1.5 Poles of the true model (plus signs) and the estimated model (circles).

p, and the selected sparsity pattern. The corresponding scores are shown in the

first subgraph, and the true sparsity pattern is shown in the second subgraph.

The BIC identified the correct sparsity pattern. Figure 1.5 shows the location of

the poles of the true AR model and the model selected by the BIC.

In figures 1.6 and 1.7 we compare the spectrum of the model selected by the

BIC with the spectrum of the true model and with a nonparametric estimate of

the spectrum. The lower half of the figures show the coherence spectrum, i.e.,

the spectrum normalized to have diagonal one:

diag(S(ω))−1/2S(ω)diag(S(ω))−1/2,

where diag(S) is the diagonal part of S. The upper half shows the partial coher-

ence spectrum, i.e., the inverse spectrum normalized to have diagonal one:

diag(S(ω)−1)−1/2S(ω)−1 diag(S(ω)−1)−1/2.

The i, j entry of the coherence spectrum is a measure of how dependent com-

ponents i and j of the time series are. The i, j entry of the partial coherence

spectrum on the other hand is a measure of conditional dependence. The dashed

lines show the spectra of the true model. The solid lines in figure 1.6 are the

spectra of the ML estimates. The solid lines in figure 1.7 are nonparametric esti-

mates of the spectrum, obtained with Welch’s method (see [41, §12.2.2]) using a

Hamming window of length 40 (see [41, page 642]). The nonparametric estimate

of the partial coherence spectrum clearly gives a poor indication of the correct

sparsity pattern.

1.4.3 Air pollution data

The data set used in this section consists of a time series of dimension

n = 5. The components are four air pollutants, CO, NO, NO2, O3, and

the solar radiation intensity R, recorded hourly during 2006 at Azusa, Cal-
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Figure 1.6 Partial coherence and coherence spectra of the AR model: true spectrum
(dashed lines) and ML estimates (solid lines).
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Figure 1.7 Partial coherence and coherence spectra of the AR model: true spectrum
(dashed lines) and nonparametric estimates (solid line).
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Figure 1.8 Average of daily concentration of CO, NO, NO2, and O3, and the solar
radiation (R).

Rank p BIC score V
1 4 15414 (NO,R)

2 5 15455 (NO,R)

3 4 15461

4 4 15494 (CO,O3), (CO,R)

5 4 15502 (CO,R)

6 5 15509 (CO,O3), (CO,R)

7 5 15512

8 4 15527 (CO,O3)

9 6 15532 (NO,R)

10 5 15544 (CO,R)

Table 1.1. Models with the lowest BIC scores for the air pollution data, determined by

an exhaustive search of all models of orders p = 1, . . . , 8. V is the set of conditionally

independent pairs in the model.

ifornia. The entire data set consists of N = 8370 observations, and was

obtained from Air Quality and Meteorological Information System (AQMIS)

(www.arb.ca.gov/aqd/aqdcd/aqdcd.htm). The daily averages over one year are

shown in figure 1.8. A similar data set was studied previously in [15], using a

nonparametric approach.

We use the BIC to compare models with orders ranging from p = 1 to p = 8.

Table 1.1 lists the models with the best ten BIC scores (which differ by only

0.84%). Figure 1.9 shows the coherence and partial coherence spectra obtained
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Figure 1.9 Coherence (lower half) and partial coherence spectra (upper half) for the
first model in table 1.1. Nonparametric estimates are in solid lines, and ML estimates
in dashed lines.

from a nonparametric estimation (solid lines), and the ML model with the best

BIC score (dashed lines).

From table 1.1, the lowest BIC scores of each model of order p = 4, 5, 6 cor-

respond to the missing edge between NO and the solar radiation. This agrees

with the empirical partial coherence in figure 1.9 where the pair NO-R is weak-

est. Table 1.1 also suggests that other weak links are (CO,O3) and (CO,R). The

partial coherence spectra of these pairs are not identically zero, but are relatively

small compared to the other pairs.

The presence of the stronger components in the partial coherence spectra are

consistent with the discussion in [15]. For example, the solar radiation plays a

role in the photolysis of NO2 and the generation of O3. The concentration of CO

and NO are highly correlated because both are generated by traffic.

1.4.4 International stock markets

We consider a multivariate time series of five stock market indices: the S&P

500 composite index (U.S.), Nikkei 225 share index (Japan), the Hang Seng

stock composite index (Hong Kong), the FTSE 100 share index (United King-

dom), and the Frankfurt DAX 30 composite index (Germany). The data were
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Figure 1.10 Detrended daily returns for five stock market indices between June 4, 1997
and June 15, 1999.

recorded from June 4, 1997 to June 15, 1999, and were downloaded from

www.globalfinancial.com. (The data were converted to US dollars to take the

volatility of exchange rates into account. We also replaced missing data due to

national holidays by the most recent values.) For each market we use as variable

the return between trading day k − 1 and k, defined as

rk = 100 log(pk/pk−1), (1.37)

where pk is the closing price on day k. The resulting five-dimensional time series

of length 528 is shown in figure 1.10. This data set is a subset of the data set

used in [42].

We enumerate all graphical models of orders ranging from p = 1 to p = 9.

Because of the relatively small number of samples, the AICc criterion will be

used to compare the models. Figure 1.11 shows the optimal AICc (optimized

over all models of a given lag p) versus p. Table 1.2 shows the model order and

topology of the five models with the best AICc scores. The column labeled V
shows the list of conditionally independent pairs of variables.

Figure 1.12 shows the coherence (bottom half) and partial coherence (upper

half) spectra for the model selected by the AICc, and for a nonparametric esti-

mate.

It is interesting to compare the results with the conclusions in [42]. For exam-

ple, the authors of [42] mention a strong connection between the German and the

other European stock markets, in particular, the UK. This agrees with the high

value of the UK-GE component of the partial coherence spectrum in figure 1.12.

The lower strength of the connections between the Japanese and the other stock
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market return data.

Rank p AICc score V
1 2 4645.5 (US,JP), (JP,GE)

2 2 4648.0 (US,JP)

3 1 4651.1 (US,JP), (JP,GE)

4 1 4651.6 (US,JP)

5 2 4653.1 (JP,GE)

Table 1.2. Five best AR models, ranked according to AICc scores, for the international

stock market data.

markets is also consistent with the findings in [42]. Another conclusion from [42]

is that the volatility in the US stock markets transmits to the world through the

German and Hong Kong markets. As far as the German market is concerned, this

seems to be confirmed by the strength of the US-GE component in the partial

coherence spectrum.

1.4.5 European stock markets

This data set is similar to the previous one. We consider a five-dimensional time

series consisting of the following stock market indices: the FTSE 100 share index

(United Kingdom), CAC 40 (France), the Frankfurt DAX 30 composite index

(Germany), MIBTEL (Italy), Austrian Traded Index ATX (Austria). The data

were stock index closing prices recorded from January 1, 1999 to July 31, 2008,

and obtained from www.globalfinancial.com. The stock market daily returns
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Figure 1.12 Coherence and partial coherence spectra of international stock market
data, for the first model in table 1.2. Nonparametric estimates are shown in solid lines
and ML estimates are shown in dashed lines.

were computed from (1.37), resulting in a five-dimensional time series of length

N = 2458.

The BIC selects a model with lag p = 1, and with (UK,IT), (FR,AU), and

(GE, AU) as the conditionally independent pairs. The coherence and partial

coherence spectra for this model are shown in figure 1.13. The partial coherence

spectrum suggests that the French stock market is the market on the Continent

most strongly connected to the UK market. The French, German, and Italian

stock markets are highly inter-dependent, while the Austrian market is more

weakly connected to the other markets. These results agree with conclusions

from the analysis in [43].

1.5 Conclusion

We have considered a parametric approach for maximum likelihood estimation

of autoregressive models with conditional independence constraints. These con-

straints impose a sparsity pattern on the inverse of the spectral density matrix,

and result in nonconvex equalities in the estimation problem. We have formu-

lated a convex relaxation of the ML estimation problem and shown that the
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Figure 1.13 Coherence and partial coherence spectrum of the model for the European
stock return data. Nonparametric estimates (solid lines) and ML estimates (dashed
lines) for the best model selected by the BIC.

relaxation is exact when the sample covariance matrix in the objective of the

estimation problem is block-Toeplitz. We have also noted from experiments that

the relaxation is often exact for covariance matrices that are not block-Toeplitz.

The convex formulation allows us to select graphical models by fitting autore-

gressive models to different topologies, and ranking the topologies using infor-

mation theoretic model selection criteria. The approach was illustrated with

randomly generated and real data, and works well when the number of mod-

els in the comparison is small, or the number of nodes is small enough for an

exhaustive search. For larger model selection problems, it will be of interest to

extend recent techniques for covariance selection [12, 13] to time series.
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[11] N. Meinshausen and P. Bühlmann, “High-dimensional graphs and variable

selection with the Lasso,” Annals of Statistics, vol. 34, no. 3, pp. 1436–1462,

2006.

[12] O. Banerjee, L. El Ghaoui, and A. d’Aspremont, “Model selection through

sparse maximum likelihood estimation for multivariate Gaussian or binary

data,” Journal of Machine Learning Research, vol. 9, pp. 485–516, 2008.

[13] Z. Lu, “Adaptive first-order methods for general sparse inverse covariance

selection,” 2008, manuscript.

[14] D. Brillinger, “Remarks concerning graphical models for time series and

point processes,” Revista de Econometria, vol. 16, pp. 1–23, 1996.

[15] R. Dahlhaus, “Graphical interaction models for multivariate time series,”

Metrika, vol. 51, no. 2, pp. 157–172, 2000.

[16] R. Dahlhaus, M. Eichler, and J. Sandkühler, “Identification of synaptic con-

nections in neural ensembles by graphical models,” Journal of Neuroscience

Methods, vol. 77, no. 1, pp. 93–107, 1997.



28 References

[17] M. Eichler, R. Dahlhaus, and J. Sandkühler, “Partial correlation analysis for

the identification of synaptic connections,” Biological Cybernetics, vol. 89,

no. 4, pp. 289–302, 2003.

[18] R. Salvador, J. Suckling, C. Schwarzbauer, and E. Bullmore, “Undirected

graphs of frequency-dependent functional connectivity in whole brain net-

works,” Philosophical Transactions of the Royal Society B: Biological Sci-

ences, vol. 360, no. 1457, pp. 937–946, 2005.

[19] U. Gather and M. I. nd R. Fried, “Graphical models for multivariate time

series from intensive care monitoring,” Statistics in Medicine, vol. 21, no. 18,

pp. 2685–2701, 2002.
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