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Abstract— We discuss nonsymmetric interior-point methods with a given sparsity pattern. Specifically, suppdsed; €
for linear cone programs with chordal sparse matrix cone St whereS}, denotes the set of symmetric matrices of order

constraints. The algorithms take advantage of fast recursive  '\ip sparsity patterri/. The primal-dual pair (1)-(2) can
algorithms for evaluating the function values and derivatives then b itten in the f '” . valent f ;
for the logarithmic barrier functions of the cone of positive en be written In the tollowing equivalent form.

semidefinite matri(_:es with a given chordal _sparsity pattern, and minimize tr(CX)
of the corresponding dual cone. We provide numerical results . .

that show that our implementation can be significantly faster subject to tr(4;X) =b;, i=1,...,m ©)
than general purpose semidefinite programming solvers. As a X =0,

specific application, we discuss robust quadratic optimization.

and its dual
I. INTRODUCTION maximize b7y
A fundamental difficulty in solving large-scale semidefi- subjectto 77", yAi +5=C 4
nite programs (SDPs) S=0.
minimize tr(CX) Here the primal variablé& and the dual variabl& are both
subject to tr(4;X)=b;, i=1,....m (1) Mmatrices |r.1.the supqu@b, and X ~c 0 means thatX
X >0 has a positive semidefinite completion. Note that the cone

. _ _ . {X €8} | X =0} and its dual cond X € ST, | X =, 0}

is that the variableX € S™, a symmetric matrix of order,  are not identical for general sparsity patterns.

is generally dense, even when the data matrites’ < S™ In this paper we describe an interior-point solver for
are sparse and share a common sparsity pattern. Here fgplems of the form (3)-(4) with chordal sparsity pattevhs

generalized inequalityX - 0 means thatX’ must be in the \ve outline how chordal matrix techniques can be exploited
cone of symmetric positive semidefinite matrices of omler i nonsymmetric (primal or dual) interior-point methods.

denotedS’;. The dual of (1) is given by These chordal matrix techniques include efficient recersiv
maximize b7y algorithms for _evaluating b_grrier functions and their fiigt;_l
subject to Sy A; + S = C @) second denv_atwes. I_n addition we de_monstrate the ef_h)ylen_
g ;_07 of the techniques with some numerical examples arising in
- robust quadratic optimization.
where the variables arg € R™ and S € S". Unlike The rest of the paper is organized as follows. In Section I

the primal variableX, the dual slack variables has the \ye review chordal sparsity and define chordal matrix cones
same (aggregate) sparsity pattern @sand the matrices and their logarithmic barrier functions. In Section Il we
A;. This follows immediately from the equality constraintdescribe nonsymmetric interior-point methods for optmniz
in (2). The inherent sparsity of therefore makes it more tion over sparse matrix cones, and in Section IV we give

straightforward to exploit sparsity in dual methods than iome application examples as well as numerical results.
primal—-dual methods when the data matrices are sparse. Thgnclusions are given in Section V.

inverse ofS, however, is generally dense and it is needed to
evaluate the gradient and the Hessian of the dual logaithmi Il. CHORDAL MATRIX CONES

barrier function. A. Chordal Sparsity and Chordal Matrix Cones

To avoid storing the dense primal variabké, Fukuda Examples of matrices with chordal sparsity include matri-

f‘;‘d N_aka;aet al. 1], [f]’ Burert[r?], andeSrijunt(;ngsir(; ar;d ces with band structure, block-diagonal structure, andvarr
avasls [ ] propose O Pose e problems (1) an ( ) ructure. The sparsity pattefn of a symmetric matrix of
optimization problems in the subspace of symmetric meemc%rdem can be represented by an undirected gréphwith
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entries are assumed to be nonZerout the corresponding where L;; is theith diagonal element of.. The gradient of
self-loops are not included in the graph.) Diagonal blocks is V¢(S) = —Py-(S~!), and givenL, it can be computed
in V correspond to connected componentsGef. We say efficiently using a recursive algorithm without computing
that the sparsity patterfy is chordal if the graphGy is S—' which is generally dense.
chordal,i.e., every cycle of length greater than three has a 3) Hessian and inverse Hessian of dual barriefhe
chord. Acliquein Gy is a set of nodes that define a maximalHessian ofp at S, evaluated al” € S%, is given by
complete subgraph, and the nodes in a clique correspond to
a dense principal subblock in the sparsity pattern. Thefset o V2p(S)[Y] = Py (S~ty S™H). 9)
cligues can be organized in a so-called clique tree which is
used in chordal matrix algorithms. Clique trees of chorddBy exploiting chordal structure, this expression can bd-eva
graphs can be efficiently computed (in linear time) by theiated efficiently for large sparse matrices without forming
maximum cardinality searchlgorithm [5], [6], [7], and this S~'Y S~!. This requires the Cholesky factor 6f and the
also provides a test for chordality. projected inversePy (S—1). The algorithm is based on two
Now supposé/ is a chordal sparsity pattern. The chordarecursions on the clique tree, and these recursions form a
matrix cone Sy, | of positive semidefinite matrices with pair of adjoint linear operators that allow us to evalua th
sparsityV is then defined as Hessian in the factored forgi(S) = L.q4;(L£(S)). Moreover,
n " the linear operatoL is easily inverted, and this provides a
SV ={X €Sy [ X =0} () method for evaluating the inverse Hess®Ag(S)~[Y] at

The dual of this cone is the cone of matricesSip that have the same cost as the evaluation of the Hessian.

a positive semidefinite completion and it is defined as 4) Maximum determinant positive definite completion:
\ Given a matrixX € S{,, the maximum determinant positive
Ver = 1Pv(X) | X = 0} ®)  definite completion problem is defined as follows:

where Py (X) is the projection ofY" on St.. Note thatSy, |

andSy. ., are not self-dual in general. maximize - log det Z

subjectto Py, (Z) = X. (10)
B. Chordal Matrix Algorithms

A number of sparse matrix problems can be solveﬁg V' is chordal, the solution (if it exists) can be computed
P P . _from X via closed-form expressions [11]. Alternatively, the

— —1 i
sparsity pattern is chordal. These algorithms consist ef O%Cholesky factor ofi = 2~ can be computed recursively.

or two recursions over the clique tree, and they are degtrib { follows ”9”? convex dua_lllty thay hgs the sparsity pattern
. o : L . : , and satisfies the nonlinear equation
in more detail in [8]. An implementation is available in the
CHOMPACK I|b_rary [9]. _ _ _ Py(W™1) = X, (11)
In this section we give an overview of the sparse matrix
problems that can be solved efficiently with recursive algorhe gigorithm can therefore be interpreted as a method for

rithms, starting with the most well-known example.  gqying the nonlinear equation (11) with variabiié ¢ ST
1) Cholesky factorizationPositive definite matrices with 5) Value and gradient of primal barrierA logarithmic

a chordql sparsity pattern hgve a Cholesky factorizatiah wi barrier function for the conéy, ., can be obtained from
zero fill-in [5], [10]. Specifically, suppos& - 0 has a . Legendre transform of the barrigrof S, , [12, p. 48].

chordal sparsity patterfy, then there exists a permutation : : . :
) - ) Thus, the barrier for the primal cori, ., is defined as
matrix P and a lower triangular matrik such thatP” SP = P ot

T T T i e i
LL. and P(L+ L")P" has the sparsity patterﬁ.fi..Tms is 6o(X) = sup(—tr(XS) — $(S)). (12)
an important property of chordal graphs, and it is the basis 50
of the chordal matrix algorithms for the problems described i , o ,
henceforth. If the sparsity pattern is chordal, the optimization promblie

the definition (12) can be solved analytically. The soluii®n
a positive definite matrix € St that satisfies the equation
Py(S7') = X, ie, S~! is the maximum determinant
¢:Sy — R, ¢(S)=—logdetS (7) positive definite completion of{. We can now evaluate

. . . . Ay _ T
wheredom ¢ = Sy, , | (the interior ofSy; . ). The Cholesky ¢c(X) efficiently: first we computes = LL" and then
factorization ofS provides an efficient method for evaluating

2) Value and gradient of dual barrierThe barrier for the
coneSy, . is defined as

o(S), i.e, ¢e(X) =logdet S —n =2 log Li; —n. (13)
(S) = —23 log Ly, ®) =
i=1 The gradient of the primal barrier follows from the propesti

of the Legendre transform:
1If the sparsity pattern has a zero on its diagonal, the cporeding

row/column of the positive semidefinite dual varialsfemust be zero, and A
hence the row/column can be eliminated from the problem. V¢c(X) =-S5 (14)



6) Hessian and inverse Hessian of primal barriefhe and this gives rise t@ual scalingmethods. We will refer
Hessian of the primal barrier function is given by to the corresponding linearized equations as the primal or
V26, (X) = V%(S‘)‘H (15) dual Newton equations. We now describe how the Newton

R equations can be solved whéhis chordal.
where S is the maximizer in the definition ap.(X). This .
result follows from the standard properties of the Legendr%' Pr@al a_n.d Dual Methods _
transform. The Hessian of the primal barrier can therefere b By linearizing the central path equations (16a-c) around
evaluated using the method for evaluating the inverse Hessithe current iterateX, y, S) and eliminatingAS, we get the

of the dual barrier. primal Newton equations
C. Chordal Embedding tr(A;AX)=r;, i=1,...,m, (18a)
We have seen that it is possible to take advantage of m )
efficient recursive algorithms for evaluating barriers &meir > AyiAi — pV2¢(X)[AX] = R, (18b)
=1

first and second derivatives when the data matrides”

have a common chordal sparsity pattern. These chordailth variablesAX, Ay and residualsk and r;. This is a

matrix algorithms can also be applied to matrices with aystem ofm + |V| equations inm + |V| unknowns where

nonchordal sparsity pattern by constructing a chordal eni¥’| denotes the number of nonzeros in the lower triangle of

bedding or triangulation of the nonchordal sparsity patter V. The Newton equations (18a-b) can be further reduced by

This amounts to adding edges to the sparsity graph to makéminating AX. This yields a system

it chordal. Chordal embedding techniques can also be used Ay — 19

to “shape” the clique tree to improve the computational vy=9 (19)

efficiency of the algorithms. The efficiency depends largelwhere H is positive definite with entries

on the clique tree, and for example, merging cliqgues with 9 . o

large relative overlap can often improve performance. Hyj = tr (A;V2o(X) 7 Ay]), d,j=1,...,m, (20)

A chordal embedding of a nonchordal sparsity pattern cagnd g, = yur; + tr(A4;V2¢.(X)~1[R]).

easily be constructed by computing a symbolic Cholesky | the following we outline two methods for solving (19).

factorization of the sparsity pattern. The amount of fill-inThe first method is based on the Cholesky factorizatioi of

(i-e. the number of added edges) generally depends heavilind hencel must be formed explicitly) whereas the second

on the ordering of the nodes, and fill-in reducing orderingsmethod avoids explicit calculation off by exploiting the

such as theapproximate minimum degre@MD) ordering  factorizationV2¢, (X )1 = V2¢(S) = Laq;o L. We remark

[13], are often used in practice. that the dual scaling Newton equations can be derived and
I1l. INTERIOR-POINT METHODS solved in a similar way, and the complexity is exactly the

The chordal techniques discussed in the previous sectiGA®

. - . -~ 1) Cholesky factorization:The first method explicitly
provide an efficient way to evaluate barriers and their fwséom utes the lower trianale d&. column by column. and
and second derivatives when the underlying sparsity p:atte{ P 9 ' y j

. . . . : hen solves (19) using a dense Cholesky factorization. We
is chordal. In this section we outline how these techmque@stin Lish between two techniaues for computing column
can be exploited in interior-point methods for the pair of, gu ; ; que puling c¢
cone programs (3)-(4) 7. Thg first te_chnlque (T1) is a straightforward evaluation of
: (20),i.e., we first computd/ = V2¢(X)~'[4;], and then we
A. The Central Path compute the inner products 6f and A4, ..., A,,. Although
The central path defines an arc of strictly feasible pointdhe algorithm for evaluating’*¢(X) ™ [4;] exploits chordal
and interior-point methods make use of it to steer the itemat SParsity, this technique can be inefficient whénis much

toward the solution. For the pair of cone programs (3)-(4)nore sparse thal’ (e.g.if A; only has a few nonzeros).

the central path is defined as the set of poifits-. 0, v, The second technique (T2) is based on the expansion
S = 0 that sati . .
= 0 that satisfy Hy= 3 (Ajpg(tr(A:Py (5 el $7Y)  (21)
tr(A4;X)=0b;, i=1,...,m, (16a) (p,a)€l;

m where the sefl; indexes the nonzero entries iy, ande,
> yidi+S=0C, (16b) s the pth unit vector. Thus, if4; only has a small number
=1 of nonzeros columns, it is advantageous to precompute the
S = —uVo.(X) (16¢c) vectorsu, = L~TL7'e, (where S = LLT) that occur

wherey is a positive parameter. Interior-point methods thagD(gi?é-EgiS technique is similar to the technique used in

compute. search (_jlrectlons based on I|.near|2|ng (16a-F:) areUsing the Cholesky factorization method, the columns of
called primal scaling methods. An equivalent formulation . .
H can be computed by selecting one of the two techniques

can be obtained by replacing (16c) with the equation on a column-by-column basis, and a threshold on the number
X = —uVe(S), (17) of nonzero columns iM; can be used as a simple heuristic



for selecting which technique to apply when computing th®. Implementation
jth column.

2) QR decomposition:The second method for solving a
the reduced Newton system (19) avoids the explicit calc

We have implemented primal and dual scaling variants of
n interior-point method based on the techniques described
: -, R 1 % this section. Our preliminary implementation is a fesesib
IatzlonAof H by exploiting the factorizatio"¢.(X)™" = a1t harrier method and it is available in the form of a Pyitho
VEG(S) = Lagjo L, i€, extension namedMcCP. It relies on the Python extensions
Hij =tr (L(A)L(4))). (22) cvxopT1.1.2[15] andcHOMPACK 1.1 [9] for linear algebra

) o .. and chordal matrix computations. The algorithm first tests
This factorization allows us to expres$ as H = ATA 3 nymber of heuristics in order to find a feasible starting
where A is a |[V| x m matrix with columnsvec(L(4:)).  point, and if it fails, a phase | problem is solved. Additibna

Herevec(-) is a linear operator that converts matricesSii  jmplementation details and extensive benchmarks can be
to vectors inRIV!, scaled such thatec(U1)"vec(Uz) =  found in [16].

tr(U,Uz). Thus, instead of computing the Cholesky factor-
ization of H, we can compute a QR decomposition 4f IV. NUMERICAL EXPERIMENTS

and use it to solve (19). This is important since the explicit , i
computation ofH is a source of numerical instability. Sparsity patterns with block-arrow structure are chordal,
Finally we mention that this method is a variation ofand matrix inequalities with block-arrow patterns arise in
the augmented systemapproach in linear programming _several appli(_:ations. Many robust counterparts of quadrat
interior-point methods. In semidefinite programming theslo Ically constrained quadratic programs (QCQPs) or second-
of stability in forming H is more severe than in linear Order cone programs (SOCPs) fall in this category [17],
programming [14], but the augmented systems approach [A8], [19]. If the “width” of the arrow is not too large, it is _
generally computationally intractable due to the largee sizOTt€n advantageous to exploit chordal structure. Here wie wi
of the Newton equations. However, since we work in thd2ke robust quadratically constrained quadratic programgm

lower dimensional subspa&{. in our present context, the (QCQP) and robust least-squares (RLS) as examples, and

augmented system approach is often feasible. we demonstr_ate with some numerical gxpgriments that the
chordal matrix algorithms can lead to significant computa-
C. Complexity tional savings. Numerical experiments on different sets of

The cost of solving the Newton system (18) is dominate@enchmarks have been reported in [16].
by the cost of solving (19). Recall that the first method We conducted all experiments on a PC with an Intel
explicitly forms and factorsH whereas the second methodQ6600 quad core CPU, 4 GB of memory, and running
forms and factors the matri¥d. Here we describe the cost Ubuntu 9.10. In the experiments we used both the Cholesky
of the two methods. and the QR variants o6McP. For comparison, we used
1) Cholesky factorization:The cost of formingH/ de- the SDP solversospp 5.8 [20], sDPA-C 6.2.1 [21], and
pends on the sparsity of the data matrices as well tfgDPT3 4.0b [22].DsDPimplements a dual-scaling algorithm
technique used to fornkl. Forming H using technique T1 that exploits sparsity in the dual slack variable, and theeso
costs at mostnK + O(m?|V|) where K is the cost of makes use of low rank factorizations of the data matrices as
evaluatingV2¢.(X)~'[A;]. The second tern®(m?|V|) is well as an iterative method for solving the reduced Newton
the worst-case complexity assuming that the data matric8¥stem.SDPA-C implements a primal—-dual path-following
are all “dense” relative td/. This term is negligible if the method, and likesmcp, it exploits chordal structure. Finally,
data matrices only have a small number of nonzeros. WitpDPT3 is a Matlab-based implementation of a primal-dual
technique T2, the dominating cost of computing the columngredictor-corrector path-following method for generahico
of H is solving the system& L7 u;, = e;, for each nonzero Optimization problems.
column in A;. The cost therefore mainly depends |&f] and
the number of nonzero columns in the data matrices. T2 f Robust Quadratic Programming
generally many times faster than T1 when the data matrices|n our first example we look at quadratic programs with

have only a few nonzeros. The matiik is generally dense, one or more uncertain convex quadratic constrains of the
and hence the cost of factorizinfg is O(m?). form

The costK depends on the clique treeeg( the structure 2T AT Az < 2072 + d. (23)
of V) in a complicated way, but for special cases such as -
band and block-arrow matrices we ha\ié| = O(n) and Here the problem datal € R**9, b € R, andd € R are
K = O(n), and hence in these cases the cost of one iterati@imcertain. If we choose as uncertainty set a bounded etipso
is linear in n.

2) QR decompositionSolving (19) via a QR decomposi- T -
tion of A costsO(mK) to form A andO(m?|V|) to compute - { (4,5,d) + Zui(Ai’ birdi)
the QR decomposition. In particular, the cost of one iterati =t
is also linear inn for special cases such as band and blockwhere A, b, d are nominal values, the robust counterpart of
arrow matrices, when the other dimensions are fixed. the uncertain quadratic constraint (23) can be formulated a

ulu < 1} (24)



TABLE I: Average time per iteration (seconds) for randomly
generated uncertain QCQPs with= 100 andr = 5.

P SMCP-CHOL. SMCP-QR DSDP SDPAC SDPT3

20,

30

200 0.25 0.13 0.20 0.70 0.54

400 0.51 0.26 0.91 1.4 1.7 40

800 1.0 0.53 5.1 3.1 5.8 50

1600 2.1 1.2 33.6 6.5 21.6 L.

3200 4.3 2.7 - 13.8 90.2 60

708 ., : . 4

.10 20 30 40 50 60 70. 10 20 30 40 50 60 70.
(a) Before reordering. (b) After reordering.

a linear matrix inequality (LMI) [18]
Fig. 1. Sparsity pattern associated with an RLS problem

tI G(x)T h(z) instance with dimensiong = 25, ¢ = 10, andr = 50.
G(z) I Az =0 (25)
W)™ (Az)T f(z) —t
B. Robust Least-Squares

with variablest € R andz € R? and where Our next experiment is based on robust least-squares
which is a special case of robust QCQP. Suppose we want to
G(z) = [Az - Aca], minimize || Az — b||, where A € U is uncertain but assumed
h(z) = (bFz4dy/2,... 00z +d,/2), to lie in the ellipsoidal uncertainty set
fl@) = 2Tz +d U={A+w A+ +ud | |ul2 <1}  (26)

The sparsity pattern associated with the LMI (25) has blockdere A € R”*“ is a known nominal coefficient matrix, ¢
arrow structure, and it can be either chordal or nonchorddR” iS & known vector, and the matricey < R”*? define
depending on the structure af(z) (which, in turn, is the structure of the sét. The RLS problem seeks a solution
determined by the choice of uncertainty set). It is typicall © € R4 that minimizes the worst-case error which is defined
worthwhile to exploit chordal sparsity in two cases@fr) as

is dense ang >> r or r > p, an efficient chordal embedding ewc(z) = sup [|G(@)u + h(z)|2, (27)
can easily be constructed by filling the smaller of the two lull2<1 )

diagonal blocks. This chordal embedding will have cliquewhereG(z) = [Ayz --- A,z] andh(xz) = Az —b. The RLS

of order at mostmin(r + 1,p + 1). If on the other hand problem can be cast as an SDP [17]:

G(z) is sparse, the sparsity pattern may have an efficient minimize ¢4 A

chordal embedding with small cligues even wherx 7. " 0 h(z)T

As a special case we mention thatd{x) has at most one ; (28)
P i ) , subjectto | 0 M G@)T| =0

nonzero entry in each column for atl (or alternatively, at hz) G(z) I -

most one nonzero entry in each row), the sparsity pattern is _
chordal and the cliques are of order at most three. Here Wéth variablest, A € R andz € R?. Note that the SDP (28)
will consider a numerical experiment withi(z) dense, and hasm = ¢+2 variables and an LMI of ordet = p+r+1.

in the next Section we |Ook at an examp|e Whé}‘er) is In the fO”OWing eXperiment we COﬂSiEier a fam”y of RLS

sparse and the LMI has a chordal sparsity pattern. problems, defined as follows. Supposgehas+ uncertain
In our first experiment we are interested in the averag@htiies indexed byiy, ji), ..., (i, jr). Furthermore, let the

CPU time per iteration as a function gf for randomly matricesAs, ..., A, be defined as

generated uncertain QCQPs withr fixed and withr small. N Q=i =

Specifically, we minimize a linear objectivg (z) = ¢« (Ak)ij = 0 otherv’v'se k=1,....,r, (29

subject to a single uncertain quadratic constraint of tmfo '

(23). For this experiment we chooge= 100, » = 5, and wherey > 0 is a parameter that controls the size of the
generate problem instances with b, A; random,b; = 0, uncertainty set{. The resulting SDP has a chordal sparsity
d =1, andd; = 0. The results are listed in Table I. It is pattern with|V'| = 2p-+2r+ 1 nonzeros in the lower triangle
easily verified that average time per iteration grows royghlof V/, and furthermore, the sparsity pattern pasr cliques
linearly for smcp. Furthermore, notice tha&&DPA-c, which  of order two. An example of a sparsity pattern from an RLS
also exploits chordal structure, is quite fast as well. Tteo problem is shown in Fig. 1.

solvers scale quadratically or worse, and hence the beffiefit 0 As in the previous experiment, we are interested in the
exploiting chordal sparsity becomes evident folarge. We computational cost per interior-point iteration as a fiorct
remark thatbspp crashed on the largest problem instanceof p. We generate random problem instances as follows. The
Finally we note that having multiple uncertain quadraticsectord is computed a$ = Az + ocw where A is a (dense)
constraints gives rise to an LMI with block-diagonal sturet  random matrix,z and w are random vectors, and is a
and with blocks of the form (25). positive parameter. The number of uncertain entries 66
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