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Abstract

We apply semidefinite programming to an estimation problem in optical lithogra-
phy. In this problem, an approximate model of the imaging system is modified so that
it satisfies a set of calibration measurements, with the purpose of incorporating into
the model distortion effects due to diffusion and etching. The estimation problem is
formulated as a semidefinite program, and several techniques are presented for exploit-
ing problem structure in an interior-point method for solving it. These include efficient
methods for handling upper bounds on the matrix variables, symmetry constraints on
the variables, and low-rank structure in the coefficient matrices.

1 Introduction

We present a method for estimating a nonlinear model of the form

I(x) =
r∑

k=1

|(φk ∗ u)(x)|2 , (1)

based on measurements of the input u and the output I, and on prior knowledge of the
underlying system. The independent variable x is typically one- or two-dimensional, the
functions φk and u can be real- or complex-valued, and φk ∗ u denotes the convolution of φk

and u. The functions φk are the model parameters to be estimated.
The paper is motivated by an application in optical lithography for semiconductor man-

ufacturing. In this context u is the input image, to be transferred from an integrated circuit
mask to a silicon wafer by the lithographic process, I is the intensity of the output image
on the wafer, and x is a two-dimensional vector of coordinates. Models of the form (1)
were introduced by Hopkins to describe partially coherent optical systems [Hop51]. In the
problem of interest here, we assume that an accurate Hopkins model of the optical system is
available, and our goal is to adjust the model parameters to make it consistent with a set of
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measured data. This adjusted or calibrated model is more accurate because it incorporates
additional distortions due to etching and diffusion that are difficult to model analytically.
More details and background about the application are presented in section 2.

The method we present is based on a formulation of the problem as a semidefinite program

(SDP), i.e., a convex optimization problem with a linear cost function and linear matrix
inequality constraints. Although several high-quality packages for solving SDPs are available,
the SDPs that arise in the lithography application are typically very large, and non-standard
techniques are necessary to solve them. We present a customized primal-dual interior-point
method that exploits three types of problem structure: symmetries in the matrix variable,
upper bounds on the matrix variable, and rank-one structure in the coefficient matrices.
The symmetry constraints result from the invariance of the output intensity at a point
with respect to reflections of the input image about the two coordinate axes through the
point. Using elementary arguments from linear algebra, we exploit this invariance property
to reduce the dimension of the optimization variable. The same result can be obtained by
more general algebraic techniques due to Gatermann and Parrilo [GP04].

Second, we describe an efficient method for handling upper bounds on the variables in
a standard form SDP. For dense, unstructured SDPs this results in a method with roughly
the same computational cost as for the corresponding problem without upper bounds. This
technique was also obtained independently by Toh et al. [TTT07].

A final reduction in complexity is achieved by exploiting rank-one structure in the SDP
coefficient matrices [BYZ00, RV06].

The paper is organized as follows. Section 2 describes the lithography application in
more detail. In section 3 we formulate the model calibration problem as an SDP. In order to
simplify the notation, we first consider one-dimensional systems, and then extend the formu-
lation to two dimensions. In section 4 we discuss the implications of symmetry constraints of
the form X = PXP where P is a symmetric permutation matrix, and show that they allow
us to reduce the size of the problem by a change of variables. In section 5 we present a fast
solution method for standard form SDPs with upper bounds on the variables. An example
is given in section 6.

Notation Sn denotes the set of symmetric real matrices of order n. In is the identity matrix
of order n, and Jn is the matrix In with the order of its columns reversed. The subscripts
in In and Jn are omitted if the dimension is clear from the context. For a symmetric matrix
X, X � 0 means X is positive semidefinite. For a vector x, x � 0 means the components
of x are nonnegative. For a vector x ∈ Rn, diag(x) is the diagonal matrix with x on its
diagonal. If X ∈ Sn, diag(X) is the vector of the diagonal elements of X. Z is the set of
integers, R is the set of real numbers, and C is the set of complex numbers.
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Figure 1: Optical lithography system.

2 Model calibration in optical lithography

2.1 The Hopkins model

In integrated circuit manufacturing, optical lithography is used to transfer an input pattern
from the mask to the photoresistive material that covers the silicon wafer (see figure 1). A
common model for the optical system is the Hopkins model [Hop51, Won01]

I(x) =

∫∫
u(x′)u∗(x′′)K(x− x′)K∗(x− x′′)J (x′ − x′′)dx′dx′′. (2)

Here I(x) is the output image intensity at position x in the image plane, u(x′) is the value
of the input image at point x′, K is the impulse response or point spread function (PSF)
of the system, and J is the mutual intensity function of the illumination. The superscript
in u∗ denotes the complex conjugate. The function J models the coherence properties of
the illumination source. If the illumination is coherent, we have J (x) = 1 and the Hopkins
model reduces to

I(x) =

∣∣∣∣
∫

K(x− x′)u(x′)dx′
∣∣∣∣
2

= |(K ∗ u)(x)|2 .

If the illumination is incoherent, we have J (x) = δ(x), where δ(·) is the Dirac impulse, and

I(x) =

∫
|K(x− x′)u(x′)|2 dx.

Situations in between are called partially coherent.

2.2 Optimal coherent decomposition

If we define W as
W(ξ, ξ′) = K(ξ)K∗(ξ′)J (ξ′ − ξ), (3)

the Hopkins model can be written as

I(x) =

∫∫
u(x′)W(x− x′, x− x′′)u∗(x′′)dx′dx′′.
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For practical purposes (for example, fast simulation algorithms) it is often useful to make a
low-rank approximation of W . Optimal coherent decompositions [PK94, PGP97] are obtained
by truncating the eigenvalue expansion of W

W(ξ, ξ′) =
∞∑

k=1

λkψk(ξ)ψ
∗
k(ξ

′),

after the first few (largest) eigenvalues:

W(ξ, ξ′) ∼=
r∑

k=1

λkψk(ξ)ψ
∗
k(ξ

′). (4)

This approximation has an interesting physical interpretation. If we define φk =
√
λkψk,

then the output image intensity of the truncated model can be written as

I(x) =
r∑

k=1

|(φk ∗ u)(x)|2 , (5)

the sum of the image intensities of r coherent sources [RDP+89].

2.3 The calibration problem

In practice the output pattern is inevitably a distorted version of the input mask. As feature
sizes have shrunk, accurate models for these distortions have become increasingly important
for simulation and for optical proximity correction, a technique by which the input mask
is predistorted to bring the printed pattern closer to the desired pattern. Two effects con-
tribute to pattern distortions in optical lithography (see figure 2): the optical diffraction in
the imaging system, which is accurately modeled by the Hopkins model, and the distortions
introduced during the photoresist and etching process, which are much harder to model an-
alytically. To obtain a realistic model of these two effects, one can start from the Hopkins
model of the optical system, and perturb it to fit experimental data that include distor-
tions from resist and etching effects. We refer to this problem as model calibration. Model
calibration is a challenging multidimensional and nonlinear system identification problem.
(Note that the Hopkins model itself is already nonlinear.) Moreover in practice the available
information from measurements is very limited. Often it is only possible to measure whether
the output at a given point exceeds a certain threshold or not, so the estimation problem is
very underdetermined.

3 Semidefinite programming formulation

In this section we formulate the calibration problem as a semidefinite programming problem.
We limit the discussion to models of the form (5) with real-valued functions φk and u. The
extension to complex-valued functions is straightforward.
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Figure 2: Model of the optical lithography process.

3.1 One-dimensional discrete systems

We first give the details for a discrete one-dimensional system of the form (5), in which x
takes values in Z. We also assume that the input u and the impulse responses φk are real,
i.e., u : Z → R, φk : Z → R and I : Z → R, and that φk has finite length: φk(x) = 0 for
|x| > p. (This last assumption involves a truncation error that is small for sufficiently large
p.) We can then write (5) as

I(x) =
r∑

k=1

|(φk ∗ u)(x)|2 =
r∑

k=1

(
p∑

ξ=−p

φk(ξ)u(x− ξ)

)2

=




u(x− p)
u(x− p+ 1)

...
u(x+ p)




T

W




u(x− p)
u(x− p+ 1)

...
u(x+ p)




where

W =
r∑

k=1




φk(p)
φk(p− 1)

...
φk(−p)







φk(p)
φk(p− 1)

...
φk(−p)




T

. (6)

Our goal is to estimate W from input-output measurements. We impose several conditions
on W .
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• W must be symmetric positive semidefinite:

W � 0.

This follows from the definition (6) and guarantees that I(x) ≥ 0 for all u.

• W must be persymmetric (symmetric with respect to the antidiagonal), i.e.,

JWJ = W, (7)

where J is the identity matrix with the order of its columns reversed. This symmetry
property is equivalent to requiring that the output intensity I(x) at position x is
invariant with respect to a reversal of the input sequence about the position x.

• W should be close to a prior model W0, for example, the Hopkins model of the imaging
system excluding etching and diffusion effects. We express this condition by imposing
a limit ǫ on the deviation from W0 in matrix (spectral) norm:

‖W −W0‖2 ≤ ǫ.

The choice of norm in this inequality has consequences for the numerical solution of
the problem. In section 5 we will describe in detail how the bound can be handled if
the spectral norm is used. A bound on the Frobenius norm, for example, would require
different techniques. (Note however that if a penalty term ‖W −W0‖2

F is added to the
objective, we obtain a problem that to which the techniques in [TTT07] apply.)

• W must be consistent with K input-output measurements. We assume that each
measurement provides an upper and/or lower bound on the intensity I(x) at some
position x, in response to a given input. The measurements will be represented as
vector inequalities

bl � diag(UTWU) � bu,

where bl, bu ∈ RK and U ∈ R(2p+1)×K . The kth inequalities on both sides specify
upper and lower bounds

bl,k ≤ I(x) ≤ bu,k,

where I(x) is the intensity at position x resulting from the input values



u(x− p)
u(x− p+ 1)

...
u(x+ p)


 = Uk

if Uk is column k of U , and x is the point at which the kth intensity measurement was
made. (Note that the kth component of diag(UTWU) is equal to UT

k WUk.) We allow
bl,k = bu,k, in which case the constraints reduce to an equality. We also allow bu,k = ∞
if there is no upper bound and bl,k = −∞ if there is no lower bound.
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Several useful objectives can be represented as linear functions tr(DW ). One example is
simply the trace trW , which can be minimized to find low-rank models W (see [FHB04]).
Another interesting choice is

D =




1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 2 −1
0 0 0 · · · −1 1




, (8)

for which we have

tr(DW ) =
r∑

k=1

p∑

x=−p+1

(φk(x) − φk(x− 1))2.

This can serve as a measure of non-smoothness of the model.
To summarize, we are led to the following semidefinite program in the variable W :

minimize tr(DW )
subject to W � 0

JWJ = W
−ǫI � W −W0 ≤ ǫI
bl � diag(UTWU) � bu,

(9)

where D, U , bl, bu, ǫ, and the prior model W0 are given.

3.2 Two-dimensional discrete systems

The problem formulation of the previous section readily extends to two-dimensional sys-
tems. Suppose u : Z2 → R, φk : Z2 → R, and I : Z2 → R, and that φk(x1, x2) = 0 if
max{|x1|, |x2|} > p. The expression (5) can be written as a quadratic form

I(x) =
r∑

k=1

|(φk ∗ u)(x)|2 =
r∑

k=1

(
p∑

ξ1=−p

p∑

ξ2=−p

φk(ξ)u(x− ξ)

)2

= vec(u, x)TW vec(u, x) (10)

where

W =
r∑

k=1

ΦkΦ
T
k (11)

and vec(u, x) and Φk are vectors of length (2p+ 1)2 with components

vec(u, x)p+1+i+(2p+1)(p+j) = u(x1 + i, x2 + j)

(Φk)p+1+i+(2p+1)(p+j) = φk(−i,−j)
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for i = −p, . . . , p, j = −p, . . . , p. With this notation, the SDP formulation (9) still applies,
except for the bisymmetry constraint JWJ = W , which has to be replaced by a more
complicated symmetry relation. We will require the intensity equation (10) to be invariant
with respect to reflections of u about the two axes through x. In other words, we impose
the condition that for all u,

vec(u, x)TW vec(u, x) = vec(ũ, x)TW vec(ũ, x) = vec(û, x)TW vec(û, x)

where ũ and û are the image u reflected about the horizontal, respectively vertical, axis
through x:

ũ(x1 + i, x2 + j) = u(x1 − i, x2 + j), û(x1 + i, x2 + j) = u(x1 + i, x2 − j),

for i = 1, . . . , p, j = 1, . . . , p. We have

vec(ũ, x) = (I2p+1 ⊗ J2p+1)vec(u, x), vec(û, x) = (J2p+1 ⊗ I2p+1)vec(u, x),

where ⊗ denotes the Kronecker product. The symmetry constraint therefore translates into
two equality constraints on W :

(I ⊗ J)W (I ⊗ J) = (J ⊗ I)W (J ⊗ I) = W,

(where I = I2p+1, J = J2p+1). We obtain the SDP

minimize tr(DW )
subject to W � 0

(I ⊗ J)W (I ⊗ J) = (J ⊗ I)W (J ⊗ I) = W
−ǫI � W −W0 ≤ ǫI
bl � diag(UTWU) � bu.

(12)

4 Symmetry constraints

In this section we use the symmetry constraints in (9) and (12) to reduce the size of the
matrix variable W , and therefore the complexity of solving the SDPs. Although the result
can be obtained as a special case of [GP04], we give a different argument based on elementary
linear algebra.

We first derive a more general result. Suppose a (possibly non-symmetric) real matrix
X satisfies

PXP = X

where P is a symmetric permutation matrix. A symmetric permutation matrix satisfies
P 2 = I and therefore has eigenvalues ±1, so it can be written as

P = P1P
T
1 − P2P

T
2
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where P T
1 P1 = I, P T

2 P2 = I, P T
1 P2 = 0. The columns of P1 are the eigenvectors with

eigenvalue 1; the columns of P2 are the eigenvectors with eigenvalue −1. Define

X̃ =
[
P1 P2

]T
X
[
P1 P2

]
.

The relation PXP = X is equivalent to

X̃ =

[
I 0
0 −I

]
X̃

[
I 0
0 −I

]
.

Therefore X̃ is block-diagonal with two diagonal blocks, i.e., X must be of the form

X =
[
P1 P2

] [ X1 0
0 X2

] [
P1 P2

]T
. (13)

4.1 Bisymmetric matrices

A matrix X is persymmetric if XJ is symmetric. A matrix is bisymmetric if it is symmetric
and persymmetric, i.e., X = XT and X = JXJ .

Since J is a symmetric permutation matrix it follows from (13) that a bisymmetric matrix
X ∈ SN can be expressed as

X =
[
Pe Po

] [ Xe 0
0 Xo

] [
Pe Po

]T
(14)

where Xe ∈ S⌈N/2⌉, Xo ∈ S⌊N/2⌋, and Pe ∈ RN×⌈N/2⌉, Po ∈ RN×⌊N/2⌋ are defined as

Pe =
1√
2

[
IN/2

JN/2

]
, Po =

1√
2

[
IN/2

−JN/2

]
(15)

if N is even, and

Pe =
1√
2



I(N−1)/2 0

0
√

2
J(N−1)/2 0


 , Po =

1√
2




I(N−1)/2

0
−J(N−1)/2


 (16)

if N is odd. Note that Pe
TPe = I, Po

TPo = I and Pe
TPo = 0, and that JPe = Pe, JPo = −Po.

Using the decomposition (14) we can relate the eigendecomposition of X to the eigen-
decomposition of Xe and Xo. Suppose Xe = VeΛeV

T
e and Xo = VoΛoV

T
o with Ve and Vo

orthogonal and Λe and Λo diagonal. Then

X =
[
PeVe PoVo

] [ Λe 0
0 Λo

] [
PeVe PoVo

]T
.

The columns of PeVe and PoVo in this eigenvalue decomposition provide a set of eigenvectors
of X with even and odd symmetry: the columns of PeVe are even, while the columns of PoVo

are odd.
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The even-odd decomposition of bisymmetric matrices can be used to reduce the SDP (9)
to an equivalent problem of smaller size. Here we have N = 2p + 1 and the constraint
W = JWJ implies that

W = PeWePe
T + PoWoPo

T

for some We ∈ Sp+1, Wo ∈ Sp, if we define Pe, Po as in (16) with N = 2p+1. We will assume
that W0 has the same symmetry, and write

W0 = PeW0,ePe
T + PoW0,oPo

T .

The SDP (9) then reduces to

minimize tr(DeWe) + tr(DoWo)
subject to We � 0, Wo � 0

−ǫI � We −W0,e � ǫI, −ǫI � Wo −W0,o � ǫI
bl � diag(Ue

TWeUe) + diag(Uo
TWoUo) � bu.

where De = Pe
TDPe, Do = Po

TDPo, Ue = Pe
TU , Uo = Po

TU . This reformulation reduces
the number of variables (the elements of We and Wo) to about one half of the number of
variables in W . In §5 we will see that the cost of solving the SDP is reduced by about 1/4.
Alternatively, we can interpret this technique as a change of variables

W :=
[
Pe Po

]T
W
[
Pe Po

]

that transforms the SDP (9) into one of the form

minimize tr(DW )
subject to W � 0

−ǫI � W −W0 ≤ ǫI
bl � diag(UTWU) � bu.

(17)

where D, W , W0 are symmetric block-diagonal matrices with two diagonal blocks, one of
order p+ 1 and one of order p.

4.2 Symmetry in two dimensions

We now extend the result of the previous section to the symmetry constraints in (12).
Suppose a matrix X ∈ SNM satisfies

X = (JN ⊗ IM)X(JN ⊗ IM) = (IN ⊗ JM)X(IN ⊗ JM). (18)

Define Pe, Po as in (15) and (16), and Qe, Qo as

Qe =
1√
2

[
IM/2

JM/2

]
, Qo =

1√
2

[
IM/2

−JM/2

]
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if M is even, and

Qe =
1√
2



I(M−1)/2 0

0
√

2
J(M−1)/2 0


 , Qo =

1√
2




I(M−1)/2

0
−J(M−1)/2




if M is odd. The matrix

[
Pe ⊗Qe Pe ⊗Qo Po ⊗Qe Po ⊗Qo

]

is orthogonal, and its columns are eigenvectors of the symmetric permutation matrices JN ⊗
IM and IN ⊗ JM :

(JN ⊗ IM)(Pe ⊗Qe) = Pe ⊗Qe, (JN ⊗ IM)(Pe ⊗Qo) = Pe ⊗Qo,

(JN ⊗ IM)(Po ⊗Qe) = −Po ⊗Qe, (JN ⊗ IM)(Po ⊗Qo) = −Po ⊗Qo,

and
(IN ⊗ JM)(Pe ⊗Qe) = Pe ⊗Qe, (IN ⊗ JM)(Po ⊗Qe) = Po ⊗Qe,

(IN ⊗ JM)(Pe ⊗Qo) = −Pe ⊗Qo, (IN ⊗ JM)(Po ⊗Qo) = −Po ⊗Qo.

It then follows from (13) that X can be decomposed as

X =
[
Pe ⊗Qe Pe ⊗Qo

] [ Xee 0
0 Xeo

] [
Pe ⊗Qe Pe ⊗Qo

]T

+
[
Po ⊗Qe Po ⊗Qo

] [ Xoe 0
0 Xoo

] [
Po ⊗Qe Po ⊗Qo

]T
,

where Xee ∈ S⌈N/2⌉⌈M/2⌉, Xeo ∈ S⌈N/2⌉⌊M/2⌋, Xoe ∈ S⌊N/2⌋⌈M/2⌉, Xoo ∈ S⌊N/2⌋⌊M/2⌋.
As for the one-dimensional case we can use the symmetry constraints in SDP (12) (where

N = M = 2p+ 1) to reduce it to a smaller equivalent SDP of the form (17) in which D, W ,
and W0 are block-diagonal with four diagonal blocks of dimension (p+1)2, (p+1)p, (p+1)p,
and p2. This reduces the number of optimization variables by a factor 4, and the cost per
iteration by roughly 16.

5 SDPs with upper bounds

The SDP (17) includes an upper bound (W � W0 + ǫI) and two lower bounds (W � 0,
W � W0 − ǫI) on the matrix variable W . Depending on how it is handled by a solver, the
inclusion of upper bounds in an SDP can increase the complexity substantially. The purpose
of this section is to explain an efficient method for solving SDPs with upper and lower
bounds. To simplify the notation we explain the idea for a standard form SDP. (However
the ideas also apply to an SDP of the form (17) in which the linear constraints on W are
inequalities, rather than equalities diag(UTWU) = b.)

11



5.1 Standard SDPs with upper bounds

Consider a standard form SDP with an added upper bound

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

0 � X � I.
(19)

The variable is X ∈ Sn. One obvious solution for handling the upper bound, analogous to
techniques common in linear programming, is to introduce a slack variable V and solve

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X + V = I
X � 0, V � 0.

(20)

Unfortunately this introduces a very large number (n(n+ 1)/2) of new equality constraints,
so this SDP is much harder to solve using general-purpose software than the SDP without
upper bounds. It is therefore important to develop efficient techniques to incorporate upper
bounds directly in interior-point algorithms. The method described below also appeared
in [TTT07].

5.2 Interior-point method

We discuss a variation of the interior-point method of [TTT02]; see also the appendix
in [VBW+05]. Skipping details that are well documented elsewhere, we note that each
iteration of the algorithm applied to the standard SDP (19) involves the solution of a set of
linear equations (the ‘Newton equations’)

−T−1∆XT−1 +
m∑

i=1

∆yiAi = D (21)

tr(Ai∆X) = di, i = 1, . . . ,m. (22)

The variables are the primal and dual search directions ∆X and ∆y. The matrix T ≻ 0 and
the righthand sides D, d change at each iteration. The Newton equations are usually solved
by eliminating ∆X from the first equation and solving a set of m equations in m variables
H∆y = g where

Hij = tr(TAiTAj), gi = di + tr(AiTDT ), i, j = 1, . . . ,m.

The cost of this method is the cost of assembling the matrix H (which includes terms
proportional to mn3 and m2n2), plus the cost of solving the equations (proportional to m3).

12



The Newton equations for the SDP with upper bounds (20) are

−T−1
1 ∆XT−1

1 +
m∑

i=1

∆yiAi + ∆Y = D1

−T−1
2 ∆V T−1

2 + ∆Y = D2

tr(Ai∆X) = di, i = 1, . . . ,m

∆X + ∆V = D3.

∆X, ∆V are the (primal) search directions; ∆y, ∆Y are dual search directions. The two
matrices T1 and T2 are positive definite and change at each iteration. An efficient solution
method that exploits the specific structure in these equations proceeds as follows. We first
eliminate ∆V and ∆Y :

−T−1
1 ∆XT−1

1 − T−1
2 ∆XT−1

2 +
m∑

i=1

∆yiAi = D (23)

tr(Ai∆X) = di, i = 1, . . . ,m, (24)

where D = D1 −D2 − T−1
2 D3T

−1
2 . Comparing with the Newton equations for the standard

form SDP (21), we note that the addition of the second term in (23) makes it harder to
eliminate ∆X.

We therefore first determine a congruence transformation that simultaneously diagonal-
izes T1 and T2,

RTT1R = I, RTT2R = diag(γ)−1,

where γ ≻ 0 (see [GL89, p. 469]). If we define ∆X̃ = RT ∆XR, Ãi = R−1AiR
−T , the Newton

equations reduce to

−∆X̃ − diag(γ)∆X̃ diag(γ) +
m∑

i=1

∆yiÃi = R−1DR−T

tr(Ãi∆X̃) = di, i = 1, . . . ,m.

From the first equation, we can express ∆X̃ in terms of ∆y:

∆X̃ =
m∑

i=1

∆yi(Ãi ◦ Γ) − (R−1DR−T ) ◦ Γ

where Γij = 1/(1 + γiγj) and ◦ denotes the Hadamard product. Substituting this in the
second equation gives a set of equations H∆y = g where

Hij = tr(Ãi(Ãj ◦ Γ)) = tr((Ãi ◦ Ãj)Γ)), i, j = 1, . . . ,m.

After solving for ∆y, one easily obtains ∆X from (23).
The cost of this method is dominated by the cost of computing the matrices Ãi (O(mn3)

flops), the cost of assembling H (O(m2n2)), and the cost of solving for ∆y (O(m3)). For
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Figure 3: Mask and the output intensity image used to calibrate the optical system.

dense coefficient matrices Ai, the overall cost is therefore comparable to the cost of solving
the Newton equations for the standard form SDP without upper bounds.

If the matrices Ai are sparse or low rank, as in the model calibration application, ad-
ditional savings are possible, but the complexity of solving the SDP with upper bounds is
higher than for an SDP problem without upper bounds (see also [TTT07]). For example, if
Ai = aia

T
i , the matrix H can be expressed as

Hij = bTi ((bjb
T
j ) ◦ Γ)bi = (bi ◦ bj)T Γ(bi ◦ bj)

where bi = R−1ai, and assembled in O(m2n2) operations. For a standard form SDP with
rank-one matrices and no upper bounds, the cost of assemblingH would beO(max{m2n, n2m})
operations.

6 Example

In this section we apply the SDP calibration method to a simulated optical system. We
first create an ‘ideal’ model W0 of dimension 1849 × 1849 (i.e., p = 21 in the notation of
section 3.2) by discretizing (3), with J and K given by

J (x) = 2
J1(σ|x|)
σ|x| , K(x) =

J1(|x|)
|x| ,

where J1 is the first Bessel function of the first kind [Won01]. These values correspond to a
circularly symmetric optical system, with a source in the form of a disk with radius σ.

We then add a randomly generated perturbation ∆W of the order of 5% (i.e., ‖∆W‖ =
0.05‖W0‖) to represent lens imperfections and resist effects. We use Ŵ = W0 + ∆W to
compute the output image (shown in figure 3), and sample the output image at K = 2500
points. We then solve problem (12) with D given by (8) and equality constraints:

minimize tr(DW )
subject to W � 0

(J ⊗ I)W (J ⊗ I) = (I ⊗ J)W (I ⊗ J) = W
−ǫI � W −W0 ≤ ǫI
diag(UTWU) = b.

(25)
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We used the value ǫ = 79‖W0‖.
The variable W in the SDP has order 1849, and there are 2500 equality constraints. After

exploiting the symmetries in the problem, the variable W is transformed to a block diagonal
matrix with four blocks of dimension 484, 462, 462 and 441, respectively.

A Matlab implementation of the algorithm converged in 24 iterations and 116 minutes
(on a 2.8GHz Pentium IV machine). This is not unreasonable for an SDP of this size,
considering that the model calibration is required only once for a given optical lithography
system.

To test the quality of the calibrated model Wcal obtained by solving (25), we choose a
different mask and compute the output image from the model Ŵ = W0 + ∆W (the top
images in figure figure 4). Figure 4 also shows the outputs of the uncalibrated model W0

(bottom left) and the calibrated model Wcal (botrom right). We notice that the calibrated
model output approaches the true output of figure 4 very closely, and much better than the
uncalibrated model W0. The error (Euclidean norm of the difference between the predicted
and correct output images divided by the Euclidean norm of the correct image) is about
0.46%, compared with an error of 24.3% for the uncalibrated model.

Figure 5 shows the result of the same experiment repeated with a 15% perturbation
∆W . The error of the output predicted by the calibrated model is 8.6%. The error for the
uncalibrated model is 76.3%.

7 Conclusion

We have described an application of semidefinite programming in optical lithography. The
problem can be viewed as a nonlinear model estimation problem, with a model that expresses
the system output as a sum of squares of linear convolutions of the input. We have also
outlined several techniques for exploiting problem structure in an implementation of an
interior-point method for solving the resulting large-scale SDPs. These techniques include
methods for handling upper bounds on the matrix variable, symmetry constraints, and rank-
one structure in the coefficient matrices.
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