
On the implementation of primal-dual interior-point

methods for semidefinite programming problems derived

from the KYP lemma

Lieven Vandenberghe1 V. Ragu Balakrishnan2 Ragnar Wallin3 Anders Hansson4

Abstract

We discuss fast implementations of primal-dual
interior-point methods for semidefinite programs de-
rived from the Kalman-Yakubovich-Popov lemma, a
class of problems that are widely encountered in control
and signal processing applications. By exploiting prob-
lem structure we achieve a reduction of the complexity
by several orders of magnitude compared to general-
purpose semidefinite programming solvers.

1 Introduction

We discuss efficient implementations of interior-
point methods for semidefinite programming problems
(SDPs) of the form

minimize qTx+
∑K

k=1Tr(QkPk)

subject to

[
AT

k Pk + PkAk PkBk

BT
k Pk 0

]

+
∑p

i=1 xiMki º Nk, k = 1, . . . ,K.
(1)

The optimization variables are x ∈ Rp and K matrices
Pk ∈ Snk , where Sn denotes the space of symmetric
matrices of dimension n × n. The problem data are
q ∈ Rp, Qk ∈ Snk , Ak ∈ Rnk×nk , Bk ∈ Rnk×mk ,
Mki ∈ Snk+mk , and Nk ∈ Snk+mk . We assume that
(Ak, Bk) is controllable for k = 1, . . . ,K, and that
{⊕K

k=1Mki}
p
i=1 are linearly independent. If nk = 0,

the kth constraint is interpreted as the linear matrix
inequality (LMI)

∑p
i=1 xiMki º Nk.

We refer to SDPs of the form (1) as KYP-SDPs, and
to the constraints in the problem as KYP-LMIs, for

1Corresponding author. UCLA Department of Electrical En-

gineering, 68-119 Engineering IV Building, Los Angeles, CA

90095-1594. E-mail: vandenbe@ee.ucla.edu.
2School of Electrical and Computer Engineering, Pur-

due University, West Lafayette, IN 47907-1285. E-mail:

ragu@ecn.purdue.edu.
3Division of Automatic Control, Department of Electrical En-

gineering, Linköping University, SE-581 83 Linköping, Sweden.

E-mail: ragnarw@isy.liu.se.
4Division of Automatic Control, Department of Electrical En-

gineering, Linköping University, SE-581 83 Linköping, Sweden.

E-mail: hansson@isy.liu.se.

the following reason. The Kalman-Yakubovich-Popov
(KYP) lemma states that the frequency domain in-
equality
[

(jωI −A)−1B
I

]∗
M

[
(jωI −A)−1B

I

]
Â 0, (2)

where A ∈ Rn×n does not have imaginary eigenvalues,
holds for all ω if and only if the (strict) LMI

[
ATP + PA PB

BTP 0

]
+M Â 0 (3)

with variable P ∈ Sn is feasible. Moreover, if (A,B)
is controllable, then the lemma holds with nonstrict
inequalities in (2) and (3). The KYP lemma forms the
basis of some of the most important SDP applications
in control; see, for example, [BEFB94, MR97, Jön96,
BW99, HV01], The constraints in the KYP-SDP (1)
have the same general form as (3), with M replaced
with an affine function of the optimization variable x.
If Qk = 0, the KYP-SDP is therefore equivalent to
minimizing qTx subject to K (nonstrict) semi-infinite
frequency domain inequalities of the form (2), in which
M depends affinely on x.

KYP-SDPs are difficult to solve using general-purpose
SDP software packages. The difficulty stems from
the very high number of optimization variables (p +∑

k nk(nk + 1)/2). Even moderate values of nk (say,
a few hundred) result in very large scale SDPs, with
several 10,000 or 100,000 variables. This is unfortu-
nate, because in many applications the variables Pk

are of little intrinsic interest. They are introduced
as auxiliary variables, in order to convert the semi-
infinite frequency-domain constraint (2) into a finite-
dimensional LMI (3). For this reason, several re-
searchers have proposed alternatives to standard SDP
interior-point methods for solving KYP-SDPs. These
methods include cutting-plane methods (such as the
analytic center cutting-plane method) [Par00, KM01],
interior-point methods based on alternative barrier
functions for the frequency-domain constraint [KM01],
and interior-point methods combined with conjugate
gradients [HV00, HV01, WHV03].

In this paper we examine the possibility of exploiting
problem structure in KYP-SDPs to speed up standard

p. 1

primal-dual interior-point methods of the type used in
state-of-the-art solvers like SeDuMi, SDPT3 or SDP-
PACK. Straightforward linear algebra techniques will
allow us to implement the same SDP interior-point
methods at a cost that is orders of magnitude less than
the cost of general-purpose implementations. More
specifically, if nk = n for k = 1, . . . ,K, and p = O(n),
then the cost per iteration of a general-purpose solver
grows at least as n6 as a function of n. Exploiting struc-
ture will allow us to reduce the complexity to n3. Sim-
ilar results have previously been obtained for special
classes of SDP-KYPs, for example, KYP-SDPs derived
for discrete-time FIR systems [AV02, GHNV03].

2 Interior-point algorithms for SDP

2.1 Semidefinite programming

Let V be a finite-dimensional vector space, with inner
product 〈u, v〉. Let

A : V → Sl1 × Sl2 × · · · × SlK , B : V → Rr

be linear mappings, and suppose c ∈ V, D =
diag(D1, D2, . . . , DK) ∈ Sl1 × · · · × SlK , and d ∈ Rr

are given. The optimization problem

minimize 〈c, y〉
subject to A(y) +D ¹ 0

B(y) + d = 0
(4)

with variable y ∈ V is called a semidefinite program-

ming problem (SDP). The dual SDP associated with (4)
is defined as

maximize Tr(DZ) + dT z
subject to Aadj(Z) + Badj(z) + c = 0

Z º 0,
(5)

where

Aadj : Sl1 × · · · × SlK → V, Badj : Rr → V

denote the adjoints of A and B. The variables in the
dual problem are Z ∈ Sl1 × · · · ×SlK , and z ∈ Rr. We
refer to Z as the dual variable (or multiplier) associated
with the LMI constraint A(y) + D ¹ 0, and to z as
the multiplier associated with the equality constraint
B(y) + d = 0.

2.2 Interior-point algorithms

Primal-dual interior-point methods solve the pair of
SDPs (4) and (5) simultaneously. At each iteration
they solve a set of linear equations of the form

−W∆ZW +A(∆y) = R (6)

Aadj(∆Z) + Badj(∆z) = rdu (7)

B(∆y) = rpri, (8)

to compute primal and dual search directions ∆y ∈ V,
∆Z ∈ Sl1 ×· · ·×SlK , ∆z ∈ Rr. The scaling matrix W
and the righthand side R in these equations are block-
diagonal and symmetric (W,R ∈ Sl1 × · · · × SlK), and
W is positive definite. The value of W , as well as the
values of the righthand sides R, rdu, and rpri, change
at each iteration, and also depend on the particular
algorithm used. In practice the number of iterations is
roughly independent of problem size (and of the order
of 10–50), so the overall cost of solving the SDP is
roughly proportional to the cost of solving a given set
of equations of the form (6)–(8).

2.3 General-purpose solvers

A general-purpose implementation of an interior-point
method will assume that V is the Euclidean vector
space Rs of dimension s = dimV, and that A and
B are given in the canonical form

A(y) =

s∑

i=1

yiFi, B(y) = Gy.

The matrices Fi ∈ Sl1×l2×···×lK and G ∈ Rr×s are
stored in a sparse matrix format.

To solve the equations (6)–(8) we can eliminate
∆Z from the first equation, and substitute ∆Z =
W−1(A(∆y) − R)W−1 in the second equation. This
yields a symmetric indefinite set of linear equations in
∆y, ∆z:

Aadj(W−1A(∆y)W−1) + Badj(∆z)

= rdu +Aadj(W−1RW−1) (9)

B(∆y) = rpri. (10)

Using the canonical representation of A and B, these
equations can be written as

[
H GT

G 0

] [
∆y
∆z

]
=

[
rdu + g
rpri

]
,

where

Hij = Tr(FiW
−1FjW

−1), i, j = 1, . . . , s

gi = Tr(FiW
−1RW−1), i = 1, . . . , s.

If the SDP has no equality constraints, the equations
reduce to

Aadj(W−1A(∆y)W−1) = rdu +Aadj(W−1RW−1).
(11)

i.e.,
H∆y = rdu + g.

The total cost of an iteration is dominated by the cost
of solving these equations plus the cost of forming H.
The matrix H is positive definite and almost always
dense, so the cost of solving the equations is (1/3)s3

flops. Even though sparsity in the matrices Fi helps,
the cost of constructing H is often substantially higher
than the cost of solving the equations.

p. 2

3 General-purpose SDP solvers and

KYP-SDPs

In this section we use the observations made in §2 to
estimate the cost of solving KYP-SDPs with general-
purpose interior-point software.

For simplicity we assume that K = 1, n1 = n, m1 = 1,
and consider the problem

min. qTx+Tr(QP)

s.t.

[
ATP + PA PB

BTP 0

]
+
∑p

i=1 xiMi º N,

(12)
where A ∈ Rn×n, B ∈ Rn, with (A,B) controllable.

We can assume, without loss of generality, that A is
stable. Indeed, (A,B) is controllable by assumption,
so there exists a state feedback matrix K such that
A + BK is stable. By applying a congruence to both
sides of the constraint in (12) and noting that

[
I KT

0 I

] [
ATP + PA PB

BTP 0

] [
I 0
K I

]

=

[
(A+BK)TP + P (A+BK) PB

BTP 0

]
,

we can transform the SDP to an equivalent KYP-SDP,
with A replaced by A+BK.

In §3.1 we first make precise our earlier claim that the
cost of a general-purpose solver applied to (1) grows at
least as n6, if p = O(n). In §3.2 we then describe a
straightforward technique, based on SDP duality, that
reduces the cost to order n4.

3.1 Primal method

We can express the KYP-SDP (12) as

minimze qTx+Tr(QP)
subject to K(P) +M(x) º N

(13)

where

K(P) =

[
ATP + PA PB

BTP 0

]
, M(x) =

p∑

i=1

xiMi.

This is in the general form (4), with V = Sn × Rp,
y = (P, x), c = (Q, q), D = N , and

A(P, x) = −K(P)−M(x).

The adjoint of A is Aadj(Z) = −
(
Kadj(Z),Madj(Z)

)
,

where

Kadj(Z) =
[
A B

]
Z

[
I
0

]
+
[
I 0

]
Z

[
AT

BT

]
,

Madj(Z) = (Tr(M1Z), . . . ,Tr(MpZ)).

The dual problem of (14) is therefore

maximize Tr(NZ)
subject to Kadj(Z) = Q, Madj(Z) = q

Z º 0,

(14)

with variable Z ∈ Sn+1.

A general-purpose primal-dual method applied to (13)
generates iterates x, P , Z. At each iteration it solves
a set of linear equations of the form (6)–(8), with vari-
ables ∆x, ∆P , ∆Z, by reducing it to a smaller positive
definite system (11). These equations can be written
in matrix-vector form as

[
H11 H12

HT
12 H22

] [
svec(∆P)

∆x

]
=

[
r1
r2

]
(15)

where svec(∆P) denotes the lower triangular part of
∆P stored columnwise. The exact expressions for the
righthand sides r1, r2 are not important for our present
purposes and are omitted. The blocks of the coefficient
matrix are defined by the relations

H11 svec(∆P) = svec
(
Kadj(W−1K(∆P)W−1)

)

H12∆x = svec
(
Kadj(W−1M(∆x)W−1)

)

H22∆x = Madj(W−1M(∆x)W−1).

The coefficient matrix in (15) is dense, so the cost of
solving these equations is (1/3)(n(n + 1)/2 + p)3 =
O(n6) operations if we assume that p = O(n). This
gives a lower bound for the cost of one iteration of a
general-purpose interior-point solver applied to (12).
The actual cost is higher since it includes the cost of
constructing the matrices H11, H12, and H22.

3.2 Dual method

A reformulation based on SDP duality allows us to
solve KYP-SDPs more efficiently, at a cost of roughly
O(n4) per iteration. The technique is well known for
discrete-time KYP-SDPs with FIR matrices [GHNV03,
DTS01, AV02], and was applied to general KYP-SDPs
in [WHV03].

We define a linear mapping L : Rn+1 → Sn+1 as

L(u) =

[∑n
i=1 uiXi ũ
ũT 2un+1

]

=
n∑

i=1

ui

[
Xi ei

eT
i 0

]
+ un+1

[
0 0
0 2

]
,

where ũ = (u1, . . . , un) and Xi, i = 1, . . . , n, are the
solutions of the Lyapunov equations

AXi +XiA
T +BeT

i + eiB
T = 0.

It can be verified that

Kadj(Z) = 0⇐⇒ Z = L(u) for some u ∈ Rn+1

p. 3

S = K(P) for some P ∈ Sn ⇐⇒ Ladj(S) = 0.

It follows that the first equality in the dual SDP (14)
is equivalent to saying that Z = L(u)−Z0 for some u,
where Z0 is defined as

Z0 =

[
X0 0
0 0

]
, AX0 +X0A

T +Q = 0.

Substituting in (14), and dropping the constant term
Tr(NZ0) from the objective, we obtain an equivalent
problem

maximize Ladj(N)Tu
subject to L(u) º Z0

Madj(L(u)) = q +Madj(Z0)
(16)

with variable u ∈ Rn+1. This SDP has the form (4)
with V = Rn+1, y = u,

A(u) = −L(u), B(u) =Madj(L(u)),

and c = −Ladj(N), D = Z0, d = −q −Madj(Z0).

The dual of problem (16) is

minimize (q +Madj(Z0))
T v −Tr(Z0S)

subject to Ladj(S)− Ladj(M(v)) + Ladj(N) = 0
S º 0,

(17)
with variables v ∈ Rp and S ∈ Sn+1. Not surprisingly,
the SDP (17) can be interpreted as a reformulation of
the original primal problem (13). The first constraint
in (17) is equivalent to

S −M(v) +N = K(P) (18)

for some P . Combined with S º 0, this is equivalent
to K(P) +M(v) º N . Using (18) we can also express
the objective function as

(q +Madj(Z0))
T v −Tr(Z0S)

= qT v +Tr(NZ0) +Tr(PQ).

Comparing with (13), we see that the optimal v in (17)
is equal the optimal x in (13). The relation (18) also
allows us to recover the optimal P for (13) from the
optimal solution (v, S) of (17). In summary, the pair
of primal and dual SDPS (16) and (17) are equivalent
to the original SDPs (13) and (14).

Now suppose we apply a primal-dual method to (16).
The method generates iterates u, v, S. At each iter-
ation a set of linear equations of the form (9)–(10) is
solved, which for this SDP reduce to

Ladj(W−1L(∆u)W−1) + Ladj(M(∆v)) = r3

Madj(L(∆v)) = r4

with variables ∆u ∈ Rn+1, ∆v ∈ Rp. (We omit the ex-
pressions for the righthand sides r3 and r4.) In matrix
form, [

H G
GT 0

] [
∆u
∆v

]
=

[
r3
r4

]
, (19)

where H and G are defined by the relations

H∆u = Ladj(W−1L(∆u)W−1)

G∆v = Ladj(M(∆v)).

More explicitly, suppose we define n+1 matrices Fi as

Fi =

[
Xi ei

eT
i 0

]
, i = 1, . . . , n, Fn+1 =

[
0 0
0 2

]
.

Then L(u) =
∑n+1

i=1 uiFi and

Hij = Tr(FiW
−1FjW

−1)) (20)

Gij = Tr(FiMj). (21)

To estimate the cost of this approach we assume that
p = O(n). The method requires a significant amount
of preprocessing. In particular we have to compute the
solutions Xi of n+1 Lyapunov equations, which has a
total cost of O(n4). The matrix G ∈ R(n+1)×p does not
change during the algorithm so it can be pre-computed,
at a cost of order pn3 if the matrices Mi and Xj are
dense. In practice, the matrices Mi are often sparse, so
the cost of computing G is usually much lower.

At each iteration, we have to construct H and solve
the equations (19). From (20), we see that the cost
of constructing H is O(n4). The cost of solving the
equations is O(n3) if we assume p = O(n), since the
matrix H is dense.

The total cost is therefore O(n4), and is dominated by
the cost of pre-computing the basis matrices Xi, and
the cost of forming H at each iteration.

4 Special-purpose implementation

We now turn to the question of exploiting additional
problem structure in a special-purpose implementation.
The basis of our method is the dual formulation de-
scribed in §3.2.

The dual method has two limitations. First, it requires
an explicit representation of the mapping L as L(u) =∑n+1

i=1 uiFi. This means we have to solve n Lyapunov
equations, and store the solutions Xi. For large n this
requires a substantial amount of memory. Second, as
we have seen, the cost of the method grows as n4, and is
dominated by the cost of forming the matrix H in (20).
In this section we show that it is possible to form H
fast, at a cost of O(n3) operations, without explicitly
computing the matrices Fi,

It can be shown that H is given by

H =

[
H1 0
0 0

]
+ 2

[
W11

W21

] [
H2 0

]

p. 4

+ 2

[
HT

2

0

] [
W11 W12

]
+ 2W22W

+ 2

[
W12

W22

] [
W21 W22

]

where

(H1)ij = Tr(XiW11XjW11)

H2 =
[
X1W12 X2W12 · · · XnW12

]

and W is partitioned as

W =

[
W11 W12

W21 W22

]

with W11 ∈ S
n×n. This formula shows that the key to

constructing H fast, is to compute the two matrices H1

and H2 fast. In this section we discuss one method for
doing this, based on the eigenvalue decomposition of
A. Our assumption that (A,B) is controllable implies
that it is always possible to find a linear state feedback
matrix K so that A + BK is stable and diagonaliz-
able [KND85]. As mentioned in §3 we can therefore
assume without loss of generality that A is diagonaliz-
able.

Let A = V diag(λ)V −1 be the eigenvalue decomposi-
tion of A, with V ∈ Cn×n and λ ∈ Cn. It can be
shown that the matrices H1 and H2 defined above can
be expressed as

H1 = 2<
(
V −T ((Σ̃W̃11)¯ (Σ̃W̃11)

T)V −1

+V −∗(W̃11 ¯ (Σ̃W̃11Σ̃
∗)T)V −1

)
(22)

H2 = −V (Σ̃∗ diag(W̃12)
∗)V̄ −1 − V diag(Σ̃W̃12)V

−1

(23)
where ¯ denotes Hadamard product, Σ ∈ Cn×n is de-
fined as

Σij =
1

λi + λ∗j
, i, j = 1, . . . , n,

Σ̃ = Σdiag(V −1B)∗, W̃11 = V ∗W11V , and W̃12 =
V ∗W12. The above formulas for H and G can be eval-
uated in O(n3) operations, and do not require pre-
computing the basis matrices Xi.

5 Numerical examples

Table 1 compares two methods, applied to randomly
generated KYP-SDPs of the form (12), with dimen-
sions n = 25, 50, 100, 200, and p = n. Each problem
was constructed so it is strictly primal and dual fea-
sible. The execution times listed are the CPU times
in seconds on a 2GHz Pentium IV PC with 1GB of
memory.

SeDuMi (primal) SeDuMi (dual)
n #itrs time/itr prepr. #itrs time/itr

25 10 0.1 0.1 12 0.02
50 11 7.4 1.2 11 0.2
100 11 324.7 22.5 12 3.0
200 436.2 13 26.5

Table 1: Comparison of primal and dual method for
solving KYP-SDPs with dimensions n = p =
25, . . . , 200, using the general purpose solver Se-
DuMi.

KYP IPM SeDuMi (dual)
n prepr. #itrs time/itr prepr. #itrs time/itr

100 1.3 9 1.2 0.7 14 1.4
200 10.1 9 8.9 3.8 15 23.2
300 32.4 10 27.3 11.9 20 127.3
400 72.2 9 62.0
500 140.4 10 119.4

Table 2: Comparison of fast implementation of primal-
dual interior-point algorithm and general-
purpose code applied to the dual problem, for
five KYP-SDPs of dimension n = 100,. . . , n =
500, and p = 50.

The first method, labeled SeDuMi (primal), solves the
SDP (12) using SeDuMi version 1.05 [Stu01] via the
YALMIP interface [Löf02]. We list the number of iter-
ations (’#itrs’) and the time per iteration in seconds.
In the second method, labeled SeDuMi (dual), we solve
the reformulated dual problem (16). Column 4 gives
the time required for this preprocessing step (i.e., the
solution of the n + 1 Lyapunov equations). The other
columns are the number of iterations, and time per
iteration. The results confirm that the cost per iter-
ation of a general-purpose method applied to the pri-
mal SDP (12) grows much more rapidly than the dual
method.

Table 2 shows the results for a second experiment with
randomly generated KYP-SDPs of dimensions n = 100,
. . . , 500, and p = 50. The data in the column la-
beled ’KYP IPM’ are for a customized Matlab imple-
mentation of the primal-dual path-following method of
Tütüncü, Toh, and Todd [TTT98], applied to the dual
problem, and using the expressions (22) and (23) to
compute the coefficient matrix of the reduced search
equations. The pre-processing time for this method in-
cludes the eigenvalue decomposition of A and the com-
putation of the matrix G in the reduced system (19).
The pre-processing time and execution time per itera-
tion grow almost exactly as n3.

For the first three problems, we also show the results
for SeDuMi applied to the dual problem. To speed
up the calculation, we first transform the dual prob-

p. 5

lem (16), by diagonalizing A. This corresponds to a
simple change of variables, resulting in an SDP of the
form (16), with complex data and variables. Since A
is diagonal, the basis matrices Xi are quite sparse and
easier to compute (at a cost of O(n3) total). Despite
the resulting savings, it is clear from the table that the
execution time per iteration grows roughly as n4.

6 Conclusion

We have discussed techniques for avoiding the O(n6)
growth of the execution time required by general-
purpose SDP solvers applied to KYP-SDPs. A first
approach is to reformulate the dual problem as an SDP
with n+1 variables, and to solve the reformulated dual
via a general-purpose solver. This simple method has
a complexity of O(n4) flops per iteration. A second
approach is to apply a standard primal-dual algorithm
to the original or the reformulated KYP-SDP, and ex-
ploit problem structure to compute the primal and dual
search directions fast. This results in a complexity of
O(n3) per iteration.

Some topics that deserve further study are the the pos-
sible use of other canonical forms (for example, com-
panion form), and the influence of transformations of
A and B (for example, choice of state feedback matrix)
on the accuracy and robustness of the algorithms.

7 Acknowledgment

This material is based upon work supported by the
National Science Foundation under Grant No. ECS-
0200320 and the Swedish Research Council under
Grant No. 271-2000-770.

References

[AV02] B. Alkire and L. Vandenberghe. Convex opti-
mization problems involving finite autocorrelation se-
quences. Mathematical Programming Series A, 93:331–
359, 2002.

[BEFB94] S. Boyd, L. El Ghaoui, E. Feron, and
V. Balakrishnan. Linear Matrix Inequalities in System

and Control Theory, volume 15 of Studies in Applied

Mathematics. SIAM, Philadelphia, PA, June 1994.

[BW99] V. Balakrishnan and F. Wang. Efficient com-
putation of a guaranteed lower bound on the robust
stability margin for a class of uncertain systems. IEEE
Trans. Aut. Control, AC-44(11):2185–2190, November
1999.

[DTS01] B. Dumitrescu, Ioan Tabus, and Petre Sto-
ica. On the parametrization of positive real sequences

and MA parameter estimation. IEEE Transactions on

Signal Processing, 49(11):2630–9, November 2001.

[GHNV03] Y. Genin, Y. Hachez, Yu. Nesterov, and
P. Van Dooren. Optimization problems over positive
pseudopolynomial matrices. SIAM Journal on Matrix

Analysis and Applications, 25(3):57–79, 2003.

[HV00] A. Hansson and L. Vandenberghe. Effi-
cient solution of linear matrix inequalities for integral
quadratic constraints. In Proc. IEEE Conf. on Deci-

sion and Control, pages 5033–5034, 2000.

[HV01] A. Hansson and L. Vandenberghe. A primal-
dual potential reduction method for integral quadratic
constraints. In 2001 American Control Conference,
pages 3013–3018, Arlington, Virginia, June 2001.

[Jön96] U. Jönsson. Robustness Analysis of Uncertain
and Nonlinear Systems. PhD thesis, Lund Institute of
Technology, Sweden, 1996.

[KM01] C.-Y. Kao and A. Megretski. Fast algorithms
for solving IQC feasibility and optimization problems.
In Proc. American Control Conference, pages 3019–
3024, 2001.

[KND85] J. Kautsky, N. K. Nichols, and P. Van
Dooren. Robust pole assignment in linear state feed-
back. International Journal of Control, 41:1129–1155,
1985.

[Löf02] J. Löfberg. Yalmip. Yet another LMI parser.

University of Linköping, Sweden, 2002.

[MR97] A. Megretski and A. Rantzer. System analysis
via integral quadratic constraints. IEEE Trans. Aut.

Control, 42(6):819–830, June 1997.

[Par00] P. A. Parrilo. Structured semidefinite programs
and semialgebraic geometry methods in robustness and

optimization. PhD thesis, California Institute of Tech-
nology, 2000.

[Stu01] J. F. Sturm. Using SEDUMI 1.02,

a Matlab Toolbox for Optimization Over

Symmetric Cones, 2001. Available from
fewcal.kub.nl/sturm/software/sedumi.html.

[TTT98] M. J. Todd, K. C. Toh, and R. H. Tütüncü.
On the Nesterov-Todd direction in semidefinite pro-
gramming. SIAM J. on Optimization, 8(3):769–796,
1998.

[WHV03] R. Wallin, H. Hansson, and L. Vanden-
berghe. Comparison of two structure-exploiting opti-
mization algorithms for integral quadratic constraints.
In 4th IFAC Symposium on Robust Control Design, Mi-
lan, Italy, 25-27 June 2003. IFAC.

p. 6

