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Abstract

Several important problems in control theory can be
reformulated as semidefinite programming problems
(SDPs), i.e., as convex optimization problems with lin-
ear matrix inequality (LMI) constraints. From dual-
ity theory in convex optimization, dual problems can
be derived for these SDPs. These dual problems can
in turn be reinterpreted in control or system theoretic
terms, often yielding new results or new proofs for ex-
isting results from control theory. We explore such con-
nections for a few problems associated with linear time-
invariant systems. Specifically, we discuss the following
three applications of SDP duality.

— Theorems of alternatives provide systematic and
unified proofs of necessary and sufficient condi-
tions for solvability of LMIs. As an example, we
present a simple new proof of the KYP lemma.

The dual problem associated with an SDP can
be used to derive lower bounds on the optimal
value. As an example, a duality-based proof of
the Enns-Glover lower bound.

— The optimal solution of an SDP is characterized
by necessary and sufficient optimality conditions
that involve the dual variables. As an example,
we show that the properties of the solution of the
LQR problem can be derived directly from the
SDP optimality conditions.

Several of the results that we use from convex duality
require technical conditions (so-called constraint quali-
fications). We show that for problems involving Riccati
inequalities these constraint qualifications are related
to controllability and observability. In particular, this
will lead us to a new criterion for controllability. We
also point out some implications of these results for
computational methods for large-scale SDPs arising in
control.
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1 Introduction

Over the past few years, convex optimization, and
semidefinite programming (SDP) in particular, have
come to be recognized as a valuable tool for control sys-
tem analysis and design via numerical methods. Con-
vex optimization problems enjoy a number of advan-
tages over more general optimization problems:

— Every stationary point is also a global minimizer.

— There are very efficient algorithms for computing
the global minimizer, i.e., algorithms that rapidly
compute the global optimum, with non-heuristic
stopping criteria. Convex optimization problems
are also very tractable from a theoretical stand-
point, since their worst-case complexity is poly-
nomial.

— There is a well-developed duality theory.

Thus far, the main motivation behind reformulating
systems and control problems into SDP problems has
been in obtaining numerical solutions as well as to de-
velop computer-aided analysis and design tools [11, 12,
24]. In this paper, we explore another application of
semidefinite programming in systems and control: We
discuss the application of semidefinite programming
duality theory in systems and control to obtain new
theoretical insight or to provide new proofs to existing
results, as well as towards developing more efficient al-
gorithms for the solution of SDP problems underlying
control.

2 Linear matrix inequalities
2.1 Definition
A linear matrix inequality is a constraint of the form
F0—|—I1F1++l‘mFm20 (1)

where the variable is # € R™ and the problem data
are the matrices F; = FI € R™". The inequality



sign denotes matrix inequality, i.e., A > 0 means A
is positive semidefinite. We will also consider strict
matrix inequalities

Fo+z1Fi1+---4+2,F, >0, (2)

where the inequality means the lefthand side is a posi-
tive definite matrix.

2.2 Theorems of alternatives

Theorems of alternatives give necessary and sufficient
conditions for solvability of an LMI. We consider two
variations [5, 8, 14, 23].

Theorem 1 The strict LMI (2) is feasible if and only
there does not exist a Z = ZT € R™" that satisfies

0£2Z2>0, TrF,Z<0, TrF,Z=0,i=1,...,m.
(3)

The conditions (2) and (3) are called alternatives. The
theorem states that exactly one of both alternatives is
feasible.

A similar theorem holds for nonstrict LMIs, but it re-
quires a technical condition.

Theorem 2 Assume
ZUze > 0= ZUze =0. (4)
i=1 i=1

Then the LMI (1) is feasible if and only there does not
exist a Z = Z*¥ € R™™" that satisfies

Z>0, TrFyZ<0, TrFZ=0,i=1,...,m.

The condition (4) is called a constraint qualification.
The need for this condition can be explained geomet-
rically as follows. The theorem is an application of
a fundamental result in convex analysis, which states
that if a point is not an element of a closed convex set,
then it can be separated from it by a hyperplane. We
apply this result to the convex set A defined as

E|TF0+ZTZF12U }

The LMI (1) is infeasible if and only if 0 & A, and the
dual variable Z can be interpreted as the normal to a
hyperplane separating A and the origin. The constraint
qualification implies that A is closed, and we can apply
the separating hyperplane theorem.

A:{U:UT

2.3 Riccati inequalities

It is well-known that for a linear time-invariant system,
checking whether or not a number of important proper-
ties (e.g., stability and passivity) hold is equivalent to
the feasibility of Lyapunov or Riccati equations. The
two theorems of alternatives we mentioned (or one of
their many variations) can be used to derive necessary
and sufficient conditions for the infeasibility of Lya-
punov or Riccati equations. These conditions, when
reinterpreted in the context of the original LTI sys-
tem, yield new proofs for existing results in control the-
ory. We will demonstrate this with a new proof of the
well-known Kalman-Yakubovich-Popov (KYP) lemma,
which relates feasibility of an LMI to a frequency-
domain condition. Note that our statement of the
KYP lemma in the following theorem is slightly differ-
ent (and more general) than existing versions (see [18]
and the references therein).

Theorem 3 The LMI

ATP+PA-M PB

BTp 7 <0 (5)

in the variable P = PT, is feasible if and only if for all
w?

(jwI—A)u = Bo, (u,v) # 0 = v*v+u*Mu > 0. (6)

We first show that feasibility (5) implies that (6) holds
for all w. Suppose that P satisfies (5), and that (u,v)
satisfy (jwl — A)u = Buv. Tt is easily verified that

- ATP+PA—-M PB u

v BTP I ||
=v*v + u* Mu.

Therefore v*v + u*Mu > 0 if (u,v) # 0.

Next, we prove that if (5) is infeasible, then (6) does not
hold for some w. Applying theorem 1, we know that
if (5) is infeasible, then there exists a Z = Z7 # 0,
such that

VATRRVAY
Z= > 0, 7
E AR "
ZnAY + AZy + Z1,BT + BZL =0, (8)
Tr M Zyy + Tr Zoy < 0. (9)

We will describe how to construct from Z a frequency
w at which (6) does not hold. We can assume without
loss of generality that

le Z12 U T T
7 )=l o

where U has full rank. In terms of U and V we can
express (8) (9) more simply as follows:

TrUTMU +Tr VTV <0, (10)



and AUUT + BVUT is skew-symmetric, i.e., it can be
written as

AUUT + BVvUT =UsSu”T

where S is skew-symmetric. Since U has full rank, this
last equation implies

AU + BV = US. (11)

The next step is to take the Schur decomposition of
S: S =), jwiqiq; where Y. qiqi = I. From (10) we
obtain
> ¢ (UTMU+VTV) g <0.
]

At least one of the terms in this expression must be less
than or equal to zero. Let k be the index of that term,
and define @ = Uqy, © = Vgg. (@ is nonzero because U
has full rank.) We have

TMiu+0"0<0
and, by multiplying (11) with g on the right,
Aii+ B = jwiii.

In other words we have constructed a u and v showing
that (6) does not hold at w = wy.

Remarks:

We make no assumptions on M, A, and B. In
particular, the matrix M can be indefinite, and
(A, B) can be uncontrollable, or have uncontrol-
lable modes on the imaginary axis.

Two important special cases are M = —CTC,
which gives the H, Riccati inequality, and M >
0, which yields the LQR Riccati inequality.

If (jwI — A) is invertible, then (6) is equivalent
to

I+BT (—jwl—ATY "M (jwI-A)"*B >0, (12)

so both conditions are equivalent if A has no
imaginary eigenvalues. However, if A has imag-
inary eigenvalues, then the conditions are differ-
ent, i.e., requiring that (6) holds for all w, is not
the same as requiring that (12) holds for all w
where jwl — A is invertible.

As an example, consider

0 1
A_{l o}’ B=0, M=-I.

The LMI (5) is infeasible, and the frequency
condition (6) does not hold at w = 1 (choose

u = (1,7), v =0). However the inequality (12) is
clearly valid for all w where jwI — A is invertible.

We can also derive a similar characterization for the
non-strict Riccati inequality.

Theorem 4 Suppose (A, B) is controllable. Then the

LMI
ATP+PA- M PB

BTP —I

in the variable P = PT, is feasible if and only if for all
w/'

<0 (13)

(jwI — A)u = Bv = v*"v +u"Mu > 0. (14)

The proof is similar to the proof of theorem 3, but in-
stead of theorem 3 we apply theorem 2. All we have
to do is show that controllability implies that the con-
straint qualification in theorem 2 holds. This follows
from the following result.

Lemma 1 (A, B) is controllable if and only if

ATP+PA PB

BTP 0 S 0 (15)

implies P = 0.

We can prove this as follows. First, assume (A, B) is
controllable and P satisfies (15), i.e.,

ATP+PA<0, PB=0.

Since (A, B) is controllable, there exists a K such that
A+ BK is stable. Therefore (A + BK)TP + P(A +
BK) = Q where Q = ATP+ PA < 0. Since A + BK
is stable, we can express P as

P=_ /oo e(A+BK)Tth(A+BK)tdt.
0

This expression, together with BT PB = 0, implies Q =
0, and hence P = 0. This shows that the only solution
to (15) is P = 0.

Conversely, suppose (A, B) is not controllable, i.e.,
there exists a nonzero v with v*A = M\v*, v*B = 0.
Then P = +Re(vv*) satisfies

ATP 4+ PA=+2Re(\)P, PB=0,

i.e., (15) has a nonzero solution.

3 The dual SDP

3.1 Definition
The problem of minimizing a linear function subject to
an LMI constraint, i.e.,

minimize Tz

subject to Fo+ 1y + -+ xp Fry >0, (16)



is called a semidefinite programming problem (SDP).
From convex duality, we can associate with an SDP a
dual problem

maximize —Tr FyZ
subject to TrF;Z =c¢;, i=1,...,m (17)
7 =27 >0

where the variable is the matrix Z = ZT.

Let p* and d* be the optimal values of (16) and (17),
respectively. (We allow values +oo: p* = o0 if the
primal problem is infeasible and p* = —oo if it is un-
bounded below, with a similar convention for d*.) From

convex duality we have the following relation between
p* and d*.

— p* > d*. This is called weak duality.

—  Strong duality, i.e., p* = d*, holds if the primal
problem is strictly feasible (i.e., there exists an x
with F(z) > 0), or the dual problem is strictly
feasible (i.e., there exists a Z > 0 with Tr F;Z =
Ci,i: 1,...,m).

As a result, we can use the dual problem to derive and
prove lower bounds on the optimal value p*.

3.2 Lower bounds on the H.,-norm
As an example, consider the LMI
minimize (3

ATP+PA+CTC PB <0

BTP —gI | —
with variables 3, P = PT. It can be shown that the
optimal value is p* = ||H||2, where H(s) = C(sI —
A)7IB (see [7, p. 91]).

subject to

The dual problem is
maximize TrCZ;CT
subject to  Z11 AT + AZy + Z1:BT + BZE, =0

Z11 212
7= { S } >0, TrZyp=1
(18)
with variable Z = Z7. Any dual feasible Z provides a
lower bound \/Tr CZ11CT for |H|« [4]. As an illus-

tration, we can verify the Enns-Glover lower bound

[Hlloo = Omax (19)

where opax is the maximum Hankel singular value
(see [13, 9]). We can prove this result by construct-
ing a dual feasible Z as follows.

— Calculate the controllability and observability
Gramians W,, W, from
AW, + W AT + BBT =0,
ATW, + WA+ CTC = 0.

Let Omax = (Amax(WeWo))'/? be the largest Han-
kel singular value, and let z be the corresponding
eigenvector of Wcl/ 2VV0 Wcl/ 2

— Compute X, Y from

AY + Y AT + W22 Twl/? = o,
ATX + XA+ W P22Twe V2 =o.

— Let le = Y+WCXWC, Z12 = WCXB, Z22 =
BTXB.

It can be verified that Z is feasible in (18) with

TrCZ1:CT > TrCYCT = o2

max’

which proves the bound (19).

4 Optimality conditions

4.1 Complementary slackness

The following facts are useful when studying the prop-
erties of the optimal solutions of the primal and dual
SDP.

— If the primal problem is strictly feasible, then
p* = d* and the dual optimum is attained, i.e.,
there exists a dual optimal Z.

— If the dual problem is strictly feasible, then p* =
d* and the primal optimum is attained, i.e., there
exists a primal optimal x.

— If strong duality holds, then a primal feasible z
and a dual feasible Z are optimal if and only if
F(z)Z = 0. This property is called complemen-
tary slackness.

These properties allow us to state necessary and suffi-
cient conditions for optimality. For example, it follows
that if the primal problem is strictly feasible, then a
primal feasible x is optimal if and only if there exists a
dual feasible Z with F(z)Z = 0.

4.2 The LQR problem
We consider the following stochastic formulation of the
LQR problem. For the system

& = Ax + Bu,
with the initial condition z(0) being a random vector

satisfying E (2(0)2(0)T) = I, we want to find the input
u that minimizes

J=B ( /0 T (27 Qe(t) + u(t)” Ru(t)) dt) .



We assume @ > 0, R > 0, (Q, A) is observable, and
(A, B) controllable!. Let J,,¢ denote the minimum
value of the LQR problem.

We can associate with the LQR problem the following
SDP:

maximize Tr P

ATP+PA+Q PB (20)

subject to BTp R

The variable is P = PT. The interpretation is as fol-
lows. If P is feasible in (20) then for all = that satisfy

&(t) = Ax(t) + Bu(t), x(0) = a9

and z(t) — 0 for t — oo, we have

2T Po < /O T ()T Qat) + u()T Ru(t)) dt

or

TP <E ( /O Z ()T Q) + u(t)T Ru(t)) dt) .

Therefore, the objective value of (20) is a lower bound
on the optimal LQR cost Jope. The optimal value of
the SDP is the best lower bound that can be obtained.

The dual of the SDP (20) is

minimize T‘I‘Qle + T‘I‘RZQQ
subject to AZ11 + leAT + BZ’iTQ + ZlgBT +1=0

VATRRVAY

Z =77 =
{ZE Za2

E

(21)
The dual variable Z can be interpreted as follows.
Without loss of generality we can assume that Z can
be expressed as

Z:{II(]Z[I KT ]

so we can reformulate the problem as a problem in Z
and K:

minimize Tr (Q + KTRK)Z
subject to (NA—I—BK)Z—FZ(A—I—BK)T—FI:O
Z > 0.

(22)

IThis is a variation on the problem posed in [6, §12.1]), where
the underlying system is

& = Ax + Bu + w,

w is a white noise process with unit power spectral den-
sity, and the goal is to find w that minimizes J =
limi oo E (:c(t)TQw(t) + u(t)TRu(t)> . It can be shown that this
problem is equivalent to the problem considered in this paper.

The objective function is equal to the LQR cost

E ( /0 T+ KTRK):c(t)dt>

that results when we apply a linear state feedback & =
(A+ BK)z. Clearly, for every K this yields an upper
bound on the optimal LQR cost; by minimizing over
Z and K we obtain the upper bound, achievable using
state-feedback.

Let us now apply the optimality conditions to the pair
of SDPs (20) and (21). It can be shown that if (Q, A) is
observable, then the primal problem is strictly feasible,
and if (A4, B) is controllable, then the dual problem
is strictly feasible. We therefore have strong duality
p* = d*, and the primal and dual optima are attained.

The complementary slackness conditions that relate op-
timal P and Z, are given by

{ AYEAL } {ATP+PA+Q PB } _ 0

75 7 BTP R
i.e.,

175 r 1| ATP+PA+Q PB | _
PR e

From the first constraint in (22) it is clear that Z>0.
If Z were singular, we would have a contradiction, since

vI((A+ BK)Z + Z(A+ BK)T + v =vTv
for all v with Zv = 0. Therefore,

ATP+ PA+Q PB

T —
[ I K ] BTp R - O,

from which we immediately obtain two well-known
properties of the solution of the LQR problem: the
optimal input is a constant state feedback given by

K=-R'BTp,
and, secondly, P satisfies the algebraic Riccati equation

ATP+PA+Q—-PBR'BTP=0.

5 Conclusions and implications for
computation

We have presented simple proofs of several well-known
facts related to Riccati inequalities. The proofs rely
on a few basic theorems from SDP duality. While we
believe these proofs (and in some cases the results) are
new, this work is mainly motivated by the hope that
computational methods for LMI problems in control
can benefit from insight in the dual problems, for the
following reasons.



Modern interior-point methods for semidefinite
programming are primal-dual methods. Some of
these methods require primal and dual feasible
starting points. A system-theoretical interpreta-
tion of the dual problem is helpful when selecting
good dual feasible starting points.

For infeasible methods, i.e., methods that do not
require primal and dual feasible starting points,
insight in the dual problem is important when
the algorithm terminates with the conclusion that
the problem is not dual feasible, and we want to
understand why.

— Decomposition methods in large-scale linear pro-
gramming, i.e., methods that break up a prob-
lem into smaller independent problems and then
combine the results, rely heavily on duality. It
would be very interesting if similar decomposi-
tion schemes could be formulated for large SDP
problems in control.
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