
The CVXOPT linear and quadratic cone program solvers

L. Vandenberghe

March 20, 2010

Abstract

This document describes the algorithms used in the conelp and coneqp solvers of CVXOPT
version 1.1.2 and some details of their implementation.

Contents

1 Introduction 2

2 Logarithmic barrier function 4

3 Central path 5

4 Nesterov-Todd scaling 6

5 Path-following algorithm for cone QPs 11

6 Self-dual embedding of cone LPs 14

7 Path-following algorithm for cone LPs 17

8 Step length computation 23

9 Updating the scaling matrix 24

10 Linear equation solvers 27

1

1 Introduction

Two problems are considered in these notes. The first is the cone linear program (cone LP)

minimize cT x
subject to Gx + s = h

Ax = b
s � 0

(1a)

with variables x and s, and its dual

maximize −hT z − bT y
subject to GT z + AT y + c = 0

z � 0

(1b)

with variables y and z. The inequalities s � 0, z � 0 are generalized inequalities with respect to a
self-dual convex cone C. We restrict C to be a Cartesian product

C = C1 × C2 × · · · × CK , (2)

where each cone Ck can be a nonnegative orthant, second-order cone, or positive semidefinite cone.
The second problem is the cone quadratic program (cone QP)

minimize (1/2)xT Px + cT x
subject to Gx + s = h

Ax = b
s � 0,

(3a)

with P positive semidefinite. The corresponding dual problem is

maximize −(1/2)(GT z + AT y + c)T P †(GT z + AT y + c) − hT z − bT y
subject to GT z + AT y + c ∈ range(P)

z � 0,

(3b)

where P † is the pseudo-inverse of P . The dual problem can be written more simply by introducing
an additional variable w:

maximize −(1/2)wT Pw − hT z − bT y
subject to GT z + AT y + c = Pw

z � 0.

Although the cone LP can be solved as a special case of the cone QP, the absence of a quadratic term
in the cost function makes it easier to implement methods that detect primal or dual infeasibility.
This explains the difference between the conelp and coneqp solvers. The conelp solver does not
require strict primal and dual feasibility and attempts to solve the problem (1) or establish primal
or dual infeasibility. The coneqp solver can handle a quadratic term in the objective, but requires
that the problem is strictly primal and dual feasible, and does not detect infeasibility.

The algorithms implemented in the two solvers are primal-dual path-following methods based
on the Nesterov-Todd scaling. For more background, history, and analysis of the algorithms we
refer the reader to the articles in the References (in particular, [ART03, Stu02, Stu03, TTT03]).

2

Rank assumptions We assume that

rank(A) = p, rank
([

P AT GT
])

= n

where p is the row dimension of A and n is the dimension of x. This is equivalent to assuming that
the matrix 


P AT GT

A 0 0
G 0 −Q




is nonsingular for any positive definite Q.
If rank(A) < p, then either the equality constraints in the primal problem are inconsistent (if b 6∈

range(A)) or some of the equalities are redundant and can be removed. If rank(
[

P AT GT
]
) <

n, then either the equality constraints GT z + AT y + c = Pw in the dual problem are inconsistent
(if c 6∈ range(

[
P AT GT

]
)) or some are redundant and the number of primal variables can be

reduced.
The CVXOPT solvers raise an exception if the rank conditions are not satisfied. They do not

report which of the two rank assumptions does not hold and they do not detect whether this makes
the primal or dual equalities inconsistent or not.

Notation We will often represent symmetric matrices as vectors that contain the lower triangular
entries of the matrix. This operation is denoted vec: if U ∈ Sp (the symmetric matrices of order p),
then

vec(U) =
(
U11,

√
2U21, . . . ,

√
2Up1, U22,

√
2U32, . . . ,

√
2Up2, . . . , Up−1,p−1,

√
2Up,p−1, Upp

)
.

The scaling of the off-diagonal entries ensures that inner products are preserved, i.e., tr(UV) =
vec(U)T vec(V) for all U , V . The inverse operation is denoted mat: if u is a vector of length
p(p + 1)/2, then

mat(u) =




u1 u2/
√

2 · · · up/
√

2

u2/
√

2 up+1 · · · u2p−1/
√

2
...

...
...

up/
√

2 u2p−1/
√

2 · · · up(p+1)/2


 .

The scaling ensures that uT v = tr(mat(u)mat(v)).
The image of S

p
+ (the positive semidefinite matrices of order p) under the vec operation is

denoted Sp:

Sp =
{
vec(U) | U ∈ S

p
+

}
= {u ∈ Rp(p+1)/2 | mat(u) � 0}.

The second-order cone in Rp is denoted

Qp = {(u0, u1) ∈ R × Rp−1 | ‖u1‖2 ≤ u0}.

The notation R
p
+ is used for the cone of nonnegative p-vectors.

3

2 Logarithmic barrier function

We use the following logarithmic barrier function for C:

φ(u) =
K∑

k=1

φk(uk), φk(u) =





−∑p
j=1 log uj Ck = R

p
+

−(1/2) log(u2
0 − uT

1 u1) Ck = Qp

− log detmat(u) Ck = Sp.

Note that φ(tu) = φ(u) − m log t for t > 0 where

m = m1 + · · · + mK , mk =





p Ck = R
p
+

1 Ck = Qp

p Ck = Sp.
(4)

We refer to m as the degree of the cone C.

2.1 Gradient

We write the gradients of φ and φk at u as g(u) = ∇φ(u) and gk(uk) = ∇φk(uk):

gk(uk) =





−diag(uk)
−11 Ck = R

p
+

−(uT
k Juk)

−1Juk Ck = Qp

−vec(mat(uk)
−1) Ck = Sp

where 1 is a p-vector of ones and

J =

[
1 0
0 −Ip−1

]
.

It can be verified that g(u) ≺ 0 and uT g(u) = −m for u ≻ 0.

2.2 Hessian

The Hessians of φ and φk at u are denoted H(u) = ∇2φ(u) and Hk(uk) = ∇2φk(uk). The Hessian
for Ck = R

p
+ is Hk(uk) = diag(uk)

−2. The Hessian for Ck = Qp is

Hk(uk) =
1

(uT
k Juk)2

(
2Juku

T
k J − (uT

k Juk)J
)
, Hk(uk)

−1 = 2uku
T
k − (uT

k Juk)J.

For future reference, we give the symmetric square roots:

Hk(uk)
1/2 =

1

uT
k Juk

[
uk0 −uT

k1

−uk1

(
uk0 + (uT

k Juk)
1/2
)−1

uk1u
T
k1 + (uT

k Juk)
1/2I

]

Hk(uk)
−1/2 =

[
uk0 uT

k1

uk1

(
uk0 + (uT

k Juk)
1/2
)−1

uk1u
T
k1 + (uT

k Juk)
1/2I

]
.

For Ck = Sp, the Hessian is defined by

Hk(u)v = vec
(
mat(uk)

−1 mat(v)mat(uk)
−1
)
.

4

2.3 Self-scaled property

The following property is known as the self-scaled property of the barrier function [NT97, Tun98,
NT98]. Suppose w ≻ 0. Then H(w)u ≻ 0 for all u ≻ 0 and

φ(H(w)u) = φ(u) − 2φ(w). (5)

This identity is straightforward to derive in the case of the nonnegative orthant and the positive
semidefinite cone, so we prove it only for the second-order cone Ck = Qp. Define vk = Hk(wk)uk.
Then

vk =
1

(wT
k Jwk)2

(
2(wT

k Juk)Jwk − (wT
k Jwk)Juk

)

vT
k Jvk =

1

(wkJwk)4
(
2(wT

k Juk)Jwk − (wT
k Jwk)Juk

)T (
2(wT

k Juk)wk − (wT
k Jwk)uk

)

=
1

(wT
k Jwk)4

(
4(wT

k Juk)
2(wT

k Jwk) − 4(wT
k Juk)

2(wT
k Jwk) + (wT

k Jwk)
2(uT

k Juk)
)

=
uT

k Juk

(wT
k Jwk)2

.

Hence φk(vk) = −(1/2) log(vT
k Jvk) = −(1/2) log(uT

k Juk) − log(wT
k Jwk).

By taking the first and second derivatives with respect to u of each side of (5) we see that

H(w)g (H(w)u) = g(u), H(w)H (H(w)u) H(w) = H(u)

for all u, w ≻ 0. Equivalently,

H(w)g(v) = g(H(w)−1v), H(w)H(v)H(w) = H(H(w)−1v) (6)

for all v, w ≻ 0. Thus, H(H(w)−1v)1/2 is the symmetric square root of H(w)H(v)H(w).

3 Central path

The central path for (3) is defined as the family of points (s, x, y, z) that satisfy




0
0
s


+




P AT GT

A 0 0
G 0 0






x
y
z


 =




−c
b
h


 , (s, z) ≻ 0, z = −µg(s) (7)

for some µ > 0. Primal-dual algorithms are based on an equivalent definition of the central path
in which the primal and dual variables appear symmetrically. The symmetric parametrization is
obtained by writing z = −µg(s) as s ◦ z = µ e, where the kth component of the product s ◦ z is
defined as (s ◦ z)k = sk ◦ zk with

u ◦ v =





(u1v1, . . . , upvp) Ck = R
p
+

(uT v, u0v1 + v0u1) Ck = Qp

(1/2)vec(mat(u)mat(v) + mat(v)mat(u)) Ck = Sp,

5

and e is the vector e = (e1, . . . , eK),

ek =





(1, 1, . . . , 1) Ck = R
p
+

(1, 0, . . . , 0) Ck = Qp

vec(Ip) Ck = Sp.

Note that eT (z ◦ s) = zT s and eTe = m.
Replacing the condition z = −µg(s) in (7) by the symmetric expression s ◦ z = µ e gives




0
0
s


+




P AT GT

A 0 0
G 0 0






x
y
z


 =




−c
b
h


 , (s, z) ≻ 0, z ◦ s = µ e. (8)

For future reference, we give some useful properties of certain powers associated with the ◦ prod-
uct. The inverse, square, and square root of u are defined by the relations u−1 ◦ u = e, u2 = u ◦ u,
u1/2 ◦ u1/2 = u, and can be computed componentwise for each subvector in u = (u1, . . . , uk). If
Ck = R

p
+ the operations are the componentwise vector operations on uk. If Ck = Sp they are given

by the matrix inverse, square, and symmetric square root. If Ck = Qp, we have

u−1
k =

1

uT
k Juk

Juk, u2
k =

[
uT

k uk

2uk0uk1

]
, u

1/2
k =

1√
2(uk0 +

√
uT

k Juk)

[
uk0 +

√
uT

k Juk

uk1

]
.

Note that
(u−1

k)T Ju−1
k = (uT

k Juk)
−1, (u

1/2
k)T Ju

1/2
k = (uT

k Juk)
1/2.

The following general properties of the logarithmic barrier are also useful.

H(u)−1 = H(u−1), H(u)1/2 = H(u1/2), (9)

H(u)u = u−1, H(u1/2)u = e, (H(u)v)−1 = H(u)−1v−1. (10)

4 Nesterov-Todd scaling

A primal-dual scaling W is a linear transformation

s̃ = W−T s, z̃ = Wz

that leaves the cone and the central path invariant, i.e.,

s ≻ 0 ⇐⇒ s̃ ≻ 0, z ≻ 0 ⇐⇒ z̃ ≻ 0, s ◦ z = µ e ⇐⇒ s̃ ◦ z̃ = µ e.

If W is a scaling we can write the central path equations (8) equivalently as




0
0
s


+




P AT GT

A 0 0
G 0 0






x
y
z


 =




−c
b
h


 , (s, z) ≻ 0, (Wz) ◦ (W−T s) = µ e. (11)

The self-scaled property of the logarithmic barrier function (section 2.3) provides a method
for constructing primal-dual scalings that are symmetric: the Hessian of the barrier at any strictly

6

positive point is a primal-dual scaling. To see this, we first note that the self-scaled property implies
that multiplications with the Hessian and inverse Hessian leave the interior of the cone invariant.
Second, if W is the Hessian of the barrier at some point, then, from (6), z = −µg(s) is equivalent
to Wz = −µg(W−1s), i.e., (Wz) ◦ (W−1s) = µ e. In general, however, one can also consider other,
non-symmetric, scaling matrices.

Interior-point algorithms are based on linearizing the central path equations (11), using a primal-
dual scaling that changes at each iteration depending on the values of the current iterates ŝ, ẑ. The
Nesterov-Todd scaling at ŝ, ẑ is derived from the unique scaling point w that satisfies

H(w)ŝ = ẑ

[NT97, NT98]. A general expression for the scaling point is

w = H(ŝ−1/2)
(
H(ŝ−1/2)ẑ

)−1/2
= H(ẑ1/2)

(
H(ẑ−1/2)ŝ

)1/2
. (12)

To see this, define u = H(ŝ−1/2)ẑ. From (6) and (9)–(10),

H(w)ŝ = H(ŝ1/2)H(u−1/2)H(ŝ1/2)ŝ

= H(ŝ1/2)H(u−1/2)e

= H(ŝ1/2)u

= ẑ.

A Nesterov-Todd scaling is obtained by factoring H(w) as H(w)−1 = W T W , where W is a scaling
matrix. Hence Wẑ = W−T ŝ and we will denote this vector as λ:

λ = W−T ŝ = Wẑ.

One possible factorization is the symmetric square root: W = H(w)−1/2. This is a scaling matrix,
because from (9), H(w)−1/2 = H(w−1/2) and we have seen that the Hessian of the barrier at
any strictly positive point is a scaling matrix. Note that there may exist more than one suitable
factorization H(w)−1 = W T W . For example, for the second-order and semidefinite cones, one can
choose the symmetric scaling W = H(w)−1/2, or a nonsymmetric scaling.

4.1 Nonnegative orthant

Scaling Any positive diagonal matrix Wk can be used as a scaling for Ck = R
p
+.

Nesterov-Todd scaling point The Nesterov-Todd scaling point at ŝk, ẑk is

wk = ŝ
1/2
k ◦ ẑ

−1/2
k .

Nesterov-Todd scaling The Nesterov-Todd scaling is

Wk = diag(wk) = diag(ŝ
1/2
k ◦ ẑ

−1/2
k).

The scaled variable λk = W−1
k ŝk = Wkẑk is

λk = ẑ
1/2
k ◦ ŝ

1/2
k .

7

4.2 Second-order cone

Scaling Any matrix Wk that satisfies

WkJW T
k = β2J (13)

where β 6= 0, can be used as scaling matrix for Ck = Qp. (The matrix (1/β)Wk is sometimes called
a hypernormal matrix [RS88].) Note that Wk is necessarily nonsingular, and

W T
k JWk = JW−1

k (WkJW T
k)JWk = β2J. (14)

Examples of symmetric scaling matrices are Hessians Hk(u) or inverse Hessians Hk(u)−1 of the
second-order cone barrier (in this case β = 1/(uT Ju), resp., β = uT Ju). The matrix

1

uT Ju
H−1

k (u) =
2

uT Ju
uuT − J

is also called a hyperbolic Householder matrix [RS88]. A product of scaling matrices (for example,
WkJ), is also a (generally nonsymmetric) scaling matrix.

We now verify that if Wk satisfies (13), then the second-order cone and the central path are
preserved under multiplication with Wk. Let ek be the first unit vector and v = W T

k ek = (v0, v1)
the first row of Wk. This is a nonnegative vector since, from (13),

vT Jv = (W T
k ek)

T J(W T
k ek) = eT

k WkJW T
k ek = β2 ≥ 0.

Suppose x = (x0, x1) ∈ Qp and x̃ = Wkx. Then

x̃0 = vT x = v0x0 + vT
1 x1 ≥ v0x0 − ‖v1‖2‖x1‖2 ≥ 0

by the Cauchy-Schwarz inequality, and

x̃T Jx̃ = xT W T
k JWkx = β2xT Jx ≥ 0.

Conversely, using (14) we see that if x̃ is in the second-order cone, then x = W−1
k x̃ is also in the

second-order cone. A similar argument shows that multiplications with W T
k and W−T

k preserve the
second-order cone. Furthermore, if zk and sk are on the central path, i.e.,

zk = −µgk(sk) =
µ

sT
k Jsk

Jsk,

then z̃k = Wkzk, s̃k = W−T
k sk are on the transformed central path, with the same parameter µ:

z̃k =
µ

sT
k Jsk

WkJW T
k s̃k =

µ

s̃T
k Js̃k

Js̃k = −µgk(s̃k).

Nesterov-Todd scaling point The Nesterov-Todd scaling point wk is uniquely defined by

H(wk)
−1ẑk = ŝk.

Let zk and sk be the normalized vectors

zk =
1

(ẑT
k Jẑk)1/2

ẑk, sk =
1

(ŝT
k Jŝk)1/2

ŝk,

8

and define

γ =

(
1 + zT

k sk

2

)1/2

, wk =
1

2γ
(sk + Jzk) . (15)

We have
wT

k Jwk = 1, wT
k zk = wT

k Jsk = γ.

From this it is easy to see that

(
2wkw

T
k − J

)
zk = sk,

(
2Jwkw

T
k J − J

)
sk = zk.

In other words the hyperbolic Householder transformation defined by wk maps z̄k to s̄k.
In terms of the unnormalized variables, this means that if we define

wT
k Jwk =

(
ŝT
k Jŝk

ẑT
k Jẑk

)1/2

, wk =
(
wT

k Jwk

)1/2
wk,

then
H(wk)

−1ẑk =
(
2wkw

T
k − (wT

k Jwk)J
)
ẑk = (wT

k Jwk)
(
2wkw

T
k − J

)
ẑk = ŝk.

Symmetric Nesterov-Todd scaling Let wk be as in (15), and define

vk = w
1/2
k =

1

(2(wk0 + 1))1/2
(wk + ek).

We have vT
k Jvk = 1, so the matrices

W k = 2vkv
T
k − J, W

−1
k = 2Jvkv

T
k J − J

are hyperbolic Householder matrices. More explicitly, written in terms of wk,

W k =

[
wk0 wT

k1

wk1 I + (wk0 + 1)−1wk1w
T
k1

]
, W

−1
k =

[
wk0 −wT

k1

−wk1 I + (wk0 + 1)−1wk1w
T
k1

]
.

W k is the Householder transformation that maps Jwk to ek, and therefore

W k(2Jwkw
T
k J − J)W k = (2eke

T
k − J) = I.

In other words, W k =
(
2wkw

T
k − J

)1/2
. In terms of the unnormalized variables, H(wk)

−1 = W T
k Wk

where

Wk = (wT
k Jwk)

1/2W k =

(
ŝT
k Jŝk

ẑT
k Jẑk

)1/4

W k.

To find expressions for the scaled variables, we define

λk = W kzk = W
−1
k sk = JW kJsk.

We have λ
T
k Jλk = 1 and

λk0 = γ, λk − Jλk = W k(zk − Jsk).

9

The last expression provides a way to evaluate λk directly from ŝk and ẑk:

λk1 =
1

2

(
W k(zk − Jsk)

)
1

=
1

2

(
zk1 + sk1 +

zk0 − sk0

wk0 + 1
wk1

)

=
1

sk0 + zk0 + 2γ
((γ + zk0)sk1 + (γ + sk0)zk1) .

The unnormalized scaled variable is

λk = Wkẑk = W−1
k ŝk =

(
(ŝT

k Jŝk)(ẑ
T
k Jẑk)

)1/4
λk.

4.3 Semidefinite cone

Scaling Any nonsingular congruence transformation can be used as a scaling for Ck ∈ Sp:

Wkv = vec(RT mat(v)R), W−T
k u = vec(R−1 mat(u)R−T).

Nesterov-Todd scaling point The scaling point at ŝk, ẑk is the symmetric matrix for which

mat(wk)Ẑk mat(wk) = Ŝk

where Ŝk = mat(ŝk) and Ẑk = mat(ẑk). From (12),

wk = vec

(
Ŝ

1/2
k

(
Ŝ

1/2
k ẐkŜ

1/2
k

)−1/2
Ŝ

1/2
k

)
.

Nonsymmetric Nesterov-Todd scaling The scaling point wk can be computed in factored
form wk = vec(RkR

T
k), where Rk diagonalizes mat(ẑk) and mat(ŝk):

RT
k mat(ẑk)Rk = R−1

k mat(ŝk)R
−T
k = mat(λk),

with mat(λk) diagonal. Note that W−T
k ŝk = Wkẑk = λk and λT

k λk = ŝT
k ẑk.

The scaling matrix Rk can be computed as follows. We first compute Cholesky factorizations

Sk = mat(ŝk) = L1L
T
1 , Zk = mat(ẑk) = L2L

T
2 .

Next, we compute the SVD
LT

2 L1 = UΛkV
T

and take λk = vec(diag(Λk)). Finally, we form

Rk = L1V Λ
−1/2
k = L−T

2 UΛ
1/2
k .

It can be verified that RT
k S−1

k Rk = Λ−1
k and RT

k ZkRk = Λk and that the inverse of Rk is given by

R−1
k = Λ

1/2
k V T L−1

1 = Λ
−1/2
k UT LT

2 .

10

4.4 Compositions of scaling matrices

If V is a scaling matrix, then
V T H(w)−1V = H(V T w)−1. (16)

This is easy to see for the nonnegative orthant and the semidefinite cone. To verify the property
for Ck = Qp, assume V T

k JVk = VkJV T
k = β2J . Then

V T
k Hk(wk)

−1Vk = V T
k (2wkw

T
k Vk − (wT

k Jwk)J)Vk

= V T
k 2wkw

T
k V − (wT

k Jwk)β
2J

= 2V T
k wkw

T
k Vk − (wT

k VkJV T
k wk)J

= Hk(V
T
k wk)

−1.

5 Path-following algorithm for cone QPs

The algorithm implemented in coneqp is based on linearizing the central path equations (11),
obtained from (8) after applying a scaling with a matrix W .

5.1 Outline

We denote the current iterates by (ŝ, x̂, ŷ, ẑ). We start at initial values (ŝ, x̂, ŷ, ẑ) = (s0, x0, y0, z0),
where s0 ≻ 0, z0 ≻ 0. We also compute the Nesterov-Todd scaling W at ŝ, ẑ, and the scaled
variable λ := W−T ŝ = Wẑ.

1. Evaluate residuals, gap, and stopping criteria. Compute




rx

ry

rz


 =




0
0
ŝ


+




P AT GT

A 0 0
G 0 0






x̂
ŷ
ẑ


+




c
−b
−h


 (17)

and

µ̂ =
ŝT ẑ

m
=

λT λ

m
.

Terminate if (s, x, y, z) = (ŝ, x̂, ŷ, ẑ) satisfies (approximately) the optimality conditions




0
0
s


 =




P AT GT

−A 0 0
−G 0 0






x
y
z


+




c
b
h


 , (s, z) � 0, zT s = 0.

2. Affine direction. Solve the linear equations




0
0

∆sa


+




P AT GT

A 0 0
G 0 0






∆xa

∆ya

∆za


 = −




rx

ry

rz


 (18a)

λ ◦
(
W∆za + W−T ∆sa

)
= −λ ◦ λ. (18b)

11

3. Step size and centering parameter. Compute

α = sup {α ∈ [0, 1] | (ŝ, ẑ) + α(∆sa, ∆za) � 0}
= sup

{
α ∈ [0, 1] | (λ, λ) + α(W−T ∆sa, W∆za) � 0

}

ρ =
(ŝ + α∆sa)

T (ẑ + α∆za)
T

ŝT ẑ

= 1 − α + α2 (W−T ∆sa)
T (W∆za)

λT λ
σ = max{0, min{1, ρ}}3.

4. Combined direction. Solve the linear equation



0
0

∆s


+




P AT GT

A 0 0
G 0 0






∆x
∆y
∆z


 = −(1 − η)




rx

ry

rz


 (19a)

λ ◦
(
W∆z + W−T ∆s

)
= −λ ◦ λ − γ(W−T ∆sa) ◦ (W∆za) + σµ̂e. (19b)

Common choices for η are η = 0 and η = σ. The current implementation uses η = 0. The
parameter γ is 1 or 0, depending on whether or not a Mehrotra correction is used. The default
value is γ = 1.

5. Update iterates and scaling matrices.

(ŝ, x̂, ŷ, ẑ) := (ŝ, x̂, ŷ, ẑ) + α(∆s,∆x,∆y, ∆z)

where
α = sup

{
α ∈ [0, 1]

∣∣∣ (λ, λ) +
α

0.99
(W−T ∆s, W∆z) � 0

}
.

Compute the scaling matrix W for ŝ, ẑ, and the scaled variable λ := W−T ŝ = Wẑ.

5.2 Discussion

The equations (18) are obtained by substituting (s, x, y, z) = (ŝ, x̂, ŷ, ẑ) + (∆sa, ∆xa, ∆ya, ∆za) in
the two equations in (11) with µ = 0, and setting the second order terms in

(W (ẑ + ∆za)) ◦ (W−T (ŝ + ∆sa)) = (λ + W∆za) ◦ (λ + W−T ∆sa) = 0

equal to zero. If η = γ = 0 the equations (19) are obtained in the same way by linearizing (11)
with µ = σµ̂. Nonzero values of η can be justified by writing (19a) as




0
0

ŝ + ∆s


+




P AT GT

A 0 0
G 0 0






x + ∆x
y + ∆y
z + ∆z


+




c
−b
−h


 = η




rx

ry

rz


 .

This shows that taking a unit step in the direction (∆s,∆x,∆y, ∆z) decreases the residual by a
fraction η. If we choose γ = 1, we approximate the second order terms in

(W (ẑ + ∆z)) ◦ (W−T (ŝ + ∆s)) = σµ̂ e,

as
(W−T ∆s) ◦ (W∆z) ≈ (W−T ∆sa) ◦ (W∆za).

The second term on the righthand side of (19b) is known as the Mehrotra correction [Meh92, Wri97].

12

5.3 Initialization

If primal and dual starting points x̂, ŝ, ŷ, ẑ are not specified by the user, they are selected as
follows. We solve the linear equation




P AT GT

A 0 0
G 0 −I






x
y
z


 =




−c
b
h


 , (20)

and take x̂ = x, ŷ = y. The equation (20) gives the optimality conditions for the pair of primal
and dual problems

minimize (1/2)xT Px + cT x + (1/2)‖s‖2
2

subject to Gx + s = h
Ax = b

and
maximize −(1/2)wT Pw − hT z − bT y − (1/2)‖z‖2

2

subject to Pw + GT z + AT y + c = 0.

The initial value of ŝ is computed from the residual h − Gx = −z, as

ŝ =

{
−z αp < 0
−z + (1 + αp)e otherwise

where αp = inf{α | −z + α e � 0}. The initial value of z is

ẑ =

{
z αd < 0
z + (1 + αd)e otherwise,

where αd = inf{α | z + α e � 0}.

5.4 Newton equations

The most expensive computation in each iteration of the algorithm is the solution of the linear
equations in steps 2 and 4. These equations differ only in the righthand side and are of the form




0
0

∆s


+




P AT GT

A 0 0
G 0 0






∆x
∆y
∆z


 =




dx

dy

dz


 (21a)

λ ◦
(
W∆z + W−T ∆s

)
= ds. (21b)

We refer to the equations as Newton equations because they can be interpreted as linearizations
of the central path conditions. In this section we describe how CVXOPT reduces the Newton
equations to a smaller 3 × 3 block equation (KKT system). Later, in section 10, we explain how
the 3 × 3 block equation is solved.

Eliminating ∆s from (44b) gives




P AT GT

A 0 0
G 0 −W T W






∆x
∆y
∆z


 =




dx

dy

dz − W T (λ ⋄ ds)


 (22a)

13

∆s = W T (λ ⋄ ds − W∆z) . (22b)

Here u ⋄ v denotes the inverse of u ◦ v taken as a linear function of v, i.e., u ◦ (u ⋄ v) = v for all v.
For Ck = R

p
+, λk ⋄ v = diag(λk)

−1v. For Ck = Qp,

λk ⋄ v =

[
λk0 λT

k1

λk1 λk0I

]−1 [
v0

v1

]

=
1

λ2
k0 − λT

k1λk1

[
λk0 −λT

k1

−λk1 λ−1
k0

(
(λ2

k0 − λT
k1λk1)I + λk1λ

T
k1

)
] [

v0

v1

]

If Ck = Sp, with Λ = mat(λk), λk ⋄ v is the solution of

1

2
(Λmat(x) + mat(x)Λ) = mat(v),

i.e., λk⋄v = vec(mat(v)⊙Γ) where Γij = 2/(Λii+Λjj) and ⊙ denotes the Hadamard (element-wise)
matrix product.

Note that u = W T (λ⋄ds) is the solution of ẑ ◦u = ds. Hence, the solution of (22) depends only
on the product W T W and not on the scaling W itself as the righthand side of (22a) may suggest.
Note also that for the affine scaling Newton equation (step 2), the righthand side of (22a) simplifies
to

dz − W T (λ ⋄ ds) = −rz + W T λ = −rz + ŝ.

6 Self-dual embedding of cone LPs

The conelp algorithm is based on a self-dual reformulation of the cone LPs [YTM94, dKRT97].
In this section we first describe a homogeneous embedding, and explain how it can be used to
detect primal and dual infeasibility. We then give a slightly larger extended embedding that has
the advantage of being strictly feasible and define the central path for the embedded problem.

6.1 Homogeneous self-dual embedding

The primal and dual cone LPs can be embedded in a self-dual cone LP

minimize 0

subject to




0
0
s
κ


 =




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







x
y
z
τ




(s, κ, z, τ) � 0.

(23)

This problem is always feasible, since (s, κ, x, y, z, τ) = 0 is a feasible point. Moreover any feasible
point is optimal. We also note that the equality constraint implies that

sT z + κτ =




x
y
z
τ




T 


0
0
s
κ


 =




x
y
z
τ




T 


0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







x
y
z
τ


 = 0

14

at all feasible points. In particular, this shows that there are no strictly feasible points.
Now suppose (s, κ, x, y, z, τ) is a solution of (23) with κ + τ > 0.

• If τ > 0, κ = 0, we can divide x, y, z by τ to obtain a solution of the Karush-Kuhn-Tucker
(KKT) conditions for (1),




0
0
s


 =




0 AT GT

−A 0 0
−G 0 0






x
y
z


+




c
b
h


 = 0 (s, z) � 0, zT s = 0. (24)

• If τ = 0, κ > 0, then hT z + bT y + cT x < 0, so we must have hT z + bT y < 0 or cT x < 0 or
both. If hT z + bT y < 0, this provides a proof of primal infeasibility, since

GT z + AT y = 0, z � 0, hT z + bT y < 0. (25)

If cT x < 0, this provides a proof of dual infeasibility, since

Gx + s = 0, Ax = 0, s � 0, cT x < 0. (26)

If τ = κ = 0, no conclusion can be made about (1).

6.2 Extended self-dual embedding

As an extension, we can define another self-dual cone LP

minimize (m + 1)θ

subject to




0
0
s
κ
0




=




0 AT GT c qx

−A 0 0 b qy

−G 0 0 h qz

−cT −bT −hT 0 qτ

−qT
x −qT

y −qT
z −qτ 0







x
y
z
τ
θ




+




0
0
0
0

m + 1




(s, κ, z, τ) � 0.

(27)

Here m is the degree of the cone, defined in (4), and




qx

qy

qz

qτ


 =

m + 1

sT
0 z0 + 1







0
0
s0

1


−




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







x0

y0

z0

1





 (28)

where x0, s0, y0, z0 can be chosen arbitrarily with (s0, z0) ≻ 0. This LCP is always strictly feasible
and

(s, κ, x, y, z, τ, θ) = (s0, 1, x0, y0, z0, 1,
sT
0 z0 + 1

m + 1
)

is a strictly feasible point. By taking the inner product of both sides of the equality constraint
in (27) with (x, y, z, τ, θ) we see that the constraint implies that

θ =
sT z + κτ

m + 1
, (29)

15

so θ ≥ 0 for all feasible points.
It is easily verified that (27) is self-dual, i.e., its dual problem is formally the same (if we change

the objective to a maximization). Therefore, at optimum the solution must satisfy a complemen-
tarity condition with itself, and we can write the optimality conditions for (27) as




0
0
s
κ
0




=




0 AT GT c qx

−A 0 0 b qy

−G 0 0 h qz

−cT −bT −hT 0 qτ

−qT
x −qT

y −qT
z −qτ 0







x
y
z
τ
θ




+




0
0
0
0

m + 1




, (30a)

(s, κ, z, τ) � 0, zT s + κτ = 0. (30b)

Combined with (29), this implies that at the optimum θ = 0 and the extended embedding reduces
to the homogeneous embedding. If (s, κ, x, y, z, τ, θ) is an optimal solution with κ + τ > 0, we can
therefore extract from it an optimal solution of (1), or a proof of primal or dual infeasibility.

6.3 Central path of the embedded problem

The central path of (27) is defined as the solution of




0
0
s
κ
0




=




0 AT GT c qx

−A 0 0 b qy

−G 0 0 h qz

−cT −bT −hT 0 qτ

−qT
x −qT

y −qT
z −qτ 0







x
y
z
τ
θ




+




0
0
0
0

m + 1




, (31a)

(s, κ, z, τ) ≻ 0, z = −µg(s), τ = µ/κ (31b)

where µ is a nonnegative parameter. It follows from the equalities in (31b) and the property
sT g(s) = −m that µ = (sT z +κτ)/(m+1). By taking the inner product with (x, y, z, τ, θ) on both
sides of the equality (31) we also see that θ = µ at points on the central path. We can therefore
parametrize the central path more simply as




0
0
s
κ


 =




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







x
y
z
τ


+ µ




qx

qy

qz

qτ


 (32a)

(s, κ, z, τ) ≻ 0, z = −µg(s), τ = µ/κ. (32b)

The last equality in (31) was dropped because it is redundant: by taking the inner product of both
sides of (32a) with (0, 0, z, τ), we get

zT s + τκ = µ(qT
x x + qT

y y + qT
z z + qττ),

and hence the last equation in (31). We will use (32) to parametrize the central path. Alterna-
tively, we can interpret (32) as a nonstandard definition of the central path for the homogeneous
embedding (23).

16

As in section 3 we replace the condition z = −µg(s) by the symmetric relation s◦ z = µ e. This
gives 



0
0
s
κ


 =




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







x
y
z
τ


+ µ




qx

qy

qz

qτ


 (33a)

(s, κ, z, τ) ≻ 0, z ◦ s = µ e, κτ = µ (33b)

as a symmetric equivalent of the central path equations (32).

7 Path-following algorithm for cone LPs

The algorithm computes search directions by linearizing the central path equations (33) around the
current iterate (ŝ, κ̂, x̂, ŷ, ẑ, τ̂), after applying a scaling with a matrix W :




0
0
s
κ


 =




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







x
y
z
τ


+ µ




qx

qy

qz

qτ


 (34a)

(W−T s) ◦ (Wz) = µ e, κτ = µ. (34b)

7.1 Outline

We start at initial values (ŝ, κ̂, x̂, ŷ, ẑ, τ̂) = (s0, 1, x0, y0, z0, 1), where s0 ≻ 0, z0 ≻ 0, and define
(qx, qy, qz, qτ) as in (28). We also compute the Nesterov-Todd scaling W at ŝ, ẑ, and the scaled
variable λ := W−T ŝ = Wẑ.

1. Evaluate residuals, gap, and stopping criteria. Compute



rx

ry

rz

rτ


 =




0
0
ŝ
κ̂


−




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







x̂
ŷ
ẑ
τ̂


 (35)

and

µ̂ =
ŝT ẑ + κ̂τ̂

m + 1
=

λT λ + κ̂τ̂

m + 1
.

Terminate if (s, x, y, z) = (ŝ/τ̂ , x̂/τ̂ , ŷ/τ̂ , ẑ/τ̂) satisfies (approximately) the optimality condi-
tions (24), or (ẑ, ŷ) is an (approximate) certificate of primal infeasibility (25), or (ŝ, x̂) is an
(approximate) certificate of dual infeasibility (26).

2. Affine direction. Solve the linear equations



0
0

∆sa

∆κa


−




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







∆xa

∆ya

∆za

∆τa


 = −




rx

ry

rz

rτ


 (36a)

λ ◦
(
W∆za + W−T ∆sa

)
= −λ ◦ λ, κ̂∆τa + τ̂∆κa = −κ̂τ̂ . (36b)

17

3. Step size and centering parameter. Compute

α = sup {α ∈ [0, 1] | (ŝ, κ̂, ẑ, τ̂) + α(∆sa, ∆κa, ∆za, ∆τa) � 0}
= sup

{
α ∈ [0, 1] | (λ, κ̂, λ, τ̂) + α(W−T ∆sa, ∆κa, W∆za, ∆τa) � 0

}

σ =

(
(ŝ + α∆sa)

T (ẑ + α∆za)
T + (κ̂ + α∆κa)(τ̂ + α∆τa)

ŝT ẑ + κ̂τ̂

)3

= (1 − α)3. (37)

4. Combined direction. Solve the linear equation




0
0

∆s
∆κ


−




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







∆x
∆y
∆z
∆τ


 = −(1 − σ)




rx

ry

rz

rτ


 (38a)

λ ◦
(
W∆z + W−T ∆s

)
= −λ ◦ λ − (W−T ∆sa) ◦ (W∆za) + σµ̂e, (38b)

κ̂∆τ + τ̂∆κ = −κ̂τ̂ − ∆κa∆τa + σµ̂. (38c)

5. Update iterates and scaling matrices.

(ŝ, κ̂, x̂, ŷ, ẑ, τ̂) := (ŝ, κ̂, x̂, ŷ, ẑ, τ̂) + α(∆s,∆κ, ∆x,∆y, ∆z, ∆τ)

where
α = sup

{
α ∈ [0, 1]

∣∣∣ (λ, κ̂, λ, τ̂) +
α

0.99
(W−T ∆s,∆κ, W∆z, ∆τ) � 0

}
.

Compute the scaling matrix W for ŝ, ẑ, and the scaled variable λ := W−T ŝ = Wẑ.

7.2 Discussion

We discuss steps 2–4 in more detail. We first derive some useful properties of the affine scaling
direction computed in step 2. The first equation in (36b) is equivalent to

ŝ ◦ ∆za + ẑ ◦ ∆sa = −ŝ ◦ ẑ

in unscaled coordinates. Taking the inner product with e on both sides gives

ŝT ∆za + ẑT ∆sa = −ŝT ẑ, κ̂∆τa + τ̂∆κa = −κ̂τ̂ . (39)

18

Furthermore,

∆zT
a ∆sa + ∆τa∆κa = −




∆xa

∆ya

∆za

∆τa




T 


rx

ry

rz

rτ




= −




∆xa

∆ya

∆za

∆τa




T 





0
0
ŝ
κ̂


−




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







x̂
ŷ
ẑ
τ̂







= −ŝT ∆za − κ̂∆τa −




x̂
ŷ
ẑ
τ̂




T 


0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







∆xa

∆ya

∆za

∆τa




= −ŝT ∆za − κ̂∆τa − ẑT ∆sa − τ̂∆κa +




x̂
ŷ
ẑ
τ̂




T 


rx

ry

rz

rτ




= −ŝT ∆za − κ̂∆τa − ẑT ∆sa − τ̂∆κa + ŝT ẑ + κ̂τ̂

= 0. (40)

Lines 1 and 4 follow from (36a) and the skew-symmetry of the coefficient matrix. Line 6 follows
from (39). Line 5 follows from the skew-symmetry of the coefficient matrix in the definition of the
residuals (35): 



x̂
ŷ
ẑ
τ̂




T 


rx

ry

rz

rτ


 = ŝT ẑ + κ̂τ̂ = (m + 1)µ̂. (41)

The simple expression for σ in (37) follows by plugging in (39) and (40) in the definition.
The combined direction computed in step 4 has similar properties. From (38b) and (38c) we

see that

ŝT ∆z + κ̂∆τ + ẑT ∆s + τ̂∆κ = −ŝT ẑ − κ̂τ̂ − ∆sT
a ∆za − ∆κa∆τa + σµ̂(m + 1)

= −(1 − σ)(ŝT ẑ + κ̂τ̂) (42)

19

and

∆zT ∆s + ∆τ∆κ = −(1 − σ)




∆x
∆y
∆z
∆τ




T 


rx

ry

rz

rτ




= −(1 − σ)




∆x
∆y
∆z
∆τ




T 





0
0
ŝ
κ̂


−




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







x̂
ŷ
ẑ
τ̂







= −(1 − σ)


ŝT ∆z + κ̂∆τ +




x̂
ŷ
ẑ
τ̂




T 


0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







∆x
∆y
∆z
∆τ







= −(1 − σ)


ŝT ∆z + κ̂∆τ + ẑT ∆s + τ̂∆κ + (1 − σ)




x̂
ŷ
ẑ
τ̂




T 


rx

ry

rz

rτ







= −(1 − σ)
(
ŝT ∆z + κ̂∆τ + ẑT ∆s + τ̂∆κ + (1 − σ)(ŝT ẑ + κ̂τ̂)

)

= 0. (43)

Next we show by induction that

(rx, ry, rz, rτ) = µ̂(qx, qy, qz, qτ)

at the beginning of each iteration. In the first iteration, this is true by definition of (qx, qy, qz, qτ).
Suppose it is satisfied by the current iterates. Then

(r+
x , r+

y , r+
z , r+

τ) = (1 − α(1 − σ))(rx, ry, rz, rτ)

= (1 − α(1 − σ))µ̂(qx, qy, qz, qτ)

= µ̂+(qx, qy, qz, qτ),

because, from (42) and (43), µ̂+ = (1 − α(1 − σ))µ̂. Using this property, we can write (38a) as




0
0

∆s
∆κ


−




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







∆x
∆y
∆z
∆τ


 = σµ̂




qx

qy

qz

qτ


−




rx

ry

rz

rτ


 .

This shows that (38a) can be interpreted as the central path equation (34a) with (s, κ, x, y, z, τ)
replaced by (ŝ + ∆s, κ̂ + ∆κ, x̂ + ∆x, ŷ + ∆y, ẑ + ∆z, τ̂ + ∆τ), and µ = σµ̂. Making the same
substitution in the nonlinear central path equations (34b) gives

(W−T (ẑ + ∆z)) ◦ (W (ŝ + ∆s)) = σµ̂ e, (κ̂ + ∆κ)(τ̂ + ∆τ) = σµ̂.

20

Expanding the products, using W−T ẑ = Wŝ = λ, and using the Mehrotra correction to approximate
the second-order terms as

(W−T ∆s) ◦ (W∆z) ≈ (W−T ∆sa) ◦ (W∆za), ∆τ∆κ ≈ ∆κa∆τa

gives (38b) and (38c).
In summary, we see that in step 4 a search direction is computed by linearizing the central path

equations (34) around the current iterates with µ = σµ̂. Step 2 is the linearization for µ = 0. Step
3 is a heuristic for choosing σ, based on the result for µ = 0.

7.3 Initialization

If primal and dual starting points x̂, ŝ, ŷ, ẑ are not specified by the user, they are selected as
follows. The initial primal variable x̂ is the solution of the constrained least-squares problem

minimize ‖Gx − h‖2
2

subject to Ax = b.

The initial value of ŝ is computed from the residual s̃ = Gx̂ − h, as

ŝ =

{
s̃ αp < 0
s̃ + (1 + αp)e otherwise

where αp = inf{α | s̃ + α e � 0}. The values x̂, s̃ can be computed by solving the linear equation




0 AT GT

A 0 0
G 0 −I






x̂
y
−s̃


 =




0
b
h


 .

The initial dual variables ŷ, ẑ are computed by solving a least-norm problem

minimize ‖z‖2
2

subject to GT z + AT y + c = 0.

If the solution is ŷ, z̃, then we use ŷ as initial value of y, and

ẑ =

{
z̃ αd < 0
z̃ + (1 + αd)e otherwise,

where αd = inf{α | z̃ + α e � 0}, as the initial value of z. The least-norm problem is equivalent to
the the linear equation 


0 AT GT

A 0 0
G 0 −I






x
ŷ
z̃


 =




−c
0
0


 .

21

7.4 Newton equations

The two linear equations in steps 2 and 4 differ only in the righthand side and are of the form




0
0

∆s
∆κ


−




0 AT GT c
−A 0 0 b
−G 0 0 h
−cT −bT −hT 0







∆x
∆y
∆z
∆τ


 = −




dx

dy

dz

dτ


 (44a)

λ ◦
(
W∆z + W−T ∆s

)
= −ds, κ̂∆τ + τ̂∆κ = −dκ. (44b)

Eliminating ∆s and ∆κ from (44b) gives




0 AT GT c
−A 0 0 b
−G 0 W T W h
−cT −bT −hT κ̂/τ̂







∆x
∆y
∆z
∆τ


 =




dx

dy

dz − W T (λ ⋄ ds)
dτ − dκ/τ̂


 (45a)

∆s = −W T (λ ⋄ ds + W∆z) , ∆κ = −(dκ + κ̂∆τ)/τ̂ . (45b)

As in section 5.4, u ⋄ v denotes the inverse of u ◦ v taken as a linear function of v, i.e., W T (λ ⋄ ds)
is the solution fo z ◦ u = ds. For the affine scaling Newton equation (step 2), the righthand side
of (45a) simplifies to

dz − W T (λ ⋄ ds) = rz − W T λ = rz − ŝ, dτ − dκ/τ̂ = rτ − κ̂.

To solve the 4 × 4 block system (45) we solve two KKT systems




0 AT GT

−A 0 0
−G 0 W T W






x(1)

y(1)

z(1)


 = −




c
b
h


 (46)

and 


0 AT GT

−A 0 0
−G 0 W T W






x(2)

y(2)

z(2)


 =




dx

dy

dz − W T (λ ⋄ ds)


 , (47)

and make a linear combination with

∆τ =
dτ − dκ/τ̂ + cT x(2) + bT y(2) + hT z(2)

κ̂/τ̂ − cT x(1) − bT y(1) − hT z(1)

=
dτ − dκ/τ̂ + cT x(2) + bT y(2) + hT z(2)

κ̂/τ̂ + ‖Wz(1)‖2
2

to get
x = x(2) + ∆τ x(1), y = y(2) + ∆τ y(1), z = z(2) + ∆τ z(1).

In summary, the main computation in one iteration of the algorithm is the solution of three
equations with the same coefficient matrix (equation (46) and equation (47) for the two different
righthand sides in steps 2 and 4).

22

8 Step length computation

Steps 3 and 5 of the algorithms require the computation of the maximum α such that

λ + α∆s̃ � 0, λ + α∆z̃ � 0,

where ∆s̃ = W−T ∆s and ∆z̃ = W∆z. To facilitate the calculation we compute, for each cone,

ρk = H(λk)
1/2∆s̃k, σk = H(λk)

1/2∆z̃k.

The maximum step size is then α = mink αk where

αk = sup {α | ek + αρk � 0, ek + ασk � 0} .

(This follows from H(λ1/2)λ = e; see (10).)

8.1 Nonnegative orthant

For the nonnegative orthant Ck = R
p
+,

ρk = λ−1
k ◦ ∆s̃k, σk = λ−1

k ◦ ∆z̃k, αk = max

{
0, −min

i
ρki, −min

i
σki

}−1

.

8.2 Second-order cone

For the second-order cone Ck = Qp,

ρk =
1

(λT
k Jλk)1/2

[
λ

T
k J∆s̃k

∆s̃k1 − (λ
T
k J∆s̃k + ∆s̃k0)(λk0 + 1)−1λk1

]

σk =
1

(λT
k Jλk)1/2

[
λ

T
k J∆z̃k

∆z̃k1 − (λ
T
k J∆z̃k + ∆z̃k0)(λk0 + 1)−1λk1

]

where λk = λk/(λT
k Jλk)

1/2. The maximum step size is

αk = max {0, ‖ρk1‖2 − ρk0, ‖σk1‖2 − σk0}−1 .

8.3 Semidefinite cone

For the semidefinite cone Ck = S
p
+,

ρk = vec(Λ
−1/2
k ∆S̃kΛ

−1/2
k), σk = vec(Λ

−1/2
k ∆Z̃kΛ

−1/2
k),

where Λk = mat(λk), ∆S̃k = mat(∆s̃k), ∆Z̃k = mat(∆z̃k). We determine αk by taking two
eigenvalue decompositions

mat(ρk) = Qs diag(γs)Q
T
s , mat(σk) = Qz diag(γz)Q

T
z .

The maximum step size is

αk = max

{
0,−min

i
γsi,−min

i
γzi

}−1

.

23

9 Updating the scaling matrix

At the end of each iteration, we update the scaling point, scaling matrix, and scaled variables. The
current scaling point w and scaling W satisfy

H(w)ŝ = ẑ, W ẑ = W−T ŝ = λ.

We need to compute a scaling point w+ and scaling W+ such that

H(w+)(ŝ + α∆s) = ẑ + α∆z, W+(ẑ + α∆z) = (W+)−T (ŝ + α∆s) = λ+.

This can be achieved as follows. We first compute the scaling point q for the scaled coordinates:

H(q)s̃+ = z̃+, s̃+ = λ + α∆s̃, z̃+ = λ + α∆z̃.

The new scaling point is w+ = W T q. This follows from (16):

H(W T q)−1(ẑ + α∆z) = W T H(q)−1W (ẑ + α∆z)

= W T H(q)−1(λ + α∆z̃)

= W T (λ + α∆s̃)

= ŝ + α∆s.

9.1 Nonnegative orthant

If Ck = R
p
+, the update is straightforward:

w+
k = (λk + α∆s̃k)

1/2 ◦ (λk + α∆z̃k)
−1/2 ◦ wk

λ+
k = (λk + α∆z̃k)

1/2 ◦ (λk + α∆s̃k)
1/2.

9.2 Second-order cone

Updated NT scaling point If Ck = Qp, we compute the scaling point qk for the scaled variables,
which satisfies

Hk(qk)
−1s̃+

k = z̃+
k , (48)

as in section 4.2: qk = (qT
k Jqk)

1/2qk where

qT
k Jqk =

(
(s̃+

k)T Js̃+
k

(z̃+
k)T Jz̃+

k

)1/2

, q̄k =
1

2γ+

(
s̃
+
k + Jz̃

+
k

)
, γ+ =

(
1 + (z̃

+
k)T s̃

+
k

2

)1/2

and z̃
+
k and s̃

+
k are the normalized scaled variables (in the current scaling)

z̃
+
k =

1
(
(z̃+

k)T Jz̃+
k

)1/2
z̃+
k , s̃

+
k =

1
(
(s̃+

k)T Js̃+
k

)1/2
s̃+
k .

Note that
qT
k Jqk = 1, qT

k z̃
+
k = qT

k Js̃
+
k = γ+.

The new scaling point then follows as

w+
k = W T

k qk =
(
(wT

k Jwk)(q
T
k Jqk)

)1/2 (
2vkv

T
k − J

)
qk.

24

Updated scaling matrix It follows that the parameters of the new scaling matrix

W+
k =

(
(w+

k)T Jw+
k

)1/2
W

+
k , W

+
k = 2v+

k (v+
k)T − J,

can be determined as follows.

1. The new scaling factor is

(w+
k)T Jw+

k = (wT
k Jwk)(q

T
k Jqk), qT

k Jqk =

(
(s̃+

k)T Js̃+
k

(z̃+
k)T Jz̃+

k

)1/2

.

2. The unitary vector v+
k , which defines the updated Householder transformation, is

v+
k := (w+

k)1/2 =
1

(2(w+
k0 + 1))1/2

(w+
k + ek)

with

w+
k = (2vkv

T
k − J)q̄k, qk =

1

2γ+

(
s̃
+
k + Jz̃

+
k

)
, γ+ =

(
1 + (z̃

+
k)T s̃

+
k

2

)1/2

.

Updated scaled variable The updated scaled variable

λ+
k =

(
(λ+

k)T J(λ+
k)
)1/2

λ
+
k

can be computed from the updated scaled variables s̃+
k , z̃+

k as follows. The norm is easy to compute:

(λ+
k)T Jλ+

k =
(
(s+

k)T Js+
k

)1/2 (
(z+

k)T Jz+
k

)1/2

=
(
(s̃+

k)T WkJWks̃
+
k

)1/2 (
(z̃+

k)T W−1
k JW−1

k z̃+
k

)1/2

=
(
(s̃+

k)T Js̃+
k

)1/2 (
(z̃+

k)T Jz̃+
k

)1/2
.

The normalized vector λ
+
k is defined as

λ
+
k = W

+
k z+

k = (W
+
k)−1s+

k = JW
+
k Js+

k .

Its first component is

λ
+
k0 = (w+

k)T z+
k = qT

k W kz
+
k = qT

k z̃
+
k = γ+.

The rest follows from

(I − J)λ
+
k = W

+
k

(
z+

k − Js+
k

)
= W

+
k W

−1
k

(
z̃
+
k − Js̃k

+
)

= W
+
k JW k

(
Jz̃

+
k − s̃

+
k

)
.

25

Define uk = s̃
+
k − Jz̃

+
k . Using the fact that qT

k Juk = 0, we get

2λ
+
k1 = −

((
1

w+
k0 + 1

(w+
k + ek)(w

+
k + ek)

T − J

)
JW kuk

)

1

= − 1

w+
k0 + 1

w+
k1(W kqk + ek)

T JW kuk + (W kuk)1

= − 1

w+
k0 + 1

w+
k1(q

T
k Juk + eT

k W kuk) + (W kuk)1

= − wT
k uk

w+
k0 + 1

w+
k1 + (W kuk)1

=

(
W k

(
− wT

k uk

w+
k0 + 1

qk + uk

))

1

=

(
W k

(
−2vk0(v

T
k uk) − uk0

w+
k0 + 1

qk + uk

))

1

λ
+
k1 =

(
W k

(
−vk0(v

T
k uk) − uk0/2

w+
k0 + 1

qk +
1

2
uk

))

1

=

(
W k

(
1 − d/γ+

2
s̃k − 1 + d/γ+

2
Jz̃k

))

1

where

d =
vk0(v

T
k uk) − uk0/2

w+
k0 + 1

=
vk0(v

T
k uk) − uk0/2

2vk0(v
T
k qk) − qk0 + 1

.

9.3 Semidefinite cone

If Ck = Sp, we use the eigenvalue decompositions

Λ
−1/2
k ∆S̃kΛ

−1/2
k = Qs diag(γs)Q

T
s , Λ

−1/2
k ∆Z̃kΛ

−1/2
k = Qz diag(γz)Q

T
z ,

where Λk = mat(λk), ∆S̃k = mat(∆s̃k), ∆Z̃k = mat(∆z̃k), to factor the new iterates in the old
scaling coordinates as

R−1
k S+

k R−T
k = Λk + α∆S̃k = L1L

T
1 , RT

k Z+
k Rk = Λk + α∆Z̃k = L2L

T
2 ,

with L1 = Λ
1/2
k Qs(I + αdiag(γs))

1/2, L2 = Λ
1/2
k Qz(I + αdiag(γz))

1/2. We then take an SVD

LT
2 L1 = UΛ+

k V T .

The scaling matrix that satisfies

(R+
k)−1S+

k (R+
k)−T = (R+

k)T Z+
k R+

k = Λ+
k

is given by
R+

k = RkL1V (Λ+
k)−1/2 = RkL

−T
2 U(Λ+

k)1/2.

Its inverse is
(R+

k)−1 = (Λ+
k)1/2V T L−1

1 R−1
k = (Λ+

k)−1/2UT LT
2 R−1

k .

26

10 Linear equation solvers

Each iteration of the interior-point methods requires the solution of a small number (2 or 3) of
linear equations 


P AT GT

A 0 0
G 0 −W T W






x
y
z


 =




bx

by

bz


 (49)

(with P = 0 for cone LPs). We refer to an equation of this form as a Karush-Kuhn-Tucker (KKT)
system. In addition, if the problem includes second-order cone or semidefinite constraints, one step
of iterative refinement is applied when solving (21) or (44). This increases the number of KKT
systems solved per iteration by two. In this section we describe the default methods for solving
the KKT system (49). These solvers do not exploit problem structure except, to a limited extent,
sparsity. (However, CVXOPT allows the user to provide a ‘custom’ solver that exploits problem
structure in the KKT equations of a particular cone program.)

10.1 Cholesky factorization

The equation (49) can be reduced to

[
P + GT W−1W−T G AT

A 0

] [
x
y

]
=

[
bx + GT W−1W−T bz

by

]
. (50)

From x, y the solution z follows as Wz = W−T (Gx − bz).
If P + GT W−1W−T G is nonsingular, we can solve (50) via a Cholesky factorization P +

GT W−1W−T G = LLT . We solve

AL−T L−1AT y = AL−T L−1
(
bx + GT W−1W−T bz

)
− by,

using a Cholesky factorization of AL−T L−1AT to obtain y, and then

LLT x = bx + GT W−1W−T bz − AT y

to obtain x.
If P + GT W−1W−T TG is singular, we first write (50) as

[
P + GT W−1W−T G + AT A AT

A 0

] [
x
y

]
=

[
bx + GT W−1W−T bz + AT by

by

]

We compute the Cholesky factorization P + GT W−1W−T G + AT A = LLT , and solve

AL−T L−1AT y = AL−T L−1
(
bx + GT W−1W−T bz + AT by

)
− by,

using a Cholesky factorization of AL−T L−1AT to obtain y, and then

LLT x = bx + GT W−1W−T bz + AT (by − y)

to obtain x.
The Cholesky factorization method is the default KKT equation solver for linear programs

and quadratic programs (i.e., cone LPs and cone QPs without second-order cone or semidefinite

27

constraints). The CHOLMOD sparse Cholesky factorization algorithms are used for factoring
sparse matrices and the LAPACK algorithm for factoring dense matrices. No attempts are made
to separate G and A in dense and sparse submatrices and to exploit such structure. (For large
sparse problems replacing the equalities by two inequalities As � b, Ax � b may therefore be
faster.)

10.2 Two QR factorizations

This method is the default method for cone LPs with second-order cone or semidefinite constraints.
We write the KKT system (with P = 0) as




0 AT G̃T

A 0 0

G̃ 0 −I






x
y

Wz


 =




bx

by

W−T bz


 (51)

where G̃ = W−T G. To solve this we use two QR factorizations, of AT and G̃Q2,

AT =
[

Q1 Q2

] [R1

0

]
, G̃Q2 = Q3R3. (52)

The solution x, y, Wz is computed in the following steps:

w = W−T bz − G̃Q1R
−T
1 by

u = R−T
3 QT

2 bx + QT
3 w

Wz = Q3u − w

y = R−1
1

(
QT

1 bx − QT
1 G̃T (Wz)

)

x = Q1R
−T
1 by + Q2R

−1
3 u.

To verify this, we first use the QR factorization of AT to write (51) as



0 0 R1 QT
1 G̃T

0 0 0 QT
2 G̃T

RT
1 0 0 0

G̃Q1 G̃Q2 0 −I







QT
1 x

QT
2 x
y

Wz


 =




QT
1 bx

QT
2 bx

by

W−T bz


 . (53)

From the third equation, we have QT
1 x = R−T

1 by. The three remaining equations in the variables
QT

2 x, y, Wz are

R1y = QT
1 bx − QT

1 G̃T (Wz)

QT
2 G̃T (Wz) = QT

2 bx

Wz = G̃Q1(Q
T
1 x) + G̃Q2(Q

T
2 x) − W−T bz

= Q3R3Q
T
2 x − w

if we define w = W−T bz−G̃Q1R
−T
1 by. Multiplying the last equation on the left with RT

3 QT
3 = QT

2 G̃T

and using the second equation gives an equation in QT
2 x:

RT
3 R3(Q

T
2 x) = QT

2 bx + RT
3 QT

3 w.

The LAPACK dense QR factorization routines are used for the factorizations (52), so no sparsity
in A or G is exploited.

28

10.3 QR factorization and Cholesky factorization

The third method is the default method for cone QPs with second-order or semidefinite constraints.
We write the KKT system as




P AT G̃T

A 0 0

G̃ 0 −I






x
y

Wz


 =




bx

by

W−T bz


 (54)

with G̃ = W−T G. We use a QR factorization of AT to eliminate the equality constraints and a
Cholesky factorization of size n − p to solve the remaining problem

AT =
[

Q1 Q2

] [R1

0

]
, QT

2 (P + G̃T G̃)Q2 = LLT . (55)

We can use the QR factorization to write (54) as




QT
1 PQ1 QT

1 PQ2 R1 QT
1 G̃T

QT
2 PQ1 QT

2 PQ2 0 QT
2 G̃T

RT
1 0 0 0

G̃Q1 G̃Q2 0 −I







QT
1 x

QT
2 x
y

Wz


 =




QT
1 bx

QT
2 bx

by

W−T bz


 . (56)

Eliminating Wz gives




QT
1 (P + G̃T G̃)Q1 QT

1 (P + G̃T G̃)Q2 R1

QT
2 (P + G̃T G̃)Q1 QT

2 (P + G̃T G̃)Q2 0
RT

1 0 0






QT
1 x

QT
2 x
y


 =




QT
1 (bx + G̃T W−T bz)

QT
2 (bx + G̃T W−T bz)

by


 .

From the third equation, QT
1 x = R−T

1 by. From the second equation and the Cholesky factorization
of QT

2 (P + G̃T G̃)Q2 we can solve for QT
2 x. From the first equation we solve for y.

The LAPACK routines are used for the QR and Cholesky factorizations (55).

References

[AG03] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Program-

ming Series B, 95:3–51, 2003.

[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point
method for conic quadratic optimization. Mathematical Programming, 95(2):249–277,
2003.

[dKRT97] E. de Klerk, C. Roos, and T. Terlaky. Initialization in semidefinite programming via a
self-dual skew-symmetric embedding. Operations Research Letters, 20(5):213–221, 1997.

[Meh92] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM

Journal on Optimization, 2(4):575–601, November 1992.

[NT97] Yu. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for
convex programming. Mathematics of Operations Research, 22(1):1–42, 1997.

29

[NT98] Yu. E. Nesterov and M. J. Todd. Primal-dual interior-point methods for self-scaled
cones. SIAM Journal on Optimization, 8(2):324–364, May 1998.

[RS88] C. M. Rader and A. O. Steinhardt. Hyperbolic Householder transforms. SIAM Journal

on Matrix Analysis and Applications, 9(2):269–290, 1988.

[Stu00] J. F. Sturm. Similarity and other spectral relations for symmetric cones. Linear Algebra

and Its Applications, 312:135–154, 2000.

[Stu02] J. F. Sturm. Implementation of interior point methods for mixed semidefinite and second
order cone optimization problems. Optimization Methods and Software, 17(6):1105–1154,
2002.

[Stu03] J. F. Sturm. Avoiding numerical cancellation in the interior point method for solving
semidefinite programs. Mathematical Programming Series B, 95:219–247, 2003.

[Tsu99] T. Tsuchiya. A convergence analysis of the scaling-invariant primal-dual path-following
algorithms for second-order cone programming. Optimization Methods and Software,
11-12:141–182, 1999.

[TTT03] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear pro-
grams using SDPT3. Mathematical Programming Series B, 95:189–217, 2003.

[Tun98] L. Tunçel. Primal-dual symmetry and scale invariance of interior-point algorithms for
convex optimization. Mathematics of Operations Research, 23(3):708–718, 1998.

[Wri97] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.

[YTM94] Y. Ye, M. J. Todd, and S. Mizuno. An O(
√

nL)-iteration homogeneous and self-dual
linear programming algorithm. Mathematics of Operations Research, 19(1):53–67, 1994.

30

