
Covariance selection for non-chordal graphs via chordal embedding

Joachim Dahl∗ Lieven Vandenberghe† Vwani Roychowdhury†

Abstract

We describe algorithms for maximum likelihood estimation of Gaussian graphical models
with conditional independence constraints. This problem is also known as covariance selection,
and it can be expressed as an unconstrained convex optimization problem with a closed-form
solution if the underlying graph is chordal. The focus of the paper is on iterative algorithms for
covariance selection with non-chordal graphs.

We first derive efficient methods for evaluating the gradient and Hessian of the log-likelihood
function when the underlying graph is chordal. The algorithms are formulated as simple recur-
sions on a clique tree associated with the graph. We also show that the gradient and Hessian
mappings are easily inverted when the underlying graph is chordal. We then exploit these results
to obtain efficient implementations of Newton’s method and the conjugate gradient method for
large non-chordal graphs, by embedding the graph in a chordal graph.

1 Introduction

We consider the problem of computing maximum likelihood (ML) estimates of the mean µ and
covariance Σ of a multivariate normal variable X ∼ N(µ,Σ), subject to the constraint that certain
given pairs of variables are conditionally independent. As we will explain in §2, the conditional
independence constraints prescribe the sparsity pattern of the inverse of Σ and, as a consequence,
the ML estimation problem can be formulated as a convex optimization problem with Σ−1 as
variable. The problem is also known as the covariance selection problem and was first studied
in detail by Dempster [Dem72]. In a graph representation of the random variable X, the nodes
represent the components Xi; two nodes are connected by an undirected edge if the corresponding
variables are conditionally dependent. This is called a normal (or Gaussian) graphical model of
the random variable [Lau96, chapter 7]. Closely related problems are the maximum-determinant
positive definite matrix completion problem (see [GJSW84] and §2.3) and the analytic centering
problem in semidefinite programming. Covariance selection can be also be regarded as a special
case of determinant maximization with linear matrix inequality constraints [VBW98].

For the special case of a chordal graph (i.e., a graph in which every cycle of length greater than
three has an edge connecting nonconsecutive nodes) the solution of the problem can be expressed
in closed form in terms of the principal minors of the sample covariance matrix (see, for example,
[Wer80], [Lau96, §5.3]). For non-chordal graphs the ML estimate has to be computed iteratively.
A straightforward application of standard optimization algorithms such as Newton’s method is
usually considered too expensive for larger problems, and several specialized algorithms have been

∗Corresponding author. Department of Communication Technology, Aalborg University (joachim@kom.aau.dk).
†Department of Electrical Engineering, University of California, Los Angeles (vandenbe@ee.ucla.edu,

vwani@ee.ucla.edu).

1

proposed in the literature. These include the coordinate descent algorithm [Dem72, SK86], which
is extremely simple to implement but suffers from the slow convergence that often characterizes
steepest descent algorithms. Another popular method, the iterative proportional scaling algorithm
[SK86, Lau96], requires the enumeration of all the cliques in the graph, and therefore has an
exponential complexity.

In this paper we describe techniques for improving the efficiency of Newton’s method and the
conjugate gradient method for covariance selection problems with large non-chordal graphs. The
main innovation that contributes to the efficiency of the algorithms are fast techniques for computing
the gradient and Hessian of the cost function. These algorithms use a chordal embedding of the
graph, and are formulated as simple recursions on clique trees. The idea is particularly effective
for problems with nearly chordal sparsity patterns.

The paper also contains several results that should be of independent interest to the fields of
linear algebra and semidefinite programming. We can mention in particular the algorithms for
evaluating the gradient and Hessian of the log-barrier function of sparse positive definite matrices
with chordal sparsity patterns, given in §4.1.

Notation We use Sn to denote the set of symmetric matrices of order n. Sn
+ = {X ∈ Sn | X � 0}

and Sn
++ = {X ∈ Sn | X ≻ 0} are the positive (semi)definite matrices. The sparsity pattern of

a sparse matrix X ∈ Sn will be characterized by specifying the set of indices V ⊆ {1, . . . , n} ×
{1, . . . , n} of its nonzero entries. More precisely, X has the sparsity pattern V if Xij = Xji = 0 for
(i, j) /∈ V . We will assume that j ≥ i for all (i, j) ∈ V , and that (i, i) ∈ V for i = 1, . . . , n. The set
of symmetric matrices with sparsity pattern V is denoted Sn

V . The positive (semi)definite matrices
in Sn

V are denoted by Sn
V,+, respectively Sn

V,++. PV (X) is the projection of a matrix X ∈ Sn on
Sn

V , i.e., Y = PV (X) is the matrix in Sn
V with Yij = Xij for (i, j) ∈ V . XIJ is the submatrix of X

with rows indexed by I ⊆ {1, . . . , n} and columns indexed by J ⊆ {1, . . . , n}. The notation X−1
IJ

denotes the matrix (XIJ)−1; it is important to distinguish this from (X−1)IJ .

2 Covariance selection

In this section we define the covariance selection problem and present two convex optimization
formulations. In the first formulation (§2.2), the log-likelihood function is maximized subject to
sparsity constraints on the inverse of the covariance matrix. This problem is convex in the inverse
covariance matrix. In the second formulation (§2.3), which is related to the first by duality, the
covariance matrix is expressed as the maximum-determinant positive definite completion of the
sample covariance.

2.1 Conditional independence in normal distributions

Let x, y and z be random variables with continuous distributions. We say that x and y are
conditionally independent given z if

f(x|y, z) = f(x|z),

where f(x|z) is the conditional density of x given z, and f(x|y, z) is the conditional density of
x given y and z. Informally, this means that once we know z, knowledge of y gives no further

2

information about x. Conditional independence is a fundamental property in expert systems and
graphical models [Lau96, CDLS99, Pea88].

In this paper we are interested in the special case of conditional independence of two coefficients
xi, xj of a vector random variable x = (x1, x2, . . . , xn), given the other coefficients, i.e., the condition
that

f(xi|x1, x2, . . . , xi−1, xi+1, . . . , xn) = f(xi|x1, x2, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn).

If this holds, we simply say that xi and xj are conditionally independent. There is a well-known
characterization of conditional independence of variables with a joint normal distribution N(µ,Σ).
This is easily seen from the fact that the conditional distribution of (xi, xj), given the other com-
ponents of x, is Gaussian with covariance matrix

[

(Σ−1)ii (Σ−1)ij

(Σ−1)ji (Σ−1)jj

]−1

.

The variables xi and xj are conditionally independent if and only if this covariance matrix is
diagonal, i.e.,

(Σ−1)ij = 0.

This classical result can be found in [Dem72].

2.2 Maximum likelihood estimation

We now consider the ML estimation of the parameters µ and Σ of N(µ,Σ), based on K independent
samples yi, and subject to the constraint that given pairs of variables are conditionally independent.
As we have seen, the constraints are equivalent to specifying the sparsity pattern of Σ−1. Let V be
the set of upper triangular positions of Σ−1 that are allowed to be nonzero, so the constraints are

(Σ−1)ij = 0, (i, j) 6∈ V. (1)

The log-likelihood function is, up to a constant,

L(µ,Σ) = −
K

2
log det Σ −

1

2

K
∑

i=1

(yi − µ)T Σ−1(yi − µ)

=
K

2
(− log detΣ − tr(Σ−1Σ̄) − (µ − µ̄)T Σ−1(µ − µ̄)) (2)

where µ̄ and Σ̄ are the sample mean and covariance

µ̄ =
1

K

K
∑

i=1

yi, Σ̄ =
1

K

K
∑

i=1

(yi − µ̄)(yi − µ̄)T .

The ML estimation problem with the conditional independence constraints (1) can therefore be
expressed as

maximize − log det Σ − tr(Σ̄Σ−1) − (µ − µ̄)T Σ−1(µ − µ̄)
subject to (Σ−1)ij = 0, (i, j) 6∈ V,

3

with domain {(Σ, µ) ∈ Sn × Rn | Σ ≻ 0}. Clearly, the optimal value of µ is the sample mean µ̄,
and if we eliminate the variable µ and make a change of variables X = Σ−1, the problem reduces
to

maximize log det X − tr(Σ̄X)
subject to Xij = 0, (i, j) /∈ V

(3)

with variable X ∈ Sn. This is a convex optimization problem, since the objective function is
concave on the set of positive definite matrices. Equivalently, we can restrict X to Sn

V and consider
the unconstrained problem

minimize − log det X + tr(CX), (4)

where C = PV (Σ̄), the projection of Σ̄ on Sn
V .

2.3 Duality and optimality conditions

The gradient of the objective function in (4) is −PV (X−1) + C, so X ∈ Sn
V,++ is optimal if and

only if
PV (X−1) = C. (5)

If X is optimal, then the matrix Z = X−1 solves the optimization problem

maximize log det Z
subject to PV (Z) = C,

(6)

with variable Z ∈ Sn
++. This problem is also the dual of (3). In (6) we maximize the determinant of a

positive definite matrix Z, subject to the constraint that Z agrees with C in the positions V . This is
known as the maximum determinant positive definite matrix completion problem [GJSW84, Lau01].

3 Chordal graphs

An undirected graph G is chordal if every cycle of length greater than three has a chord, i.e.,
an edge joining nonconsecutive nodes of the cycle. In the graphical models literature the terms
triangulated graph and decomposable graph are also used as synonyms for chordal graph.

A sparsity pattern V defines an undirected graph GV with vertices 1, . . . , n, and edges between
nodes i and j if (i, j) ∈ V , i 6= j. In §4 we will describe simple algorithms for the ML estimation
problem (4) and several related problems when the underlying graph GV is chordal. The easiest
way to derive these results is in terms of clique trees (also called junction trees) associated with
the graph GV . In this section we summarize some important properties of chordal graphs [BP93,
FKMN00, NFF+03].

3.1 Clique trees

A clique is a maximal subset of the nodes that defines a complete subgraph, i.e., all pairs of nodes
in the clique are connected by an edge. The cliques can be represented by an undirected graph
that has the cliques as its nodes, and edges between any two cliques with a nonempty intersection.
We call this graph the clique graph associated with GV . We can also assign to every edge (Vi, Vj)
in the clique graph a weight equal to the number of nodes in the intersection Vi ∩ Vj . A clique tree

4

1 3 5 7 9

9

7

5

3

1

1,2,3

2,3,4

3,4,5

4,5,6

5,6,7

6,7,8

7,8,9

Figure 1: Sparsity pattern and clique tree of a 9 × 9 band matrix with bandwidth 5.

of a graph is a maximum weight spanning tree of its clique graph (as such a clique tree is non-
unique). Clique trees of chordal graphs can be efficiently computed by the maximum cardinality

search algorithm [Ros70, RTL76, TY84].
For the rest of the section we assume that there are l cliques V1, V2, . . . , Vl in GV , so that the

set of nonzero entries is given by

{(i, j) | (i, j) ∈ V or (j, i) ∈ V } = (V1 × V1) ∪ (V2 × V2) ∪ · · · ∪ (Vl × Vl).

We assume a clique tree has been computed, and we number the cliques so that V1 is the root of
the tree and every parent in the tree has a lower index than its children. We define S1 = V1, U1 = ∅
and, for i = 2, . . . , l,

Si = Vi \ (V1 ∪ V2 ∪ · · · ∪ Vi−1), Ui = Vi ∩ (V1 ∪ V2 ∪ · · · ∪ Vi−1). (7)

It can be shown that for a chordal graph

Si = Vi \ Vk, Ui = Vi ∩ Vk (8)

where Vk is the parent of Vi in the clique tree. This important property is known as the running

intersection property [BP93].

Examples The simplest example of a chordal sparsity pattern is band structure. Figure 1 shows
a banded matrix of order 9 with bandwidth 5. There are 7 cliques {k, k +1, k +2} for k = 1, . . . , 7.
If we take as root V1 = {1, 2, 3} the clique tree is a chain and

Vk = {k, k + 1, k + 2}, Sk = {k + 2}, Uk = {k, k + 1}, k = 2, . . . , 7.

Another simple example of a chordal sparsity pattern is the arrow pattern shown in figure 2. This
graph has 7 cliques. If we take as root V1 = {1, 2, 3}, the clique tree is as shown in the figure, and

Vk = {1, 2, k + 2}, Uk = {1, 2}, Sk = {k + 2}, k = 2, . . . , 7.

Figure 3 shows a less obvious example with 13 cliques.

5

1 3 5 7 9

9

7

5

3

1

1,2,3

1,2,4 1,2,5 1,2,6 1,2,7 1,2,8 1,2,9

Figure 2: Sparsity pattern and clique tree of a 9 × 9 matrix with an arrow pattern.

1 3 5 7 9 11 13 15 17

17

15

13

11

9

7

5

3

1 4,13,17

4,13,3

4,3,7,15

4,7,15,10,2

13,17,1

13,1,11

1,11,9

9,8

17,1,5

17,5,12

12,6

6,16 6,14

Figure 3: Sparsity pattern and clique tree of a 17 × 17 matrix with a chordal sparsity pattern.

6

3.2 Cholesky factorization with chordal sparsity pattern

If GV is chordal, then a clique tree of GV defines a perfect elimination order [BP93, FKMN00]
for positive definite matrices with sparsity pattern V , i.e., an elimination order that produces
triangular factors with zero fill-in.

Let X ∈ Sn
V,++ and assume that the nodes in GV are numbered so that

S1 = {1, . . . , |S1|}, Sk =







k−1
∑

j=1

|Sj | + 1,
k−1
∑

j=1

|Sj | + 2, . . . ,
k
∑

j=1

|Sj |







for k > 1. (9)

(In general, this assumption requires a symmetric permutation of the rows and columns of X.) We
show that X can be factored as

X = RDRT (10)

where D is block diagonal with diagonal blocks DSkSk
, and R is unit upper triangular with zero

off-diagonal entries except in positions RUkSk
, k = 1, . . . , l. This means that RT + D + R has the

same sparsity pattern as X.
Note that if we factor the matrix JXJ , where J is the identity matrix with its columns reversed,

as JXJ = RDRT , we obtain a factorization with lower triangular matrices

X = LD̃LT

with L = JRJ and D̃ = JDJ (as used, for example, in [FKMN00]).
The proof is by induction on the number of cliques. The result is obviously true if l = 1: If

there is only one clique, then GV is a complete graph so X can be factored as (10) with R = I,
D = X. Next, suppose the result holds for all chordal sparsity patterns with l − 1 cliques. We
partition X as

X =

[

XWW XWSl

XSlW XSlSl

]

,

with W = {1, . . . , n} \ Sl, and examine the different blocks in the factorization

[

XWW XWSl

XSlW XSlSl

]

=

[

RWW RWSl

0 I

] [

DWW 0
0 DSlSl

] [

RT
WW 0

RT
WSl

I

]

. (11)

We immediately notice that DSlSl
= XSlSl

and RWSl
DSlSl

= XWSl
. The submatrix XUlSl

of XWSl

is dense, since Vl = Ul ∪ Sl is a clique. The submatrix XW\Ul,Sl
is zero: a nonzero entry (i, j) with

i ∈ W \Ul, j ∈ Sl would mean that Vl is not the only clique that contains node j, which contradicts
the definition of Sl in (7). Therefore

DSlSl
= XSlSl

, RUlSl
= XUlSl

D−1
SlSl

, RW\Ul,Sl
= 0.

The rest of the factorization follows from the identity

XWW − RWSl
DSlSl

RT
WSl

= RWW DWW RT
WW

which is the 1,1 block of (11). The matrix

X̃WW = XWW − RWSl
DSlSl

RT
WSl

7

is identical to XWW except for the submatrix

X̃UlUl
= XUlUl

− RUlSl
DSlSl

RT
UlSl

,

since RW\Ul,Sl
= 0. Also, since X̃WW = XWW −XWSl

X−1
SlSl

XSlW is a Schur complement, it is posi-

tive definite. The first term XUlUl
is dense, since Ul is a subset of the clique Vl, and therefore X̃WW

has the same sparsity pattern as XWW . The sparsity pattern of XWW and X̃WW is represented by
the graph GV with the nodes in Sl removed. At this point we use the running intersection property
of chordal graphs (8): the fact that Ul ⊆ Vk, where the clique Vk is the parent of Vl in the clique
tree, means that removing the nodes Sl reduces the number of cliques by one. The reduced graph
is also chordal, and a clique tree of it is obtained from the clique tree of GV by deleting the clique
Vl. By the induction assumption the positive definite matrix X̃WW can therefore be factored as

X̃WW = RWW DWW RT
WW

where RWW is upper triangular with the same sparsity pattern as XWW . This completes the
factorization (11).

To summarize the proof, we formulate the factorization algorithm as a recursion: for k =
l, l − 1, . . . , 1,

DSkSk
:= XSkSk

, RUkSk
:= XUkSk

D−1
SkSk

, XUkUk
:= XUkUk

− RUkSk
DSkSk

RT
UkSk

. (12)

The following algorithm overwrites X with the factorization data.

Cholesky factorization with chordal sparsity pattern

given a matrix X ∈ Sn
V,++ with chordal sparsity pattern V .

1. Compute a clique tree with cliques V1, . . . , Vl numbered so that Vk has a
higher index than its parents. Compute the sets Sk, Uk defined in (8).

2. For k = l, l − 1, . . . , 2, compute

XUkSk
:= XUkSk

X−1
SkSk

, XUkUk
:= XUkUk

− XUkSk
XSkSk

XT
UkSk

.

These steps do not alter the sparsity pattern of X but overwrite its nonzero elements with the
elements of D and R. After completion of the algorithm, the diagonal blocks of D are found as
DSkSk

= XSkSk
, k = 1, . . . , l. The nonzero elements of R are its diagonal and RUkSk

= XUkSk
for

k = 1, . . . , l. If the rows and columns of X are ordered so that (9) is satisfied, the matrix D is block
diagonal and R is unit upper triangular.

Example Figure 4 shows the sparsity pattern and the clique tree for the example in figure 3,
after renumbering the nodes as in (9). It can be verified that any positive definite matrix X with
this sparsity pattern can be factored as RRT , where R is upper triangular and R + RT has the
same sparsity pattern as X.

8

1 3 5 7 9 11 13 15 17

17

15

13

11

9

7

5

3

1 1,2,3

1,2,4

1,4,5,6

1,5,6,7,8

2,3,9

2,9,10

9,10,11

11,12

3,9,13

3,13,14

14,15

15,16 15,17

Figure 4: Sparsity pattern and clique tree of the example of figure 3, after applying a perfect
elimination reordering.

Interpretation Suppose Σ−1 has a chordal sparsity pattern V , so it can be factored as

Σ−1 = (I − L)T D̃(I − L)

where L is strictly lower triangular, D̃ is diagonal, and L + D̃ + LT has the same sparsity pattern
as Σ−1. This factorization provides a realization of x ∼ N(0, Σ) as

x = Lx + v (13)

with v ∼ N(0, D̃−1). Recursive models of this form are used in structural equation modeling [Bol89].
Hence, for chordal sparsity patterns, the covariance selection problem (with a prescribed sparsity

pattern of Σ−1) and the ML estimation problem of a model (13) (with a prescribed sparsity pattern
of L) are equivalent. This is discussed in detail by Wermuth [Wer80].

4 Gradient and Hessian of log det X
−1 for chordal sparsity patterns

In this section we present efficient algorithms for evaluating the gradient and Hessian of f(X) =
log detX−1, taken as a function from Sn

V to R, when the sparsity pattern V is chordal.
Throughout the section we assume that V is a chordal sparsity pattern and that a clique tree is

available with l cliques V1, . . . , Vl, numbered so that every clique has a higher index than its parents.
We also assume that the Cholesky factorization X = RDRT has been computed, as explained in
the previous section. Finally, to simplify the description, we assume that (9) is satisfied, so the
matrix D is block diagonal with diagonal blocks DSkSk

and R is unit upper triangular with nonzeros
in the upper triangular blocks RUkSk

.

4.1 Gradient

The gradient of f at X is given by

∇f(X) = −PV (X−1).

9

In general, X−1 is dense and may be expensive to compute. However, if the sparsity pattern V is
chordal, it is possible to compute PV (X−1) efficiently from the Cholesky factorization X = RDRT ,
without calculating any other entries of X−1.

To see this, we examine the (Sk, Vk) block of the equation DRT X−1 = R−1:

DSkSk

[

RT
UkSk

I
]

[

(X−1)UkUk
(X−1)UkSk

(X−1)SkUk
(X−1)SkSk

]

=
[

0 I
]

.

We first observe that, given (X−1)UkUk
, we can compute (X−1)SkUk

from the equation

RT
UkSk

(X−1)UkUk
+ (X−1)SkUk

= 0. (14)

By symmetry, this yields (X−1)UkSk
, and (X−1)SkSk

follows from the equation

RT
UkSk

(X−1)UkSk
+ (X−1)SkSk

= D−1
SkSk

. (15)

This means that if we know (X−1)UkUk
, the rest of the submatrix (X−1)VkVk

is straightforward to
compute. At the root clique, U1 is empty and (14), (15) reduce to

(X−1)S1S1
= D−1

S1S1
.

If we process the cliques in the order k = 1, . . . , l, then the matrix (X−1)UkUk
is available at each

step, because it was calculated earlier as part of (X−1)ViVi
where Vi is the parent clique of Vk. We

therefore obtain the following recursive formulas for Y = −PV (X−1): for k = 1, . . . , l.

YSkUk
:= −RT

UkSk
YUkUk

, YUkSk
:= Y T

SkUk
, YSkSk

:= −D−1
SkSk

− RT
UkSk

YUkSk
. (16)

We summarize this by outlining an algorithm that returns Y = −PV (X−1).

Gradient of log detX−1

given a matrix X ∈ Sn
V,++ with chordal sparsity pattern V .

1. Compute a clique tree with cliques V1, . . . , Vl numbered so that Vk has a
higher index than its parents. Compute the sets Sk, Uk defined in (8).

2. Compute the factorization X = RDRT by the algorithm in §3.2.

3. Starting at Y := 0, evaluate (16) for k = 1, . . . , l.

Maximum likelihood estimate

The formulas (14) and (15) also provide the solution to the ML estimation problem (5). To solve
the nonlinear equation

PV (X−1) = C,

we substitute (X−1)VkVk
= CVkVk

in (14) and (15) and solve for R and D. This gives

RUkSk
= −C−1

UkUk
CUkSk

, DSkSk
=
(

CSkSk
− CSkUk

C−1
UkUk

CUkSk

)−1
. (17)

From R and D we then compute X = RDRT .
This gives a simple derivation of the classical analytical formulas for the ML estimate in nor-

mal graphical models, or, equivalently, the maximum determinant matrix completion, for chordal
graphs. The result can be found, in different forms, in [GJSW84, BJL89], [Lau96, page 146],
[FKMN00, §2], [NFF+03] and [Wer80, §3.2].

10

4.2 Hessian

The Hessian of f at X applied to a matrix ∆X ∈ Sn
V is given by

∇2f(X)[∆X] = PV (X−1∆XX−1). (18)

We are interested in evaluating this expression using the Cholesky factorization of X, without
explicitly forming X−1 or the product X−1∆XX−1.

Recall that the computation of the gradient involves two nonlinear recursions. A first recursion
maps X to its triangular factors R and D. This recursion passes through the cliques in the order
l, . . . , 1. A second recursion computes PV (X−1) from the Cholesky factors, and traverses the cliques
in the opposite order 1, . . . , l. The quantity (18) can be evaluated by linearizing the two recursions,
i.e., by computing the derivative

PV (X−1∆XX−1) = −
d

dα
PV ((X + α∆X)−1)

∣

∣

∣

∣

α=0

via the chain rule.
The linearized Cholesky factorization is

X + ∆X = (R + ∆R)(D + ∆D)(R + ∆R)T ≈ RDRT + RD∆RT + R∆DRT + ∆RDRT .

The matrices ∆R, ∆D follow from (12): for k = l, . . . , 1,

∆DSkSk
:= ∆XSkSk

∆RUkSk
:= (∆XUkSk

− XUkSk
D−1

SkSk
∆DSkSk

)D−1
SkSk

= (∆XUkSk
− RUkSk

∆XSkSk
)D−1

SkSk

∆XUkUk
:= ∆XUkUk

− RUkSk
DSkSk

∆RT
UkSk

− ∆RUkSk
DSkSk

RT
UkSk

− RUkSk
∆DSkSk

RT
UkSk

= ∆XUkUk
− RUkSk

∆XT
UkSk

− ∆XUkSk
RT

UkSk
+ RUkSk

∆XSkSk
RT

UkSk
.

If we overwrite ∆XSkSk
with ∆DSkSk

, and ∆XUkSk
with ∆RUkSk

DSkSk
, this can be written com-

pactly in matrix form:

[

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

]

:=

[

I −RUkSk

0 I

] [

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

] [

I 0
−RT

UkSk
I

]

,

for k = l, . . . , 1. The value of ∆X at the end of this iteration is

∆XSkSk
= ∆DSkSk

, ∆XUkSk
= ∆RUkSk

DSkSk
, k = 1, . . . , L.

Linearizing the second recursion (16) gives

∆YUkSk
= −∆YUkUk

RUkSk
+ (X−1)UkUk

∆RUkSk

∆YSkSk
= D−1

SkSk
∆DSkSk

D−1
SkSk

− RT
UkSk

∆YUkSk
+ ∆RT

UkSk
(X−1)UkSk

= D−1
SkSk

∆DSkSk
D−1

SkSk
− RT

UkSk
∆YUkSk

− ∆RT
UkSk

(X−1)UkUk
RUkSk

= D−1
SkSk

∆DSkSk
D−1

SkSk
− RT

UkSk
(X−1)UkUk

∆RUkSk
− ∆RT

UkSk
(X−1)UkUk

RUkSk

+ RT
UkSk

∆YUkUk
RUkSk

.

11

In matrix notation, if we initialize ∆Y as

∆YSkSk
= D−1

SkSk
∆DSkSk

D−1
SkSk

, ∆YUkSk
= (X−1)UkUk

∆RUkSk

and run the iteration
[

∆YUkUk
∆YUkSk

∆YSkUk
∆YSkSk

]

:=

[

I 0
−RT

UkSk
I

] [

∆YUkUk
∆YUkSk

∆YSkUk
∆YSkSk

] [

I −RUkSk

0 I

]

for k = 1, . . . , l, then at completion, ∆Y = PV (X−1∆XX−1)
To summarize, we can factor the Hessian as a composition of three linear functions,

∇2f(X) = Aadj ◦ B ◦ A. (19)

These three mappings are easily evaluated using the factorization X = RDRT and the projected
inverse PV (X−1).

• To evaluate ∆X := A(∆X) we run the recursion

[

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

]

:=

[

I −RUkSk

0 I

] [

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

] [

I 0
−RT

UkSk
I

]

(20)

for k = l, . . . , 1.

• To evaluate ∆X := B(∆X), we compute

∆XSkSk
:= D−1

SkSk
∆XSkSk

D−1
SkSk

, ∆XUkSk
:= (X−1)UkUk

∆XUkSk
D−1

SkSk
(21)

for k = 1, . . . , l.

• To evaluate ∆X := Aadj(∆X) we run the recursion

[

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

]

:=

[

I 0
−RT

UkSk
I

] [

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

] [

I −RUkSk

0 I

]

(22)

for k = 1, . . . , l.

Note that B is a self-adjoint positive definite mapping and that Aadj is the adjoint of A.
The following summary lists the different steps in the evaluation of ∆X := PV (X−1∆XX−1).

Hessian evaluation of log detX−1

given matrices X ∈ Sn
V,++ and ∆X ∈ Sn

V with chordal sparsity patterns V .

1. Compute a clique tree with cliques V1, . . . , Vl numbered so that Vk has a
higher index than its parents. Compute the sets Sk, Uk defined in (8).

2. Compute the factorization X = RDRT by the algorithm in §3.2.

3. Compute the gradient −PV (X−1) by the algorithm of §4.1.

4. Evaluate ∆X := Aadj(B(A(∆X))) via (20), (21) and (22).

12

For future reference we note that the mapping B can be factored as B = Cadj◦C, where ∆X = C(∆X)
is computed via

∆XSkSk
:= L−1

k ∆XSkSk
L−T

k ∆XUkSk
:= T T

k ∆XUkSk
L−T

k , k = 1, . . . , l,

and DSkSk
= LkL

T
k and (X−1)UkUk

= TkT
T
k are Cholesky factorizations. The adjoint operation

∆X := Cadj(∆X) is

∆XSkSk
:= L−T

k ∆XSkSk
L−1

k ∆XUkSk
:= Tk∆XUkSk

L−1
k , k = 1, . . . , l.

This provides a factorization of ∇2f(X) as

∇2f(X) = Aadj ◦ Cadj ◦ C ◦ A. (23)

Newton equation

The three linear mappings in the factorization (19) are easily inverted, so we can use the factoriza-
tion to solve equations of the form

PV (X−1∆XX−1) = B

with variable ∆X ∈ Sn
V . The solution ∆X = A−1(B−1(A−1

adj(B))) is found as follows:

• Set ∆X = B and evaluate A−1
adj(∆X):

[

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

]

:=

[

I 0
RT

UkSk
I

] [

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

] [

I RUkSk

0 I

]

for k = l, . . . , 1.

• Evaluate B−1(∆X):

∆XSkSk
:= DSkSk

∆XSkSk
DSkSk

, ∆XUkSk
:= (X−1)−1

UkUk
∆XUkSk

DSkSk

for k = 1, . . . , l.

• Evaluate A−1(∆X):

[

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

]

:=

[

I RUkSk

0 I

] [

∆XUkUk
∆XUkSk

∆XSkUk
∆XSkSk

] [

I 0
RT

UkSk
I

]

for k = 1, . . . , l.

5 Chordal embedding

A chordal sparsity pattern Ṽ that contains V is known as a chordal embedding or triangulation

of V . A good heuristic for computing chordal embeddings is to generate a fill-in reducing ordering
for Sn

V (for example, an approximate minimum degree ordering [ADD96]), followed by a symbolic

13

#cliques with #cliques with
Range I |Uk| ∈ I |Sk| ∈ I

1–30 3599 3646
31–60 22 1
61–90 9 2
91–120 3 1
121–150 10 0
151–180 1 0
181–210 1 0
211–240 4 0
241–270 1 0

Table 1: Distribution of the sizes of the clique subsets Uk and Sk in a clique tree for the chordal
embedding of randomly generated sparse matrix of order 4000. For each bin I, we show the number
of cliques with |Uk| ∈ I and the number of cliques with |Sk| ∈ I.

Cholesky factorization. The sparsity pattern Ṽ of the Cholesky factor defines a chordal embedding
of V .

Chordal embeddings, in combination with the results of the previous section, are useful for
evaluating gradients and Hessians of a function

g(x) = − log det(A0 + x1A1 + · · · + xmAm),

when the coefficients Ak ∈ Sn are sparse. If we embed the aggregate sparsity pattern of the
coefficient matrices in a chordal sparsity pattern V , we can apply the methods of §4 to evaluate

∇g(x)i = tr(AiPṼ (X−1)), ∇2g(x)ij = tr(AiPṼ (X−1AjX
−1)), i, j = 1, . . . , m,

where X = A0+
∑

k xkAk. Alternatively, we can use the factorization (23) and evaluate the Hessian
as ∇2g(x)ij = tr(ÃiÃj), where Ãi = C(A(Ai)).

Example We randomly generated a positive definite matrix X of order 4000 with 14,938 non-
zero elements. A symmetric minimum-degree reordering results in a a chordal embedding Ṽ with
130,046 non-zero entries and 3650 cliques. Table 1 shows the distribution of the sizes of the clique
subsets Uk and Sk (defined in (7)).

On a 2.8GHz Pentium IV PC with 2GB RAM it took approximately 12.7 seconds to compute
PV (X−1) by computing the entire inverse using Matlab’s sparse Cholesky factorization. It took
only 0.32 seconds to compute PV (X−1) by first computing PṼ (X−1) using the algorithm of §4.1

and then discarding the entries in Ṽ \ V .
This fast technique for evaluating PV (X−1) from a factorization of X is related to Erisman and

Tinney’s method [ET75].

6 Maximum likelihood estimation in non-chordal graphs

If the underlying graph GV is not chordal, the ML estimation problem (4) and its dual (6) require
iterative solution methods. These two versions of the problem are smooth, unconstrained and

14

convex. They can be solved efficiently by standard implementations of Newton’s method if the
sparsity pattern is quite sparse (the number of variables in (4) is relatively small, e.g., a few
thousand), or quite dense (the number of variables in (6) is relatively small). (Duality was also
exploited for this purpose in the interior-point methods for approximate positive definite completion
proposed in [JKW98].) In intermediate cases, Newton’s method is usually not considered a practical
option, due to the high cost of assembling and inverting the Hessians. A number of specialized
algorithms have therefore been proposed in the graphical models literature. In this section we first
discuss two of the most popular methods, the coordinate descent method [Dem72, WS77] and the
iterative proportional scaling algorithm [SK86, Lau96], and discuss their limitations.

In §6.3 and §6.4 we present two new techniques for covariance selection in non-chordal graphs.
In §6.3 we describe an efficient implementation of Newton’s method for problems with nearly
chordal graphs, i.e., graphs that can be embedded in a chordal graph by adding a relatively small
number (e.g., a few thousand) edges. The implementation is based on the results of §4.2. In §6.4
we formulate a preconditioner for the conjugate gradient method, also based on the ideas of §4.2.
An experimental comparison is presented in §6.5.

6.1 Coordinate descent

In the coordinate descent algorithm we solve (4) one variable at a time. At each iteration, the
gradient of f(X) = − log det X + tr(CX) is computed, and the nonzero entry Xij with (i, j) =
argmax |∂f(X)/∂Xij | is updated, by minimizing f over Xij while keeping the other entries fixed.
This coordinate-wise minimization is repeated until convergence. The method is also known as
steepest descent in ℓ1-norm, and its convergence follows from standard results in unconstrained
convex minimization [BV04, §9.4.2], [BT97, page 206].

Coordinate descent is a natural choice for the covariance selection problem, because each itera-
tion is very cheap [Dem72, SK86, Wer80]. Suppose we want to update X as X := X+s(eie

T
j +eje

T
i),

where s minimizes

f(X + s(eie
T
j + eje

T
i)) = tr(CX) + 2sCij − log det(X + s(eie

T
j + eje

T
i)). (24)

To simplify the determinant we use the formula for the determinant of a 2 by 2 block matrix. With
Σ = X−1,

det(X + s(eie
T
j + eje

T
i)) = det







X sei sej

eT
j −1 0

eT
i 0 −1






= detX det

([

1 0
0 1

]

+ s

[

Σij Σjj

Σii Σij

])

.

We note that
[

1 0
0 1

]

+ s

[

Σij Σjj

Σii Σij

]

=

[

0 Σ
−1/2
ii

Σ
−1/2
jj 0

]([

1 0
0 1

]

+ t

[

ρ 1
1 ρ

])[

0 Σ
1/2
jj

Σ
1/2
ii 0

]

where ρ = Σij/(ΣiiΣjj)
1/2 and t = (ΣiiΣjj)

1/2s. If we also define ρ̄ = Cij/(ΣiiΣjj)
1/2, we can

write (24) as

f(X + s(eie
T
j + eje

T
i)) = f(X) + 2tρ̄ − log det

([

1 0
0 1

]

+ t

[

ρ 1
1 ρ

])

= f(X) + 2tρ̄ − log((1 + tρ)2 − t2),

15

so it is clear that we need to minimize the function

g(t) = 2tρ̄ − log((1 + tρ)2 − t2), dom g =











(−∞, 1/2) ρ = −1
(−(1 + ρ)−1, (1 − ρ)−1) −1 < ρ < 1
(−1/2,∞) ρ = 1.

If ρ = −1, then g is bounded below if and only if ρ̄ < 0, in which case the optimal solution is
t = (1 + ρ̄)/(2ρ̄). If ρ = 1, then g is bounded below if and only if ρ̄ > 0, in which case the optimal
solution is t = (1− ρ̄)/(2ρ̄). If −1 < ρ < 1, then g is bounded below for all values of ρ̄, and we can
find the minimum by setting the derivative equal to zero:

ρ̄ =
1

t + (1 + ρ)−1
+

1

t − (1 − ρ)−1
.

This gives a quadratic equation in t,

ρ̄(1 − ρ2)t2 − (1 − ρ2 + 2ρρ̄)t + ρ − ρ̄ = 0,

with exactly one root in the interval (−(1 + ρ)−1, (1− ρ)−1) (the unique root if ρ̄ = 0, the smallest
root if ρ̄ > 0, and the largest root if ρ̄ < 0). Hence, we obtain a simple analytical expression for the
optimal step size s that minimizes (24). After calculating the optimal s, the Cholesky factorization
of X can be updated efficiently via a rank-one update or downdate [GL96, page 611], [GGMS74].

The main advantage of the coordinate descent algorithm is its simplicity. The convergence rate
is often slow, as is well known for steepest descent algorithms in general.

6.2 Iterative proportional scaling

Speed and Kiverii [SK86] and Lauritzen [Lau96, page 134] discuss the following iterative method.
First, the cliques Vk, k = 1, . . . , l, in the graph GV are enumerated. Starting at an initial X ∈ Sn

V,++,
the algorithm cycles through the cliques. Each cycle consists of l updates

XVkVk
:= XVkVk

+ C−1
VkVk

− (X−1)−1
VkVk

, k = 1, . . . , l. (25)

The interpretation is as follows. From the expression (X−1)VkVk
= (XVkVk

−XVkWk
X−1

WkWk
XWkVk

)−1

where Wk = {1, . . . , n} \ Vk, we see that in the kth step of (25), XVkVk
is modified so that

(X−1)VkVk
= (XVkVk

− XVkWk
X−1

WkWk
XWkVk

)−1 = CVkVk
.

In other words XVkVk
is adjusted so that the Vk, Vk block of the optimality condtion PV (X−1) = C

is satisfied. It can be shown that this iterative procedure converges to the solution [SK86].
For chordal graphs, the iterative proportional scaling (IPS) algorithm terminates after one cycle

if it is started at X = I and the cliques are enumerated in the order defined in section 3.1 (see
[SK86, §4.4]). To see this, recall from section 4.1 that if GV is chordal, the optimal solution can be
factored as X̃ = RDRT , where R is unit upper triangular and D is block-diagonal with nonzero
blocks given by (17). The product X̃ = RDRT can be computed recursively as

[

X̃UkUk
X̃UkSk

X̃SkUk
X̃SkSk

]

:=

[

X̃UkUk
0

0 0

]

+

[

RUkSk

I

]

DSkSk

[

RUkSk

I

]T

=

[

X̃UkUk
− C−1

UkUk
0

0 0

]

+ C−1
VkVk

(26)

16

for k = 1, . . . , l. The second line follows from the formula for the inverse of a 2×2 block matrix and
the expressions of RUkSk

and DSkSk
in (17). The starting value of X̃ in this recursion is irrelevant

because U1 = ∅.
We now verify that this iteration gives the same result as (25). The first k − 1 steps of (25)

only modfiy the submatrices XViVi
, i < k, so after k − 1 steps we still have XSiSi

= I, XUiSi
= 0

for i = k, . . . , l. We can therefore write (25) in partitioned form as

[

XUkUk
XUkSk

XSkUk
XSkSk

]

:=

[

XUkUk
0

0 I

]

+ C−1
VkVk

−

[

(X−1)−1
UkUk

0

0 I

]

, k = 1, . . . , l. (27)

Comparing (27) and (26) it is readily shown that the two recursions provide the same result.
Suppose that after k − 1 steps of the two iterations, we have

XViVi
= X̃ViVi

, i = 1, . . . , k − 1. (28)

This implies that the leading part of X, with rows and columns in V1 ∪ · · · ∪ Vk−1, solves the
covariance selection problem for the (chordal) subgraph of GV with cliques V1, . . . , Vk−1. Therefore
(X−1)UkUk

= CUkUk
in (27), and comparing with (26), we see that XVkVk

= X̃VkVk
after the kth

step of the two iterations. Since U1 = ∅, we also have XV1V1
= X̃V1V1

after the first step. By
induction it follows that X = X̃ after l steps.

Although the IPS algorithm often achieves a good accuracy in a small number of cycles, its
application to large non-chordal graphs is fundamentally limited by the very high complexity of
enumerating all the cliques in a general graph.

6.3 Newton algorithm for nearly chordal graphs

Let Ṽ be a chordal embedding of the sparsity pattern V . We can reformulate (4) as

minimize − log det X + tr(CX)

subject to Xij = 0, (i, j) ∈ Ṽ \ V,

with variable X ∈ Sn
Ṽ

. If the number of equality constraints is small, this problem can be solved
efficiently using Newton’s method in combination with the results of §4.

We explain the idea for the more general problem

minimize − log detX + tr(CX)
subject to tr(AjX) = bj , j = 1, . . . , m,

(29)

with variable X ∈ Sn
V , where V is a chordal sparsity pattern. Without loss of generality we can

assume C ∈ Sn
V , Aj ∈ Sn

V .
At each iteration, Newton’s method applied to (29) requires the solution of the set of linear

equations

−PV (X−1∆XX−1) +
∑

k=1,...,m

wkAk = C − PV (X−1) (30)

tr(Aj∆X) = 0, j = 1, . . . , m (31)

(see [BV04, §10.2]). Here X ∈ Sn
V,++ is the current iterate, and the variables are w ∈ Rm and

the Newton step ∆X ∈ Sn
V . If m is not too large, we can solve the Newton equation efficiently by

17

Figure 5: Construction of one of the test problems in §6.5. Each of the N = 10 blocks represents a
complete subgraph of p nodes. The center nodes of the subgraphs are connected by a graph with
14 edges.

eliminating ∆X from (30). We first factor X = RDRT as in §3.2 and compute PV (X−1) as in §4.1.
We then solve the linear equations

PV (X−1∆X0X
−1) = PV (X−1) − C, PV (X−1∆XkX

−1) = Ak, k = 1, . . . , m,

with variables ∆X0, . . . , ∆Xm, using the algorithm of §4.2. This allows us to express ∆X in (30)
as

∆X = ∆X0 +
m
∑

k=1

wk∆Xk. (32)

Substituting this expression in the second equation (31) gives a dense set of linear equations

Hw = g (33)

where H ∈ Sm, g ∈ Rm are given by

Hjk = tr(Aj∆Xk), gj = − tr(AjX0), j, k = 1, . . . , m.

After solving for w we find ∆X from (32).
Note that in this method the matrix order n and the number of variables (nonzeros in V) can

be quite large. For large sparse problems the complexity of the method is dominated by the cost
of forming and solving the dense set of m linear equations in m variables (33).

Example We generate test graphs by connecting N complete subgraphs consisting of p nodes
each. In each subgraph we select a center node, and connect the center nodes of the N subgraphs
using a non-chordal graph. This is illustrated in figure 5. Table 2 shows the execution times of
Newton’s method for 9 problems. The number of variables listed is the total number of strictly
upper triangular nonzeros; m is the number of nonzeros added in the chordal embedding. The
number of Newton iterations in these experiments ranged from 10 to 18.

The algorithm was implemented in Python using the CVXOPT package [DV06]. The reported
CPU time is in seconds on a 2GHz AMD64 PC.

18

N p #variables m CPU time

5 20 1055 5 0.3
5 50 6380 5 1.1
5 100 25255 5 4.9
10 20 2114 15 0.9
10 50 12764 15 5.4
10 100 50514 15 21.4
20 20 4265 81 10.2
20 50 25565 81 59.2
20 100 101065 81 210.0

Table 2: Execution time for Newton’s method applied to a family of problems with nearly chordal
sparsity patterns. The number of nodes in each problem is Np. The number of added links in the
embedding is m.

6.4 Preconditioned conjugate gradient

The conjugate gradient method is a very useful method for general-purpose large scale uncon-
strained minimization. It does not require second derivative information, has minimal storage
needs, and usually converges faster than steepest descent algorithms. It is therefore a popular
alternative to Newton’s method when the Newton equations are too expensive to solve.

It is well known that the practical success of the conjugate gradient method depends on the
availability of a good preconditioner. In this section we formulate a preconditioner of the ML
estimation problem (4). The preconditioner is based on a chordal embedding and exploits the
results for chordal graphs in §4.

In the preconditioned conjugate gradient (PCG) algorithm we minimize f(X) = − log det X +
tr(CX) over Sn

V by minimizing
g(Y) = f(H(Y))

where H : Sn
V → Sn

V is a linear mapping, selected so that the Hessian of g is expected to be better
conditioned than the Hessian of f . It is also important that the mapping H and its adjoint are
easy to evaluate.

To construct a suitable H, we first note that if the sparsity pattern is chordal, then the factor-
ization (23) provides a perfect preconditioner (at a given point): if we take H = A−1 ◦ C−1, then,
at Y = H−1(X), we have

∇2g(Y) = Hadj ◦ ∇
2f(X) ◦ H = I.

This suggests the following preconditioner for the ML problem (4) when the sparsity pattern V is
not chordal. We take

H = PV ◦ A−1 ◦ C−1 (34)

where A and C follow from factoring the Hessian matrix at the optimal solution after a chordal
embedding. More precisely, we first compute a chordal embedding Ṽ of V (see §5) and compute
the solution X⋆ of the problem

minimize f̃(X) = − log detX + tr(CX) (35)

19

n #variables #cliques m IPS Newton PCG

500 811 478 77 3.8+13.2 29.2 8.7
1000 1600 930 56 15.9+290.6 51.3 49.5
2000 3199 1801 94 61.4+1845.5 214.3 189.6
2000 2099 1945 2 62.8+3991.6 28.8 126.9

Table 3: Comparison of iterative proportional scaling, Newton’s method, and the preconditioned
conjugate gradient method, on four test probems.

where f̃ : Sn
Ṽ
→ R. This problem is easily solved, as described in §4.1, and the Hessian ∇2f̃(X⋆)

can be factored as
∇2f̃(X⋆) = Aadj ◦ Cadj ◦ C ◦ A

(see §4.2). This factorization is then used to construct the preconditioner (34).

6.5 Numerical results

We compare three algorithms: the iterative proportional scaling (IPS) algorithm (§6.2), Newton’s
method as implemented in §6.3, and the preconditioned conjugate gradient (PCG) algorithm with
the preconditioner of §6.4. Table 3 shows the results for four test problems. The first three test
problems use randomly generated sparsity patterns. The fourth example is a 2000-node subgraph
of the WebBase graph [Dav]. The first four columns give some problem statistics: the matrix order,
the number of upper triangular nonzeros, the number of cliques in the graph, and the number of
nonzeros m added in the chordal embedding. The execution times for IPS are given as a sum of
two terms: the time required to find the cliques in the graph, using the algorithm of [BK73] as
implemented in the NetWorkX [Net] package, and the time required to run the IPS iteration. The
algorithms were implemented in Python using the CVXOPT package [DV06]. The reported CPU
times are in seconds on a 2GHz AMD64.

The results demonstrate the usefulness of a chordal embedding in reducing the complexity of
Newton’s algorithm. They also illustrate the effectiveness of the preconditioner of §6.4. This is
further confirmed by the execution times for the conjugate gradient method without preconditioner
(not included in the table), which were about 10 times slower than PCG.

7 Conclusion

We presented efficient algorithms for evaluating the gradient and Hessian of the function log detX
on the set of sparse positive definite matrices with a chordal sparsity pattern. The algorithms are
formulated as recursions on an associated clique tree. As applications, we discussed the imple-
mentation of Newton’s method and the preconditioned conjugate gradient algorithm for covariance
selection problems with large nearly-chordal graphs.

References

[ADD96] P. Amestoy, T. Davis, and I. Duff. An approximate minimum degree ordering. SIAM

Journal on Matrix Analysis and Applications, 17(4):886–905, 1996.

20

[BJL89] W. W. Barrett, C. R. Johnson, and M. Lundquist. Determinantal formulation for matrix
completions associated with chordal graphs. Linear Algebra and Appl., 121:265–289,
1989.

[BK73] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM, 16(9):575–577, 1973.

[Bol89] K. A. Bollen. Structural Equations with Latent Variables. John Wiley & Sons, 1989.

[BP93] J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In
A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and Sparse Matrix

Computation. Springer-Verlag, 1993.

[BT97] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-
tific, Belmont, Mass., 1997.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.
www.stanford.edu/~boyd/cvxbook.

[CDLS99] G. R. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic

Networks and Expert Systems. Springer, 1999.

[Dav] T. Davis. University of florida sparse matrix collection. Available from
http://www.cise.ufl.edu/research/sparse/mat/Kamvar.

[Dem72] A. P. Dempster. Covariance selection. Biometrics, 28:157–175, 1972.

[DV06] J. Dahl and L. Vandenberghe. CVXOPT: A Python Package for Convex Optimization.
Available from www.ee.ucla.edu/~vandenbe/cvxopt, 2006.

[ET75] A. M. Erisman and W. F. Tinney. On computing certain elements of the inverse of a
sparse matrix. Communications of the ACM, 18(3):177–179, 1975.

[FKMN00] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting sparsity in semidefinite
programming via matrix completion I: general framework. SIAM Journal on Optimiza-

tion, 11:647–674, 2000.

[GGMS74] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix
factorizations. Mathematics of Computation, 28:505–535, 1974.

[GJSW84] R. Grone, C. R. Johnson, E. M Sá, and H. Wolkowicz. Positive definite completions of
partial Hermitian matrices. Linear Algebra and Appl., 58:109–124, 1984.

[GL96] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University
Press, 3rd edition, 1996.

[JKW98] C. R. Johnson, B. Kroschel, and H. Wolkowicz. An interior-point method for approxi-
mate positive definite completions. Comput. Optim. Appl., 9(2):175–190, 1998.

[Lau96] S. L. Lauritzen. Graphical Models. Oxford University Press, 1996.

21

[Lau01] M. Laurent. Matrix completion problems. In C. A. Floudas and P. M. Pardalos, editors,
Encyclopedia of Optimization, volume III, pages 221–229. Kluwer, 2001.

[Net] Networkx. Python package for the creation, manipulation, and study of the structure,
dynamics, and functions of complex networks. Available from networkx.lanl.gov.

[NFF+03] K. Nakata, K. Fujitsawa, M. Fukuda, M. Kojima, and K. Murota. Exploiting sparsity
in semidefinite programming via matrix completion II: implementation and numerical
details. Mathematical Programming Series B, 95:303–327, 2003.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[Ros70] D. J. Rose. Triangulated graphs and the elimination process. Journal of Mathematical

Analysis and Applications, 32:597–609, 1970.

[RTL76] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

[SK86] T. P. Speed and H. T. Kiiveri. Gaussian Markov distribution over finite graphs. The

Annals of Statistics, 14(1), 1986.

[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing, 13(3):566–579, 1984.

[VBW98] L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear matrix
inequality constraints. SIAM J. on Matrix Analysis and Applications, 19(2):499–533,
April 1998.

[Wer80] N. Wermuth. Linear recursive equations, covariance selection, and path analysis. Jour-

nal of the American Statistical Association, 75(372):963–972, 1980.

[WS77] N. Wermuth and E. Scheidt. Algorithm AS 105: Fitting a covariance selection model
to a matrix. Applied Statistics, 26(1):88–92, 1977.

22

