
Maximum likelihood estimation of Gaussian graphical models:

Numerical implementation and topology selection

Joachim Dahl∗ Vwani Roychowdhury† Lieven Vandenberghe†

Abstract

We describe algorithms for maximum likelihood estimation of Gaussian graphical models
with conditional independence constraints. It is well-known that this problem can be formulated
as an unconstrained convex optimization problem, and that it has a closed-form solution if
the underlying graph is chordal. The focus of this paper is on numerical algorithms for large
problems with non-chordal graphs. We compare different gradient-based methods (coordinate
descent, conjugate gradient, and limited-memory BFGS) and show how problem structure can
be exploited in each of them. A key element contributing to the efficiency of the algorithms
is the use of chordal embeddings for the fast computation of gradients of the log-likelihood
function. We also present a dual method suited for graphs that are nearly chordal. In this
method, results from matrix completion theory are applied to reduce the number of optimization
variables to the number of edges added in the chordal embedding. The paper also makes several
connections between sparse matrix algorithms and the theory of normal graphical models with
chordal graphs. As an extension we discuss numerical methods for topology selection in Gaussian
graphical models.

1 Introduction

We consider the problem of computing maximum likelihood (ML) estimates of the mean µ and
covariance Σ of a multivariate normal variable X ∼ N (µ,Σ), subject to the constraint that certain
given pairs of variables are conditionally independent. As we will explain in §2, the conditional
independence constraints prescribe the sparsity pattern of the inverse of Σ and, as a consequence,
the maximum likelihood estimation problem can be formulated as a convex optimization problem
with Σ−1 as variable. The problem is also known as the covariance selection problem and was first
studied in detail by Dempster [13]. A closely related problem is the maximum-determinant positive
definite matrix completion problem [19].

In a graph representation of the random variable X, the nodes represent the comoponents Xi;
two nodes are connected by an undirected edge if the corresponding variables are conditionally
dependent. This is called a normal (or Gaussian) graphical model of the random variable [22,
chapter 7]. For the special case of a chordal graph (i.e., a graph in which every cycle of length
greater than three has an edge connecting nonconsecutive nodes) the solution of the problem can be
expressed in closed form in terms of the principal minors of the sample covariance matrix (see, for

∗Corresponding author. Department of Electrical Engineering, University of California, Los Angeles.
(joachim@ee.ucla.edu)

†Department of Electrical Engineering, University of California, Los Angeles. (vwani@ee.ucla.edu,
vandenbe@ee.ucla.edu)

1

example, [32], [22, §5.3]). For non-chordal graphs the ML estimate has to be computed iteratively.
Common algorithms that have been proposed for this purpose include Newton’s method and the
coordinate steepest descent algorithm [13, 30].

In this paper we present several large-scale algorithms that exploit convexity and sparsity in
covariance selection problems with large non-chordal graphs. The main innovation that contributes
to the efficiency of the algorithms is a fast technique for computing the gradient of the cost function
via a chordal embedding of the graph. This is particularly effective in algorithms that require only
first derivatives, such as steepest descent, conjugate gradient, and quasi-Newton methods.

We also present a dual method that exploits results from matrix completion theory. In this
method the number of optimization variables in the dual problem is reduced to the number of
added edges in a chordal embedding of the graph. The algorithm is therefore well suited for graphs
that are nearly chordal, i.e., graphs that can be embedded in a chordal graph by adding relatively
few edges.

Large-scale algorithms for covariance selection have several important applications; see, for
example, [4, 14]. One of these applications, which we investigate, is the topology or model selection
problem, in wich we wish to identify the topology of the graph based on measured samples of the
distribution.

The paper is organized as follows. In §2 we introduce the basic covariance selection problem,
formulate it as a convex optimization problem, and derive the optimality conditions and the dual
problem. In §3 we discuss the graph interpretation and describe solutions to different linear algebra
problems related to chordal graphs. Section §3.2 discusses the Cholesky factorization of a positive
definite matrix with chordal sparsity pattern. In §3.3 we present an efficient method for computing
a partial inverse of a positive definite matrix with chordal sparsity pattern. In §3.4 we describe
the well-known characterization of maximum-determinant positive definite matrix completions with
chordal graphs.

In §4 we give expressions for the gradient and Hessian of the log-likelihood function, and we show
that the gradient can be computed efficiently via a chordal embedding. Section §5 compares three
gradient methods for the covariance selection problem: the coordinate steepest descent, conjugate
gradient, and (limited memory) quasi-Newton methods. Section §6 contains another contribution
of the paper, a dual algorithm suited for graphs that are almost chordal. In §7 we discuss the model
selection problem. We present some conclusions in §8.

Notation

Let A be an n × n matrix and let I = (i1, i2, . . . , iq) ∈ {1, 2, . . . , n}q and J = (j1, j2, . . . , jq) ∈
{1, 2, . . . , n}q be two index lists of length q. We define AIJ as the q × q matrix with entries
(AIJ)kl = Aikjl

. If I and J are unordered sets of indices, then AIJ is the submatrix indexed by the
elements of I and J taken in the natural order. The notation A−1

IJ denotes the matrix (AIJ)−1; it
is important to distinguish this from (A−1)IJ .

We use ei to denote the ith unit vector, with dimension to be determined from the context. A◦B
denotes the Hadamard (componentwise) product of the matrices A and B: (A ◦ B)ij = AijBij .
For a symmetric matrix A, A ≻ 0 means A is positive definite and A � 0 means A is positive
semidefinite. We use Sn to denote the set of symmetric n×n matrices, and Sn

+ = {X ∈ Sn | X � 0}
and Sn

++ = {X ∈ Sn | X ≻ 0} for the positive (semi)definite matrices.

2

2 Covariance selection

In this section we give a formal definition of the covariance selection problem and present two
convex optimization formulations. In the first formulation (see §2.2), the log-likelihood function is
maximized subject to sparsity constraints on the inverse of the covariance matrix. This problem
is convex in the inverse covariance matrix. In the second formulation (§2.3), which is related to
the first by duality, the covariance matrix is expressed as a maximum-determinant positive definite
completion of the sample covariance.

2.1 Conditional independence in normal distributions

Let X, Y and Z be random variables with continuous distributions. We say that X and Y are
conditionally independent given Z if

f(x|y, z) = f(x|z),

where f(x|z) is the conditional density of X given Z, and f(x|y, z) is the conditional density of
X given Y and Z. Informally, this means that once we know Z, knowledge of Y gives no further
information about X. Conditional independence is a fundamental property in expert systems and
graphical models [22, 11, 26] and provides a simple factorization of the joint distribution f(x, y, z):
if X and Y are conditionally independent given Z then

f(x, y, z) = f(x|y, z)f(y|z)f(z) = f(x|z)f(y|z)f(z).

In this paper we are interested in the special case of conditional independence of two coefficients
Xi, Xj of a vector random variable X = (X1,X2, . . . ,Xn), given the other coefficients, i.e., the
condition that

f(xi|x1, x2, . . . , xi−1, xi+1, . . . , xn) = f(xi|x1, x2, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn).

If this holds, we simply say that Xi and Xj are conditionally independent.
There is a simple characterization of conditional independence for variables with a joint normal

distribution. Suppose I = (1, . . . , k), J = (k + 1, . . . , n). It is well-known that the conditional
distribution of XI given XJ is Gaussian, with covariance matrix

ΣII − ΣIJΣ−1
JJΣJI = (Σ−1)−1

II (1)

(see, for example, [3, §2.5.1]). Applying this result to an index set I = (i, j) with i < j, and
J = (1, 2, . . . , i − 1, i + 1, . . . , j − 1, j + 1, . . . , n), we can say that Xi and Xj are conditionally
independent if and only if the Schur complement (1), or, equivalently, its inverse, are diagonal. In
other words, Xi and Xj are conditionally independent if and only if

(Σ−1)ij = 0.

This classical result can be found in [13].

3

2.2 Maximum likelihood estimation

We now show that the ML estimation of the parameters µ and Σ of N (µ,Σ), with constraints that
given pairs of variables are conditionally independent, can be formulated as a convex optimization
problem.

As we have seen, the constraints are equivalent to specifying the sparsity pattern of Σ−1. Let
S be the set of lower triangular positions of Σ−1 that are allowed to be nonzero, so the constraints
are

(Σ−1)ij = 0, (i, j) 6∈ S. (2)

Throughout the paper we assume that S contains all the diagonal entries. Let yi, i = 1, . . . , N ,
be independent samples of N (µ,Σ). The log-likelihood function L(µ,Σ) = log

∏

i f(yi) of the
observations is, up to a constant,

L(µ,Σ) = −
N

2
log detΣ −

1

2

N
∑

i=1

(yi − µ)T Σ−1(yi − µ)

=
N

2
(− log det Σ − tr(Σ−1Σ̄) − (µ − µ̄)T Σ−1(µ − µ̄)) (3)

where µ̄ and Σ̄ are the sample mean and covariance

µ̄ =
1

N

N
∑

i=1

yi, Σ̄ =
1

N

N
∑

i=1

(yi − µ̄)(yi − µ̄)T .

The ML estimation problem with constraints (2) can therefore be expressed as

maximize − log detΣ − tr(Σ−1Σ̄) − (µ − µ̄)T Σ−1(µ − µ̄)
subject to (Σ−1)ij = 0, (i, j) 6∈ S,

with domain {(Σ, µ) ∈ Sn × Rn | Σ ≻ 0}. Clearly, the optimal value of µ is the sample mean µ̄,
and if we eliminate the variable µ and make a change of variables K = Σ−1, the problem reduces
to

maximize log detK − tr(KΣ̄)
subject to Kij = 0, (i, j) 6∈ S.

(4)

This is a convex optimization problem, since the objective function is concave on the set of positive
definite matrices.

For sparse models, with few elements in S, it is often useful to express (4) as an unconstrained
problem with the nonzero elements of K as variables. We therefore introduce the following notation.
Suppose S has q elements (i1, j1), . . . , (iq, jq), and define two n × q matrices

E1 =
[

ei1 ei2 · · · eiq

]

, E2 =
[

ej1 ej2 · · · ejq

]

. (5)

The elements of E1 and E2 are zero, except (E1)ik ,k = 1, (E2)jk,k = 1, k = 1, . . . , q. We can then
parametrize K as

K(x) = E1 diag(x)ET
2 + E2 diag(x)ET

1 (6)

where x ∈ Rq contains the nonzero elements in the strict lower triangular part of K, and the
nonzero elements on the diagonal scaled by 1/2:

xk =

{

Kik,jk
ik 6= jk

(1/2)Kik ,ik ik = jk,
k = 1, . . . , q.

4

With this notation, (4) is equivalent to the unconstrained convex optimization problem

minimize − log det K(x) + tr(K(x)Σ̄) (7)

with variable x ∈ Rq.

2.3 Duality and optimality conditions

The Lagrange dual function of the problem (4) is

g(ν) = inf
K≻0

(log detK − tr(KΣ̄) − 2
∑

(i,j)6∈S

νijKij)

= − log det(Σ̄ +
∑

(i,j)6∈S

νij(eie
T
j + eje

T
i)) − n

(see [8, chapter 5]). The variables νij are the Lagrange multipliers for the equality constraints
in (4). The dual problem is to minimize the dual function, i.e.,

minimize − log det
(

Σ̄ +
∑

(i,j)6∈S νij(eie
T
j + eje

T
i)

)

. (8)

Equivalently, if we introduce a new variable Z for the argument of the objective, we obtain

minimize − log detZ
subject to Zij = Σ̄ij , (i, j) ∈ S.

(9)

In this problem we maximize the determinant of a positive definite matrix Z, subject to the con-
straint that Z agrees with the sample covariance matrix in the positions S. This is known as the
maximum determinant positive definite matrix completion problem [19, 21].

It follows from convex duality theory that the optimal solutions K and Z in problems (4)
and (9) are inverses, so the optimal Z is equal to the ML estimate of Σ. We conclude that the ML
estimate of Σ is the maximum determinant positive definite completion of the sample covariance
matrix Σ̄, with free entries in the positions where Σ−1 is constrained to be zero. We can summarize
this observation by stating the optimality conditions for the ML estimate Σ:

Σ ≻ 0, Σij = Σ̄ij, (i, j) ∈ S, (Σ−1)ij = 0, (i, j) 6∈ S. (10)

3 Graph interpretation and solution for chordal graphs

The sparsity pattern S defines an undirected graph G = (V, So) with vertices V = {1, 2, . . . , n} and
edges So = {(i, j) ∈ S | i 6= j}. The edges define the free (nonzero) entries of Σ−1 in (10) and the
fixed entries in Σ. We will assume without loss of generality that the graph G is connected; if it
is not, the ML estimation problem can be decomposed into a number of independent problems on
connected graphs.

In this section we discuss the covariance selection problem under the assumption that the graph
G is chordal (as defined in §3). We present three related algorithms that exploit chordality.

• Zero fill-in Cholesky factorization of a sparse positive definite matrix with chordal sparsity
pattern (§3.2).

5

• Computing the partial inverse of a sparse positive definite matrix with chordal sparsity pattern
(§3.3). In the partial inverse, only the elements of the inverse in the positions of the nonzeros
of the matrix are computed, but not the other elements in the inverse.

• Covariance selection with a chordal sparsity pattern and computation of the inverse covariance
matrix (§3.4).

The first and third algorithms represent known results in linear algebra [7], the theory of graphical
models [32, 22], and the literature on positive definite matrix completions [19]. We have not found
a reference for the partial inverse algorithm, although the technique is related to the method of
Erisman and Tinney [15].

3.1 Chordal graphs

An undirected graph G is called chordal if every cycle of length greater than three has a chord, i.e.,
an edge joining nonconsecutive nodes of the cycle. In the graphical models literature the terms
triangulated graph or decomposable graph are also used as synonyms for a chordal graph. Simple
analytic formulas exist for the solution of the ML estimation problem (7) and its dual (9) in the
special case when the graph G = (V, So) defined by S is chordal.

The easiest way to derive these formulas is in terms of clique trees (also called junction trees)
associated with the graph G. A clique is a maximal subset of V = {1, . . . , n} that defines a
complete subgraph, i.e., all pairs of nodes in the clique are connected by an edge. The cliques can
be represented by an undirected graph that has the cliques as its nodes, and edges between any
two cliques with a nonempty intersection. We call this graph the clique graph associated with G.
We can also assign to every edge (Vi, Vj) in the clique graph a weight equal to the number of nodes
in the intersection Vi ∩Vj . A clique tree of a graph is a maximum weight spanning tree of its clique
graph. Clique trees of chordal graphs can be efficiently computed by the maximum cardinality

search algorithm [27, 28, 31].
For the rest of the section we assume that there are l cliques V1, V2, . . . , Vl in G, so that the

set of nonzero entries is given by

{(i, j) | (i, j) ∈ S or (j, i) ∈ S} = (V1 × V1) ∪ (V2 × V2) ∪ · · · ∪ (Vl × Vl).

We assume a clique tree has been computed, and we number the cliques so that V1 is the root of
the tree and every parent in the tree has a lower number than its children. We define S1 = V1,
U1 = ∅ and, for i = 2, . . . , l,

Si = Vi \ (V1 ∪ V2 ∪ · · · ∪ Vi−1), Ui = Vi ∩ (V1 ∪ V2 ∪ · · · ∪ Vi−1). (11)

It can be shown that for a chordal graph

Si = Vi \ Vk, Ui = Vi ∩ Vk (12)

where Vk is the parent of Vi in the clique tree. This important property is known as the running

intersection property [7].

6

3.2 Cholesky factorization with chordal sparsity pattern

If G is chordal, then a clique tree of G defines a perfect elimination order for sparse positive definite
matrices with sparsity pattern S, i.e., an elimination order that produces triangular factors with
zero fill-in. In this section we explain this for a factorization of the form PXP T = RRT with P a
permutation matrix and R upper triangular. This is equivalent to a standard Cholesky factorization
P̃XP̃ T = LLT where L is lower triangular, and P̃ is the permutation matrix P with the order of
its rows reversed.

Let X ∈ Sn
++ have sparsity pattern S: Xij = Xji = 0 if (i, j) 6∈ S. Assume that the nodes in G

are numbered so that

S1 = {1, . . . , |S1|}, Sk =







k−1
∑

j=1

|Sj | + 1,

k−1
∑

j=1

|Sj| + 2, . . . ,

k
∑

j=1

|Sj |







for k > 1. (13)

(In general, this assumption requires a symmetric permutation of the rows and columns of X.) We
will show that X can be factored as X = RRT where R is an upper triangular matrix with the
same sparsity pattern as X, i.e.,

Rij = 0, (j, i) 6∈ S. (14)

The proof is by induction on the number of cliques. The result is obviously true if l = 1: If there
is only one clique, then G is a complete graph and S contains all lower-triangular entries, so if we
factor X as X = RRT then R satisfies (14). Next, suppose the result holds for all chordal sparsity
patterns with l − 1 cliques. We partition X as

X =

[

XWW XWSl

XSlW XSlSl

]

,

with W = {1, . . . , n} \ Sl, and examine the sparsity patterns of the different blocks in the factor-
ization

X =

[

I XWSl
X−1

SlSl

0 I

] [

XWW − XWSl
X−1

SlSl
XSlW 0

0 XSlSl

] [

I 0

X−1
SlSl

XSlW I

]

.

The submatrix XUlSl
of XWSl

is dense, since Vl = Ul ∪ Sl is a clique. The submatrix XW\Ul,Sl
is

zero: a nonzero entry (i, j) with i ∈ W \ Ul, j ∈ Sl would mean that Vl is not the only clique that
contains node j, which contradicts the definition of Sl in (11). The Schur complement

X̃WW = XWW − XWSl
X−1

SlSl
XSlW

is therefore identical to XWW except for the submatrix

X̃UlUl
= XUlUl

− XUlSl
X−1

SlSl
XSlUl

.

The first term XUlUl
is dense, since Ul is a subset of the clique Vl, so X̃WW has the same sparsity

pattern as XWW .
The sparsity pattern of XWW and X̃WW is represented by the graph G with the nodes in Sl

removed. Now we use the running intersection property of chordal graphs (12): the fact that
Ul ⊆ Vk, where the clique Vk is the parent of Vl in the clique tree, means that removing the nodes
Sl reduces the number of cliques by one. The reduced graph is also chordal, and a clique tree of it

7

is obtained from the clique tree of G by deleting the clique Vl. By the induction assumption X̃WW

can therefore be factored as
X̃WW = RWW RT

WW

where RWW is upper triangular with the same sparsity pattern as XWW . The result is a factoriza-
tion of X with zero fill-in:

X =

[

RWW RWSl

0 RSlSl

] [

RT
WW 0

RT
WSl

RT
SlSl

]

,

where XSlSl
= RSlSl

RT
SlSl

is the Cholesky factorization of the (dense) matrix XSlSl
,

RUlSl
= XUlSl

X−1
SlSl

RSlSl
= XUlSl

R−T
SlSl

, RW\Ul,Sl
= 0. (15)

We summarize the ideas in the proof by outlining an algorithm for factoring X as

X = RDRT , (16)

where the matrix D is block-diagonal with l diagonal blocks DSkSk
, and the matrix R is unit upper

triangular with zero off-diagonal elements, except for RUkSk
, k = 1, . . . , l. The following algorithm

overwrites X with the factorization data.

Cholesky factorization with chordal sparsity pattern

given a positive definite matrix X with chordal sparsity pattern.

1. Compute a clique tree with cliques V1, . . . , Vl numbered so that Vk has a
higher index than its parents. Compute the sets Sk, Uk defined in (12).

2. For k = l, l − 1, . . . , 2, compute

XUkSk
:= XUkSk

X−1
SkSk

, XUkUk
:= XUkUk

− XUkSk
X−1

SkSk
XT

UkSk
.

These steps do not alter the sparsity pattern of X but overwrite its nonzero elements with the
elements of D and Rk. After completion of the algorithm, the nonzero elements of D are DSkSk

=
XSkSk

, k = 1, . . . , l. The nonzero elements of R are its diagonal and RUkSk
= XUkSk

for k = 1, . . . , l.

Example Figure 1 shows a clique tree for a chordal graph with 17 nodes, defined by the sparsity
pattern in the lefthand plot of figure 2. From figure 1 one can verify the running intersection
property. For example, for clique 6, we have

S6 = V6 \ {V1, V2, V3, V4, V5} = {v7}, U6 = V6 ∩ {V1, V2, V3, V4, V5} = {v8, v11}.

The running intersection property states that U6 ⊆ V5.
To obtain a perfect elimination order from the clique tree, we reorder the nodes according

to (13), for example, as

v9, v8, v4, v1, v13, v15, v5, v12, v11, v7, v10, v14, v2, v17, v6, v16, v3.

Applying this same permutation to the rows and columns of the sparsity pattern on the left in
figure 2 results in the sparsity pattern on the right. It can be verified that any positive definite
matrix X with this sparsity pattern can be factored as RRT , where R is upper triangular and
R + RT has the same sparsity pattern as X.

8

V1 = {v4, v8, v9}

V2 = {v1, v8, v9}

V3 = {v1, v9, v13, v15}

V4 = {v5, v9, v12, v13, v15}

V5 = {v4, v8, v11}

V6 = {v7, v8, v11}

V7 = {v7, v10, v11}

V8 = {v10, v14}

V9 = {v2, v4, v11}

V10 = {v2, v4, v17}

V11 = {v6, v17}

V12 = {v6, v16} V13 = {v3, v6}

Figure 1: Clique tree of a chordal graph with 17 nodes, associated with the sparsity pattern
of figure 2 (left).

1 3 5 7 9 11 13 15 17

1

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15 17

1

3

5

7

9

11

13

15

17

Figure 2: Left: sparsity pattern for a chordal graph. Right: sparsity pattern after a
permutation using a perfect elimination ordering determined from the clique tree in figure 1.

9

3.3 Partial inverse of a positive definite matrix with chordal sparsity pattern

In this section we consider the problem of computing the elements (X−1)ij, (i, j) ∈ S, where X
is a positive definite matrix with sparsity pattern S. A straightforward solution to this problem
consists in first computing the entire inverse X−1, for example, from the Cholesky factorization
X = RRT , by solving the matrix equation

RRT Y = I

in the unknown Y , and then selecting the specified entries of Y . This is inefficient for large sparse
matrices because it computes all the entries of X−1. In this section we will see that if the sparsity
pattern S is chordal, then it is possible to efficiently compute the entries (X−1)ij for (i, j) ∈ S
directly, without calculating any other entries of X−1.

The following algorithm returns a matrix Y ∈ Sn with Yij = (X−1)ij if (i, j) ∈ S or (j, i) ∈ S,
and Yij = 0 otherwise.

Partial inverse of positive definite matrix with chordal sparsity

pattern

given a positive definite matrix X with chordal sparsity pattern.

1. Compute a clique tree with cliques V1, . . . , Vl numbered so that Vk has a
higher index than its parents. Compute the sets Sk, Uk defined in (12).

2. Compute the factorization X = RDRT by the algorithm in §3.2.

3. Y := 0. For i = 1, . . . , l,

YUiSi
:= −YUiUi

RUiSi
, YSiUi

:= Y T
UiSi

, YSiSi
:= D−1

SiSi
−RT

UiSi
YUiSi

.

To prove the correctness of the algorithm, let Y (i) be the value of Y after i cycles of the for-loop
in step 3. We show that

Y
(i)
VkVk

= (X−1)VkVk
, k = 1, . . . , i. (17)

This implies that the final Y = Y (l) agrees with X−1 in the positions (V1 ×V1)∪ (Vl × Vl), i.e., the
nonzero positions of X.

Since S1 = V1 and U1 = ∅, the matrix Y (1) is zero except for the submatrix

Y
(1)
V1V1

= Y
(1)
S1S1

= D−1
S1S1

= (X−1)S1S1
= (X−1)V1V1

.

Therefore, (17) holds for i = 1. Next, assume that

Y
(i−1)
VkVk

= (X−1)VkVk
, k = 1, . . . , i − 1.

This immediately gives

Y
(i)
UiUi

= Y
(i−1)
UiUi

= (X−1)UiUi
, (18)

because by the running intersection property Ui ⊆ Vk for some k < i, and YUiUi
is not modified in

interation i. To compute (X−1)UiSi
and (X−1)SiSi

we consider the matrix equation

RT X−1 = D−1R−1. (19)

10

We first examine the Si, Ui block of this equation. The matrix R is unit upper triangular, with
zero off-diagonal elements, except for the blocks RUkSk

, k = 1, . . . , l. We have

(RT X−1)SiUi
= (X−1)SiUi

+ RT
UiSi

(X−1)UiUi
, (D−1R−1)SiUi

= D−1
SiSi

(R−1)SiUi
= 0.

Solving for (X−1)SiUi
, we obtain

(X−1)SiUi
= −RT

UiSi
(X−1)UiUi

. (20)

The two sides of the Si, Si block of the equation (19) are

(RT X−1)SiSi
= RT

UiSi
(X−1)UiSi

+ (X−1)SiSi
, (D−1R−1)SiSi

= D−1
SiSi

.

Solving for (X−1)SiSi
gives

(X−1)SiSi
= D−1

SiSi
− RT

UiSi
(X−1)UiSi

. (21)

Combining (18), (20) and (21), we see that the ith cycle of the for-loop results in

Y
(i)
UiUi

= (X−1)UiUi
, Y

(i)
UiSi

= (X−1)UiSi
, Y

(i)
SiUi

= (X−1)SiUi
, Y

(i)
SiSi

= (X−1)SiSi
,

and therefore Y
(i)
ViVi

= (X−1)ViVi
. By induction this shows that (17) holds.

3.4 Maximum likelihood estimation in chordal graphical models

Recall from §2.3 that the ML estimate of the covariance matrix is given by the solution of the
matrix completion problem (9). We now derive a solution for this problem assuming that the
graph G = (V, So) is chordal and that the sample covariance Σ̄ is positive definite. This result can
be found, in different forms, in [19, 5], [22, page 146], [16, §2] [23], [32, §3.2] and [23]. We follow
the derivation of [23].

We assume that the nodes of G are numbered as in §3.2 and show that the optimal solution can
be expressed as

Z = LlLl−1 . . . L2DLT
2 . . . LT

l−1L
T
l (22)

where D is block-diagonal with diagonal blocks

DSkSk
=

{

Σ̄S1S1
k = 1

Σ̄SkSk
− Σ̄SkUk

Σ̄−1
UkUk

Σ̄UkSk
k = 2, . . . , l.

(23)

The matrix Lk is unit lower triangular with zero off-diagonal elements except for the subblock

(Lk)SkUk
= Σ̄SkUk

Σ̄−1
UkUk

.

The proof of the result is by induction on the number of cliques.
The factorization is obviously correct if l = 1. In this case V is a clique, the ML estimate is

simply Z = Σ̄, and the expression (22) reduces to Z = Σ̄.
Suppose the factorization (22) is correct for all sparsity patterns with l − 1 cliques. Partition

Z as

Z =

[

ZWW ZWSl

ZSlW ZSlSl

]

11

where W = V \ Sl. The constraints in (9) fix certain entries in ZWW and also imply that

ZSlSl
= Σ̄SlSl

, ZUlSl
= Σ̄UlSl

because Vl = Sl ∪ Ul is a clique of G. The entries in ZW\Ul,Sl
on the other hand are free, as a

consequence of the definition (11). It can be verified that Z can be factored as

Z = LlZ̃LT
l =

[

I 0
(Ll)SlW I

] [

ZWW Z̃WSl

Z̃SlW Z̃SlSl

] [

I (LT
l)WSl

0 I

]

where
(Ll)SlUl

= Σ̄SlUl
Σ̄−1

UlUl
, (Ll)Sl,W\Ul

= 0, (24)

and

Z̃UlSl
= 0, Z̃W\Ul,Sl

= ZW\Ul,Sl
− ZW\Ul,Ul

Σ̄−1
UlUl

Σ̄UlSl
, Z̃SlSl

= Σ̄SlSl
− Σ̄SlUl

Σ̄−1
UlUl

Σ̄UlSl
.

This means that, for given ZWW , the optimal (maximum-determinant) choice for ZW\Ul,Sl
is

ZW\Ul,Sl
= ZW\Ul,Ul

Σ̄−1
UlUl

Σ̄UlSl
.

If we make this choice, Z̃ reduces to

Z̃ =

[

ZWW 0

0 Σ̄SlSl
− Σ̄SlUl

Σ̄−1
UlUl

Σ̄UlSl

]

.

Other choices of ZW\Ul,Sl
change the 1,2 block in this matrix and therefore increase the determinant

of Z̃, which is equal to the determinant of Z.
It remains to derive the optimal value of ZWW . By the running intersection property, the

subgraph of G corresponding to ZWW has l − 1 cliques, and a clique tree for it is the clique tree
of G with the clique Vl removed. By the induction assumption the optimal ZWW can therefore be
expressed as

ZWW = L̃l−1 . . . L̃2D̃L̃T
2 . . . L̃T

l−1,

where L̃k is unit lower triangular of order n − |Sl|, with zero entries except for the subblock

(L̃k)SkUk
= Σ̄SkUk

Σ̄−1
UkUk

.

The matrix D̃ is block diagonal with

D̃SkSk
=

{

Σ̄S1S1
k = 1

Σ̄SkSk
− Σ̄SkUk

Σ̄−1
UkUk

Σ̄UkSk
k = 2, . . . , l − 1.

This means that if we define

D =

[

D̃ 0

0 Σ̄SlSl
− Σ̄SlUl

Σ̄−1
UlUl

Σ̄UlSl

]

, Lk =

[

L̃k 0
0 I

]

, k = 2, . . . , l − 1,

and Ll as in (24), we obtain the factorization (22).
As we have seen in §2.2 the inverse of the ML estimate Z is the solution of the primal problem (4).

It follows that the optimal solution of (4) can be factored as

K = L−T
l L−T

l−1 . . . L−T
2 D−1L−1

2 . . . L−1
l−1L

−1
l .

The following algorithm evaluates this product to compute K.

12

Inverse ML covariance matrix for a chordal sparsity pattern

given a sample covariance matrix Σ̄ and a chordal sparsity pattern S.

1. Compute a clique tree with cliques V1, . . . , Vl numbered so that Vk has a
higher index than its parents. Compute the sets Sk, Uk defined in (12).

2. Compute the matrix D defined in (23). Set K := D−1.

3. For i = 2, . . . , l, compute

KSiUi
:= −KSiSi

Σ̄SiUi
Σ̄−1

Ui,Ui
, KUiSi

:= KT
SiUi

, KUiUi
:= KUiUi

+KT
SiUi

K−1
SiSi

KSiUi
.

4 Gradient and Hessian of the log-likelihood function

In this section we derive expressions for the gradient and Hessian of the objective function of (7),

f(x) = − log detK(x) + tr(K(x)Σ̄),

with K(x) = E1 diag(x)ET
2 + E2 diag(x)ET

1 as defined in (6). We also present an efficient method
for evaluating the gradient via a chordal embedding of the sparsity pattern S of K(x).

4.1 General expressions

The gradient and Hessian of f are easily derived from the second order approximation of the concave
function log detX at some X ≻ 0:

log det(X + ∆X) = log det(X) + tr(X−1∆X) −
1

2
tr(X−1∆XX−1∆X) +

1

2
o(‖∆X‖2).

Applying this with X = K(x) and ∆X = K(∆x) gives the second order approximation of f :

f(x + ∆x) =

f(x) + tr((Σ̄ − K(x)−1)K(∆x)) +
1

2
tr(K(∆x)K(x)−1K(∆x)K(x)−1) + o(‖∆x‖2). (25)

To find ∇f(x) and ∇2f(x), we write the righthand side in the form

f(x) + ∇f(x)T ∆x +
1

2
∆xT∇2f(x)∆x + o(‖∆x‖2)

using the definition K(∆x) = E1 diag(∆x)ET
2 + E2 diag(∆x)ET

1 . The second (linear) term is

tr((Σ̄ − K(x)−1)K(∆x)) = tr
(

(Σ̄ − K(x)−1)(E1 diag(∆x)ET
2 + E2 diag(∆x)ET

1)
)

= 2∆xT diag
(

ET
1 (Σ̄ − K(x)−1)E2

)

,

so the gradient of f is

∇f(x) = 2diag
(

ET
1 (Σ̄ − K(x)−1)E2

)

= 2diag(Σ̄IJ − (K(x)−1)IJ). (26)

13

The third (quadratic) term in (25) is

tr
(

K(∆x)K(x)−1K(∆x)K(x)−1
)

= 2 tr
(

E1 diag(∆x)ET
2 K(x)−1E1 diag(∆x)ET

2 K(x)−1
)

+ 2 tr
(

E1 diag(∆x)ET
2 K(x)−1E2 diag(∆x)ET

1 K(x)−1
)

and can be simplified using the identity

tr(Adiag(v)B diag(v)) =
∑

i,j

viAijBjivj = vT (A ◦ BT)v. (27)

We find

∇2f(x) = 2
(

ET
1 K(x)−1E1

)

◦
(

ET
2 K(x)−1E2

)

+ 2
(

ET
1 K(x)−1E2

)

◦
(

ET
2 K(x)−1E1

)

= 2
(

K(x)−1
)

II
◦

(

K(x)−1
)

JJ
+ 2

(

K(x)−1
)

IJ
◦

(

K(x)−1
)

JI
. (28)

Although from this expression it is not immediately clear that ∇2f(x) is positive definite when
K(x) ≻ 0, this is easily shown as follows. Let X = K(x). We first note that the matrix

[

XII ◦ XJJ XIJ ◦ XJI

XJI ◦ XIJ XJJ ◦ XII

]

=

[

XII XIJ

XJI XJJ

]

◦

[

XJJ XJI

XIJ XII

]

(29)

=

([

ET
1

ET
2

]

X
[

E1 E2

]

)

◦

([

ET
2

ET
1

]

X
[

E2 E1

]

)

is positive definite. Indeed, using the idenitity (27) we can write

vT

[

XII ◦ XJJ XIJ ◦ XJI

XJI ◦ XIJ XJJ ◦ XII

]

v = tr
(

XWXW T
)

where

W =
[

E1 E2

]

diag(v)

[

ET
2

ET
1

]

.

Now since X ≻ 0 and WXW T 6= 0 if v 6= 0, we have tr(XWXW T) > 0 for all v 6= 0. Therefore
the matrix (29) is positive definite. From this it immediately follows that the matrix

∇2f(x) = 2 (XII ◦ XJJ + XIJ ◦ XJI) =

[

I
I

]T [

XII ◦ XJJ XIJ ◦ XJI

XJI ◦ XIJ XJJ ◦ XII

] [

I
I

]

is also positive definite.

4.2 Gradient via chordal embedding

The expression (26) shows that evaluating the gradient requires the partial inverse of K(x), i.e.,
the elements of K(x)−1 in the positions of the nonzeros of K(x):

∂f(x)

∂xk
= 2Σ̄ikjk

− 2(K(x)−1)ikjk
, k = 1, . . . , q,

where S = {(i1, j1), (i2, j2), . . . , (iq, jq)} are the positions of the lower-triangular nonzero entries of
K(x). If S is chordal, the algorithm of §3.3 therefore provides a very efficient method for evaluating

14

0 1000 2000 3000 4000

0

1000

2000

3000

4000

Figure 3: Sparsity pattern S of a sparse matrix with 14,938 non-zero elements.

the gradient. The algorithm is also useful when the sparsity pattern S is not chordal. In this case
we first create a chordal sparsity pattern S̃ that contains S, and then apply the method of §3.3 to
compute the elements of (K(x)−1)ij for all (i, j) ∈ S̃. If S̃ is not much larger than S, this method
can be significantly faster than computing the entire inverse K(x)−1.

A chordal sparsity pattern S̃ that contains S is known as a chordal embedding or triangulation

of S. A good heuristic for computing a chordal embedding is to generate a fill-in reducing ordering
of S (for example, an approximate minimum degree ordering [2]), followed by a symbolic Cholesky
factorization. The sparsity pattern S̃ of the Cholesky factor defines a chordal embedding for S.

Example Figure 3 shows the sparsity pattern S of a matrix X ∈ S4000
++ with 14,938 non-zero

elements. A symmetric minimum-degree reordering results in a a chordal embedding S̃ with 130,046
non-zero elements and 3650 cliques. Table 1 shows the distribution of the sizes of the clique subsets
Uk and Sk (defined in (11)).

On a 2.8GHz Pentium IV PC with 2GB RAM it took approximately 12.7 seconds to compute the
inverse of X using Matlab’s sparse Cholesky factorization. It took only 0.32 seconds to compute
only the elements (X−1)ij for (i, j) ∈ S, using the chordal embedding and the method of §3.3,
implemented using BLAS and LAPACK.

5 Gradient methods for the primal problem

We now consider optimization methods for solving the ML problem

minimize f(x) = − log detK(x) + tr(K(x)Σ̄). (30)

This is an unconstrained convex minimization problem, and small and medium size problems are
effectively solved via Newton’s method. For larger problems, however, the cost of evaluating and
factoring the Hessian (defined in (28)) becomes prohibitive, and gradient methods are better suited.
As we have seen in the previous section, the gradient of the objective function can be efficiently
evaluated, even when the matrix dimension n or the number of variables q is large, by exploiting

15

#cliques with #cliques with
Range I |Uk| ∈ I |Sk| ∈ I

1–30 3599 3646
31–60 22 1
61–90 9 2
91–120 3 1
121–150 10 0
151–180 1 0
181–210 1 0
211–240 4 0
241–270 1 0

Table 1: Distribution of the sizes of the clique subsets Uk and Sk in a clique tree for the
chordal embedding of (3). For each bin I, we show the number of cliques with |Uk| ∈ I and
the number of cliques with |Sk| ∈ I.

sparsity. In this section we discuss the implementations of three popular gradient methods and
compare their performance.

5.1 Coordinate descent

In the coordinate descent algorithm we solve (30) one variable at a time. At each iteration, the gra-
dient of f is computed, and the variable xk with k = argmax |∂f(x)/∂xk| is updated, by minimizing
f over xk while keeping the other variables fixed. This coordinate-wise minimization is repeated
until convergence. The method is also known as steepest descent in ℓ1-norm, and its convergence
follows from standard results in unconstrained convex minimization [8, §9.4.2] [6, page 206]. Similar
ideas were applied to covariance selection in the early work by Wermuth and Scheidt [33], and by
Speed and Kiiveri [30].

Coordinate descent is a natural choice for the covariance selection problem, because each itera-
tion is very cheap. We have already described in §4.2 an efficient method to evaluate the gradient
∇f(x), using a sparse Cholesky factorization of K(x). In the rest of this section we discuss the
minimization of f over one variable, and the update of the Cholesky factorization of K(x) following
a coordinate step.

Suppose we want to update x as x := x + sek, where s minimizes

f(x + sek) = tr(K(x + sek)Σ̄) − log det(K(x + sek))

= tr(K(x)Σ̄) + 2sΣ̄ij − log det(K(x) + s(eie
T
j + eje

T
i)) (31)

for (i, j) = (ik, jk). To simplify the determinant we use the formula for the determinant of a 2 by
2 block matrix: If A and D are nonsingular, then

det

[

A B
C D

]

= detD det(A − BD−1C) = detAdet(D − CA−1B).

16

Therefore, with Σ = K(x)−1,

det(K(x) + s(eie
T
j + eje

T
i)) = det





K(x) sei sej

eT
j −1 0

eT
i 0 −1





= detK(x) det

([

1 0
0 1

]

+ s

[

eT
j

eT
i

]

Σ
[

ei ej

]

)

= detK(x) det

([

1 0
0 1

]

+ s

[

Σij Σjj

Σii Σij

])

.

Next we note that

[

1 0
0 1

]

+ s

[

Σij Σjj

Σii Σij

]

=

[

0 Σ
−1/2
ii

Σ
−1/2
jj 0

]

([

1 0
0 1

]

+ t

[

ρ 1
1 ρ

])

[

0 Σ
1/2
jj

Σ
1/2
ii 0

]

where ρ = Σij/(ΣiiΣjj)
1/2 and t = (ΣiiΣjj)

1/2s, so

det

([

1 0
0 1

]

+ s

[

Σij Σjj

Σii Σij

])

= det

([

1 0
0 1

]

+ t

[

ρ 1
1 ρ

])

= ((1 + tρ)2 − t2).

If we also define ρ̄ = Σ̄ij/(ΣiiΣjj)
1/2, then we can write (31) as

f(x + sek) = f(x) + 2tρ̄ − log((1 + tρ)2 − t2)

= f(x) + 2tρ̄ − log(1 + t(ρ + 1)) − log(1 + t(ρ − 1)),

so it is clear that in order to minimize f(x + sek) over s, we need to minimize the function

g(t) = 2tρ̄ − log((1 + tρ)2 − t2), dom g =







(−∞, 1/2) ρ = −1
(−(1 + ρ)−1, (1 − ρ)−1) −1 < ρ < 1
(−1/2,∞) ρ = 1.

If ρ = −1, then g is bounded below if and only if ρ̄ < 0, in which case the optimal solution is
t = (1 + ρ̄)/(2ρ̄). If ρ = 1, then g is bounded below if and only if ρ̄ > 0, in which case the optimal
solution is t = (1− ρ̄)/(2ρ̄). If −1 < ρ < 1, then g is bounded below for all values of ρ̄, and we can
find the minimum by setting the derivative equal to zero:

ρ̄ =
1

t + (1 + ρ)−1
+

1

t − (1 − ρ)−1
.

This gives a quadratic equation in t,

ρ̄(1 − ρ2)t2 − (1 − ρ2 + 2ρρ̄)t + ρ − ρ̄ = 0,

with exactly one root in the interval (−(1 + ρ)−1, (1− ρ)−1) (the unique root if ρ̄ = 0, the smallest
root if ρ̄ > 0, and the largest root if ρ̄ < 0). Hence, we obtain a simple analytical expression for
the optimal step size s that minimizes (31).

17

After calculating ∆xk, the Cholesky factorization of the matrix

K(x + ∆xkek) = K(x) + ∆xk(eie
T
j + eje

T
i), (32)

can be updated very efficiently given the factorization of K(x). We note that (32) may be written
equivalently as

K(x + ∆xkek) = K(x) + uuT − vvT (33)

where

u =

{
√

∆xk/2 (ei + ej) ∆xk ≥ 0
√

−∆xk/2 (ei − ej) ∆xk < 0,
v =

{
√

∆xk/2 (ei − ej) ∆xk ≥ 0
√

−∆xk/2 (ei + ej) ∆xk < 0.

The expression (33) shows that we can update the factorization of K by making a symmetric rank-
one update (if v = 0), or a symmetric rank-one downdate (if u = 0), or a rank-one update followed
by a rank-one downdate. We can therefore use one of several updating and downdating methods
available in the literature [18, page 611],[17].

5.2 Conjugate gradient method

The second algorithm in the comparison is the Fletcher-Reeves conjugate gradient algorithm (see
[25, page 120]) with a backtracking line search using cubic interpolation [25, page 56].

We use a simple diagonal preconditioner and minimize g(z) = f(diag(H)1/2z) instead of f ,
where

H = 2
(

Σ̄II ◦ Σ̄JJ + Σ̄IJ ◦ Σ̄JI

)

(34)

and Σ̄ is the sample covariance. To justify this choice, we first note that if we knew the optimal
x⋆, then an ideal preconditioner would be to minimize f(Uz) where U = ∇2f(x⋆)−1/2. The
expression (28) shows that computing the Hessian ∇2f(x⋆) requires knowledge of K(x⋆)−1, and
from the optimality conditions (10) we note that (K(x⋆)−1)ij = Σ̄ij for (i, j) 6∈ S. So while we
do not know x⋆ or K(x⋆), we do know some entries of K(x⋆)−1. A reasonable and inexpensive
estimate of ∇2f(x⋆) is therefore to replace K−1 in the expression (28) with the sample covariance
Σ̄. This justifies using H instead of ∇2f(x⋆). Finally, since factoring H is too expensive, we do
not use H1/2 but diag(H)1/2.

5.3 Limited-memory BFGS method

The third method is the limited-memory Broyden-Fletcher-Goldfarb-Reeves (LBFGS) quasi-Newton
method of [25, page 226]. Quasi-Newton methods are similar to Newton’s method but use an ap-
proximation of the Hessian (or inverse Hessian) formed based on gradient evaluations. In the
standard BFGS method an n×n dense matrix (or a triangular factor) is propagated as an approx-
imate inverse Hessian. In the limited-memory BFGS (LBFGS) with limit m only the most recent
m gradient evaluations are used. If m is much smaller than the number of variables, the LBFGS
method is less expensive and requires less memory than the full BFGS method.

The BFGS and LBFGS methods require an initial approximation of the inverse Hessian. We
experimented with two choices: the identity matrix and diag(H)−1 where H is defined in (34).

18

0 500 1000 1500 2000 2500
10

−15

10
−10

10
−5

10
0

10
5

k

f
(x

(k
))
−

f
⋆

A

B

C

D

E

Figure 4: Convergence of five gradient methods on an example problem with n = 200 and
q = 1134. A: coordinate steepest descent, B: conjugate gradient without preconditioner, C:
conjugate gradient with diagonal preconditioner, D: BFGS with an identity matrix for the
initial Hessian estimate, E: BFGS with diagonal initial Hessian estimate.

5.4 Numerical results

In this section we compare the different methods on a collection of randomly generated problems
of varying dimensions and difficulty (measured by condition number of the Hessian at optimality).

In the first experiment we randomly generated a sparse 200× 200 matrix K∗ and constructed a
problem (30) with K∗ as solution by taking Σ̄ij = ((K∗)−1)ij for (i, j) ∈ S. The number of variables
(i.e., number of non-zero lower triangular elements in the inverse covariance) was q = 1134 and
the condition number of the Hessian ∇2f(x⋆) at optimality was approximately 2 · 105. Figure 4
shows the convergence of five gradient methods: coordinate descent, conjugate gradient with and
without preconditioner, and the (full) BFGS method. For comparison, Newton’s method solved
this problem in 11 iterations, but has a much higher cost per iteration and is significantly slower
than the pre-started BFGS method.

Table 2 shows the number of iterations required to reach an accuracy ‖∇f(xk)‖ < 10−5 for the
conjugate gradient and LBFGS methods with different values of m. We compare the conjugate
gradient method without a preconditioner (CG), conjugate gradient with the diagonal precondi-
tioner based on (34) (P-CG), the BFGS method (BFGS), limited memory BFGS with different
limits (LBFGS), and finally limited memory BFGS with the initial Hessian estimate described
in §5.3. The table clearly shows the advantage of using a preconditioner. It also shows that the
quasi-Newton methods perform better than the conjugate gradient methods. In particular, the
prestarted limited memory BFGS performs well over a wide range of problems using only a modest
amount of memory.

The last example compares BFGS and LBFGS with m = 5, 20, 100 for an example with n = 100

19

n = 100, q = 425 n = 100, q = 425 n = 100, q = 425

Cond. number ρ 8E2 6E2 7E2 2E4 7E4 1E4 1E5 2E5 2E5

CG 261 255 286 1181 2313 1342 > 3000 > 3000 > 3000
P-CG 290 120 170 231 309 445 690 1507 1658
BFGS 105 116 116 481 823 473 619 NP NP
LBFGS m = 10 180 147 204 1368 1947 1235 > 3000 > 3000 > 3000
LBFGS m = 50 134 140 152 973 1397 921 2200 > 3000 > 3000
LBFGS m = 100 106 110 118 803 1218 802 2089 > 3000 > 3000
P-LBFGS m = 10 79 76 82 188 275 417 1369 887 1055
P-LBFGS m = 50 57 68 64 218 285 369 > 3000 486 705
P-LBFGS m = 100 57 67 63 196 420 486 NP 420 486

n = 200, q = 1100 n = 200, q = 1100 n = 200, q = 1100

Cond. number ρ 2E2 2E2 3E2 1E4 9E4 2E4 2E5 9E5 1E5

CG 161 132 142 1070 2839 1291 > 3000 > 3000 > 3000
P-CG 98 63 282 273 409 1182 1367 > 3000 1495
BFGS 102 88 108 1907 911 1493 2090 NP 1316
LBFGS m = 10 127 107 115 972 1541 1154 > 3000 > 3000 2678
LBFGS m = 50 107 92 112 1614 1075 926 > 3000 > 3000 2660
LBFGS m = 100 102 88 108 1777 1050 972 > 3000 > 3000 2199
P-LBFGS m = 10 74 47 65 264 319 414 1043 658 1015
P-LBFGS m = 50 60 44 58 219 297 349 730 660 783
P-LBFGS m = 100 60 44 58 185 265 289 656 723 748

Table 2: Number of iterations for a collection of randomly generated problems. Each
column shows the average number of iterations for three randomly generated instances with
q variables (or lower-triangular nonzeros). The generated problems have different condition
number of the Hessian at optimality, shown in each column. Runs marked ’NP’ encountered
numerical problems.

20

0 500 1000 1500 2000 2500
10

−15

10
−10

10
−5

10
0

10
5

k

f
(x

(k
))
−

f
⋆

A

B

CDE

Figure 5: Convergence plots for A: LBFGS m = 5, B: LBFGS m = 20, C: LBFGS m = 100,
D: BFGS, E: BFGS and LBFGS m = 5, 20, 100 and diagonal initialization.

and q = 478. The results are shown in figure 5. With an identity matrix as starting value we notice
a large difference for different values of m; in fact, we only observe superlinear convergence for the
full BFGS method. If we use the diagonal starting value for H as explained in §5.3 there is no
significant difference between the different values of m in the range 5–100.

6 Gradient methods for the dual problem

In this section we discuss the possibility of solving the dual problem (9) by a gradient method.
The dual problem can be written as an unconstrained problem with n(n + 1)/2− q variables where
q = |S| (see (8)). In practice, this is a very large number. However, we can use matrix completion
theory to substantially reduce the size of the problem.

Let S̃ be a chordal embedding of the sparsity pattern S, and let qe = |S̃ \ S| be the number of
lower-triangular positions added in the embedding. We denote by S̃c the complement of S̃,

S̃c = {(i, j) | i ≥ j, (i, j) 6∈ S̃}.

We will index the entries in S̃ \ S as (rk, sk) and the entries in in S̃c as (r̃k, s̃k), so that

S̃ \ S = {(rk, sk) | k = 1, . . . , qe}, S̃c = {(r̃k, s̃k) | k = 1, . . . , n(n + 1)/2 − (q + qe)}.

In this notation (9) reduces to the problem of minimizing the function

g(y, z) = − log det Z(y, z)

21

where Z(y, z) is the symmetric matrix with lower-triangular elements

Z(y, z)ij =







Σ̄ij (i, j) ∈ S
yk (i, j) = (rk, sk), k = 1, . . . , qe

zk (i, j) = (r̃k, s̃k), k = 1, . . . , n(n + 1)/2 − q − qe.

The key idea of the reformulation is as follows. For fixed y, we can compute the optimal z by
solving a maximum-determinant matrix completion problem with a chordal sparsity pattern S̃.
This means that the convex function

h(y) = inf
z

g(y, z),

can be evaluated by solving the matrix completion problem

minimize − log detZ
subject to Zij = Σ̄ij , (i, j) ∈ S

Zrksk
= yk, k = 1, . . . , qe.

(35)

We can solve this problem by computing the factorization (22) and taking h(y) = − log detD. The
same factorization provides the inverse of Z(y, z(y)), and thus the gradient of h, which is given by

∇h(y) = ∇y g(y, z(y))

where z(y) = argminz g(y, z). The gradient of g is

∂g(y, z)

∂yk
= −2

(

Z(y, z)−1
)

rksk

(see §4), so evaluating ∇h requires computing the entries (rk, sk) in Z(y, z(y))−1.

Example We illustrate the method by a large scale problem. We use the first 40,000 nodes of a
dataset from the WebBase project [12]. The dataset consists of a directed graph where the nodes
represent webpages and the edges represent links between webpages. We removed orientation of
the edges, i.e., we interpreted the graph as undirected. This resulted in a large sparse problem
with n = 40, 000, q = 84, 771 and qe = 3510.

We randomly generated a sparse sample covariance matrix on the chordal sparsity pattern. The
generated sparse covariance matrix was positive definite on the sparsity pattern, as opposed to just
having a positive definite completion. We solved this problem instance using a limited-memory
BFGS method storing the past m = 50 search directions. On a 2.8 GHz Pentium IV PC the
covariance selection problem was solved in 81 L-BFGS iterations, taking a total of 4976 seconds
with the inverse Hessian estimate preset to the identity.

7 Topology selection and MAP estimation

7.1 Akaike and Bayes information criterion

In the topology selection problem we are given several possible sparsity patterns Sk, k = 1, . . . ,K,
and wish to select the ‘best’ pattern and the corresponding ML estimates for Σ. This problem can

22

be addressed with standard techniques for model selection. The most common methods are the
Akaike information criterion and the Jeffrey-Schwarz criterion or Bayesian information criterion
[1, 29, 9, 10]. We explain the idea for zero-mean distributions N (0,Σ).

Let Σml,k, k = 1, . . . ,K, be the ML covariance estimate for the sparsity pattern Sk, i.e., the
solution of the problem

maximize L(Σ) = (N/2)
(

log detΣ−1 − tr(Σ−1Σ̄)
)

subject to (Σ−1)ij = 0, (i, j) ∈ Sk.

(L is the log-likelihood function (3) for a zero-mean distribution.) The Akaike information criterion
(AIC) selects the model with the largest value of

L(Σml,k) − qk, (36)

where qk is the number of nonzero entries in the lower-triangular part of Σ−1. It is also the number
of variables in the unconstrained formulation of the ML estimation problem (7). It can be shown
that for large sample sizes N the quantity −L(Σml,k)+qk converges to the Kullback-Leibler distance
between the true and the estimated distribution [9, 10].

For small sample sizes the AIC tends to overestimate qk, and it is preferable to use the second
order bias-corrected expression

L(Σml,k) − qk −
qk(qk + 1)

N − qk − 1
(37)

instead of the quantity (36) [9]. The Bayesian information criterion (BIC) selects the model with
the largest value of

L(Σml,k) −
log N

2
qk. (38)

Thus, in the AIC and BIC the log-likelihood function is augmented with a penalty term that depends
on the number of parameters qk. For the basic AIC and the BIC the penalty is proportional to the
number of parameters, and the two criteria differ only in the constant of proportionality.

When the number of possible sparsity patterns K is not too large, the AIC- and BIC-optimal
models can be computed by solving K ML estimation problems of the form considered in §5–§6.

7.2 Maximum a posteriori probability estimation

A related problem is maximum a posteriori probability (MAP) estimation of the distribution, i.e.,
the problem

maximize L(Σ, µ) + log(p(Σ, µ))
subject to (Σ−1)ij = 0, (i, j) ∈ S,

(39)

where p(Σ, µ) is the prior distribution of the parameters µ, Σ. The additional term in the objective
can also be interpreted as a regularization term. Interesting choices for p are densities that result
in sparse graph topologies (i.e., covariance estimates with many zero elements in Σ−1), while
preserving convexity of the optimization problem (39). An example of such a distribution is an
exponential distribution on the nonzero entries of Σ−1. We give the details for zero-mean normal
models N (0,Σ).

23

An exponential prior distribution on the nonzero elements of Σ−1 results in a penalty term
∑q

k=1 |(Σ
−1)ikjk

|. In the simpler notation of problem (7) we obtain the regularized problem

minimize − log det K(x) + tr(K(x)Σ̄) + ρ
∑q

k=1 |xk| (40)

where ρ > 0. Similar ℓ1-regularized ML estimation problems are considered in [4] which includes
additional bounds on the condition number of the solution, and in [20] where the goal of the
regularization term is to trade variance for bias in the estimates.

Equivalently, one obtains the trade-off curve between − log detK(x) + tr(K(x)Σ̄) and
∑

k |xk|
by solving

minimize − log detK(x) + tr(K(x)Σ̄)
subject to

∑q
k=1 |xk| ≤ γ

(41)

for different values of γ.
The regularized ML problems (40) and (41) are convex optimization problem that can be solved

efficiently using interior-point methods [24, 8], in combination with the large-scale numerical tech-
niques discussed earlier in the paper. For example, we can write (40) as a constrained optimization
problem with differentiable objective and constraint functions:

minimize − log det K(x) + tr(K(x)Σ̄) + γ1T y
subject to −y � x � y,

with y ∈ Rq an auxiliary variable. A barrier method solves this problem by repeatedly minimizing
the function

φt(x, y) = t
(

− log detK(x) + tr(K(x)Σ̄) + γ1T y
)

−

q
∑

k=1

log(y2
k − x2

k)

for a sequence of increasing values of t (see [8, chapter 11] for details). These unconstrained
minimization problems can be solved by any of the methods discussed in §5–§6.

7.3 Examples

In the first experiment we take N = 50 samples of the zero-mean normal distribution N (0, Σ̂) with
inverse covariance (or concentration) matrix

Σ̂−1 =













1 −1/2 0 1/3 0
−1/2 1 1/2 0 0

0 1/2 1 1/3 0
1/3 0 1/3 1 0
0 0 0 0 1













.

For a model size n = 5 we can easily enumerate all 2n(n−1)/2 = 1024 possible sparsity patterns or
graph topologies Sk and compute a ML estimate Σml,k for each of them. The top curve in figure 6
shows, for each q, the log-likelihood value of the best scoring topology over all sparsity patterns
with q nonzero lower triangular entries, i.e.,

max
k:qk=q

L(Σml,k).

24

0 2 4 6 8 10
−165

−160

−155

−150

−145

−140

−135

−130

−125

q − n

sc
or

e

A

B

C

Figure 6: Highest scoring log-likelihood values (A) and corresponding AIC (B) and BIC
scores (C) as a function of the number of nonzero entries in the strict lower triangular part
of Σ−1 (i.e., as a function of the number of edges in the estimated normal graph). The AIC
and BIC have a maximum at four, which is the correct number of edges in the graph. They
also select the correct topology.

The other curves show the corresponding AIC and BIC scores (37) and (38). In this example, and
in most other instances of the same problem, the AIC and BIC identify the correct topology (i.e.,
the sparsity pattern of Σ̂−1). The log-likelihood curve on the other hand increases monotonically
with q, without distinct breakpoint.

In the second example we consider a larger graph with n = 20 nodes, which makes an enumera-
tion of all possible graph topologies infeasible. We randomly construct a sparse inverse covariance
matrix Σ̂−1 with 9 strictly lower triangular elements, and generate N = 100 samples from N (0, Σ̂).
The sample covariance matrix for this problem has a dense inverse, and hence cannot be used to
estimate the graph topolgy.

We solve the penalized ML problem (41) for a completely interconnected graph, and for different
values of γ. Because of the constraint in (41) the solutions K are sparse and become denser as
γ is increased. For each γ we identify a sparsity pattern by discarding very small elements of K.
We then recompute, for that particular sparsity pattern, the (non-penalized) ML estimate and
denote the resulting covariance estimate by Σpml(γ). Figure 7 show the log-likelihood, AIC, and
BIC scores of Σpml(γ) as a function of the trade-off parameter γ. The topologies with the best AIC
and BIC scores turn out to be almost identical; we choose the estimate corresponding to the best
BIC score and call this Σpml. The sparsity pattern of Σ−1

pml is shown in figure 8, together with the

sparsity pattern of the true concentration matrix Σ̂−1. As we see, the two sparsity patterns are
quite similar. Table 3 compares the numerical values of selected entries of Σ−1

pml with the values of

Σ̂−1.

25

10
−3

10
−2

10
−1

10
0

10
1

10
2

−2800

−2700

−2600

−2500

−2400

−2300

−2200

γ

sc
or

e

A

B

C

Figure 7: Log likelihood (A), AIC (B) and BIC (C) scores for covariance matrices estimated
using the penalized maximum-likelihood method as a function of the trade-off parameter γ.

1 5 10 15 20

1

5

10

15

20

Figure 8: Sparsity patterns of the ’true’ concentration matrix Σ̂−1 and the estimate Σ−1
pml

obtained via penalized ML estimation. Entries that are nonzero in both the true and
the estimated concentration matrix are marked with ’◦’. Entries that are nonzero in the
estimated concentration matrix but not in the true concentration matrix (false positives)
are marked with ’+’. Entries that are nonzero in the true concentration matrix but not in
the estimate (misses) are marked with ’*’.

26

(i, j) (Σ̂−1)ij (Σ−1
pml)ij

(4,1) 0.1182 0.1323
(11,1) -0.3433 -0.4238
(14,1) 0.1447 0.1777
(11,4) 0.0454 0
(14,4) 0.0324 0.0568
(17,4) 0.3922 0.3504
(17,5) 0 0.0120
(9,7) -0.0179 0
(11,9) 0 -0.0175
(17,10) 0 -0.0137
(14,11) -0.0942 -0.1177
(17,11) 0.1350 0.1031
(17,14) 0 0.0192

Table 3: Numerical values of the concentration matrix estimated via penalized ML esti-
mation and the true concentration matrix. The sparsity patterns of the matrices is shown
in figure 8.

8 Conclusions

We have discussed efficient implementations of convex optimization algorithms for maximum likeli-
hood estimation of normal graphical models with large sparse graphs. The algorithms use a chordal
embedding to exploit sparsity when evaluating objective functions and gradients. This allows us
to solve problems with several 10,000 nodes. We numerically compared different gradient meth-
ods: coordinate steepest descent, conjugate gradient, and limited memory quasi-Newton methods.
The best results were achieved by the limited memory BFGS method. We also presented a dual
algorithm that exploits results from matrix completion theory and is particularly well suited for
problems with sparsity patterns that are almost chordal, i.e., where the chordal embedding adds rel-
atively few edges. Finally, we discussed the problem of topology selection and described a heuristic
method for estimating the graph topology via penalized maximum likelihood estimation.

References

[1] H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic

Control, AC-19(6):716–723, 1974.

[2] P. Amestoy, T. Davis, and I. Duff. An approximate minimum degree ordering. SIAM Journal

on Matrix Analysis and Applications, 17(4):886–905, 1996.

[3] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley & Sons,
second edition, 1984.

[4] O. Banerjeee, A. d’Aspremont, and L. El Ghaoui. Sparse covariance selection via robust
maximum likelihood estimation. ArXiV cs.CE/0506023, July 2005.

27

[5] W. W. Barrett, C. R. Johnson, and M. Lundquist. Determinantal formulae for matrix com-
pletions with chordal graphs. Linear Algebra and Its Applications, 121:265–289, 1989.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: numerical methods.
Athena Scientific, 1997.

[7] J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In A. George,
J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and Sparse Matrix Computation.
Springer-Verlag, 1993.

[8] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[9] K. P. Burnham and R. D. Anderson. Model Selection and Inference: A practical Information-

Theoretical Approach. Springer-Verlag, 2nd edition, 2001.

[10] K. P. Burnham and R. D. Anderson. Multimodel inference. Understanding AIC and BIC in
model selection. Sociological Methods & Research, 33(2):261–304, 2004.

[11] G. R. Cowell, A. P. Dawid, Lauritzen S. L, and Spiegelhalter D. J. Probabilistic Networks and

Expert Systems. Springer, 1999.

[12] T. Davis. University of florida sparse matrix collection. Available from
http://www.cise.ufl.edu/research/sparse/mat/Kamvar.

[13] A. P. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.

[14] A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao, and M. West. Sparse graphical models for
exploring gene expression data. Journal of Multivariate Analysis, pages 196–212, 2004.

[15] A. M. Erisman and W. F. Tinney. On computing certain elements of the inverse of a sparse
matrix. Communications of the ACM, 18(3):177–179, 1975.

[16] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting sparsity in semidefinite pro-
gramming via matrix completion I: general framework. SIAM Journal on Optimization, 11:647–
674, 2000.

[17] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix
factorizations. Mathematics of Computations, 28(126):71–89, 1974.

[18] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press, 3rd
edition, 1996.

[19] R. Grone, C. R. Johnson, E. M Sá, and H. Wolkowicz. Positive definite completions of partial
Hermitian matrices. Linear Algebra and Its Applications, 58:109–124, 1984.

[20] J. Z. Huang, N. Liu, and M. Pourahmadi. Covariance selection and estimation via penalized
normal likelihood. Wharton preprint, 2005.

[21] M. Laurent. Matrix completion problems. In C. A. Floudas and P. M. Pardalos, editors,
Encyclopedia of Optimization, volume III, pages 221–229. Kluwer, 2001.

[22] S. L Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.

28

[23] K. Nakata, K. Fujitsawa, M. Fukuda, M. Kojima, and K. Murota. Exploiting sparsity in
semidefinite programming via matrix completion II: implementation and numerical details.
Mathematical Programming Series B, 95:303–327, 2003.

[24] Yu. Nesterov and A. Nemirovsky. Interior-point polynomial methods in convex programming,
volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, 1994.

[25] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd edition, 2001.

[26] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[27] D. J. Rose. Triangulated graphs and the elimination process. Journal of Mathematical Analysis

and Applications, 32:597–609, 1970.

[28] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on
graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

[29] G. Schwarz. Estimating the dimension of a model. Ann. Statist., 6:461–4, 1978.

[30] T. P. Speed and H. T. Kiiveri. Gaussian Markov distributions over finite graphs. The Annals

of Statistics, 14(1):138–150, 1986.

[31] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on

Computing, 13(3):566–579, 1984.

[32] N. Wermuth. Linear recursive equations, covariance selection, and path analysis. Journal of

the American Statistical Association, 75(372):963–972, 1980.

[33] N. Wermuth and E. Scheidt. Algorithm AS 105: Fitting a covariance selection model to a
matrix. Applied Statistics, 26(1):88–92, 1977.

29

