Algorithms and Software for LMI Problems in Control*

Lieven Vandenberghe and Venkataramanan Balakrishnan?

A number of important problems from system and control theory can be numeri-
cally solved by reformulating them as convex optimization problems with linear matrix
inequality (LMTI) constraints. While numerous articles have appeared cataloging appli-
cations of LMIs to control system analysis and design, there have been few publications
in the control literature describing the numerical solution of these optimization prob-
lems. The purpose of this article is to provide an overview of the state of the art of
numerical algorithms for LMI problems, and of the available software.

Introduction

A wide variety of problems in systems and control theory can be cast or recast as semidefinite
programming (SDP) problems?, that is, problems of the form

minimize b’y
subject to C' + ZyiAi <0, (1)
i=1

where y € R™ is the variable and the matrices C = CT € R™™, and 4; = AT € R"" are
given. The inequality sign denotes matrix inequality, i.e., the matrix C'+ Y, y; A; is negative
semidefinite. The constraint .

i=1
is called a linear matriz inequality (LMI). In other words, SDPs are convex optimization
problems with a linear objective function and linear matrix inequality (LMI) constraints.

*This paper is an updated version of the conference publication [1], which was intended as an introduction
to the special session Algorithms and Software Tools for LMI Problems in Control at the 1996 TEEE CACSD
symposium in Dearborn.
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Though the form of the SDP (1) appears very specialized, it turns out that it is widely
encountered in systems and control theory. Examples include: multicriterion LQG, synthesis
of linear state feedback for multiple or nonlinear plants (“multi-model control”), optimal
state-space realizations of transfer matrices, norm scaling, synthesis of multipliers for Popov-
like analysis of systems with unknown gains, robustness analysis and robust controller design,
gain-scheduled controller design, and many others.

For a few very special cases there are “analytical solutions” to SDPs (via Riccati equations
for the ones encountered with Hy and H,, control [2], for example), but in general they
can be solved numerically very efficiently. In many cases—for example, with multi-model
control [3]—the LMIs encountered in SDPs in systems and control theory have the form
of simultaneous (coupled) Lyapunov or algebraic Riccati inequalities; using recent interior-
point methods such problems can be solved in a time that is roughly comparable to the time
required to solve the same number of (uncoupled) Lyapunov or Algebraic Riccati equations
[3, 4]. Therefore the computational cost of extending current control theory that is based
on the solution of algebraic Riccati equations to a theory based on the solution of (multiple,
simultaneous) Lyapunov or Riccati inequalities is modest.

A number of publications can be found in the control literature that survey applications of
SDP to the solution of system and control problems. Perhaps the most comprehensive list can
be found in the book [3]. Since its publication, a number of papers have appeared chronicling
further applications of SDP in control; we cite for instance the survey article [5] that appeared
in this magazine, and the special issue of the International Journal of Robust and Nonlinear
Control on Linear Matriz Inequalities in Control Theory and Applications, published recently,
in November-December, 1996 [6]. The growing popularity of LMI methods for control is also
evidenced by the large number of publications in recent control conferences.

Special classes of the SDP have a long history in optimization as well. For example,
certain eigenvalue minimization problems that can be cast as SDPs have been used for ob-
taining bounds and heuristic solutions for combinatorial optimization problems (see [7, 8]
and [9, Chapter 9]). The efficiency of recent interior-point methods for SDP, which is directly
responsible for the popularity of SDP in control, has therefore also attracted a great deal of
interest in optimization circles, overshadowing earlier solution methods based on techniques
from nondifferentiable optimization [8, 10, 11, 12, 13]. At every major optimization con-
ference, there are workshops and special sessions devoted exclusively to SDP, and a special
issue of Mathematical Programming has recently been devoted to SDP [14]. This interest
was primarily motivated by applications of SDP in combinatorial optimization but, more
recently, also by the applications in control.

The primary purpose of this article is to provide an overview of the state of the art
of numerical algorithms for LMI problems, and of the available software. We first review
the definition and some basic properties of the semidefinite programming problem. We
then describe recent developments in interior-point algorithms and available software. We
conclude with some extensions of SDP.



Semidefinite programming

In this section we provide a brief introduction to the semidefinite programming problem. For
more extensive surveys on the theory and applications of SDP, we refer to Alizadeh [15], Boyd
et al. [3], Lewis and Overton [16], Nesterov and Nemirovskii [17, §6.4], and Vandenberghe
and Boyd [18].

We have already defined an SDP formally in (1). To distinguish it from other formula-
tions, we will refer to (1) as an SDP in inequality form. The optimization problem

maximize TrCX
subject to X >0 (2)

is called an SDP in equality form. Here, the variable is the matrix X = X7 € R™", and
Tr stands for trace, ie., sum of the diagonal entries of a square matrix. The SDP (1) can be
easily converted into (2) and vice-versa, so it is a matter of convention what we consider as
the ‘standard’ form (although the inequality form appears to be more appropriate for control
theory).

It turns out that the the semidefinite programs (1) and (2) can be regarded as gen-
eralizations of several important optimization problems. For example, the linear program

(LP)

maximize ¢’z
subject to x>0 (3)
alr+b;=0, i=1,...,m,

in which the inequality x > 0 denotes componentwise inequality, can be expressed as an
SDP (2) with A; = diag(a;) and C' = diag(c), and X = diag(x). Semidefinite program-
ming can also be regarded as an extension of linear programming where the componentwise
inequalities between vectors are replaced by matrix inequalities, or, equivalently, the first
orthant is replaced by the cone of positive semidefinite matrices.

It can be shown that problems (1) and (2) are duals of each other. More precisely, if ¢*
is the optimal value of (2) and u* is the optimal value of (1), then we have:

e weak duality: u* > (*;

e strong duality: If (1) is strictly feasible (i.e., there exists a y with C' + Y, y;4; < 0)
or (2) is strictly feasible (i.e., there exists an X > 0 with TrA;X + b; = 0), then
ur = 0.

The result follows from standard convex optimization duality. (A stronger duality the-
ory that does not require strict feasibility was recently developed by Ramana, Tuncel and
Wolkowicz [19].) Some connections between SDP duality and duality in control are explored
in [20].

If we assume that both (1) and (2) are strictly feasible, then the optimal values in both



problems are attained, and the solutions are characterized by the optimality conditions

X>0,2>0
Ted; X +b;=0, i=1,...,m (4)
XZ =0.

The first three conditions state feasibility of X, Z and y. The last condition is called
complementary slackness.

Interior-point methods

Brief history

The ideas underlying interior-point methods for convex optimization can be traced back to
the sixties; see e.g., Fiacco and McCormick [21], Lieu and Huard [22], and Dikin [23]). Inter-
est in them was revived in 1984, when Karmarkar introduced a polynomial-time interior-point
method for LP [24]. In 1988 Nesterov and Nemirovskii [25] showed that those interior-point
methods for linear programming can, in principle, be generalized to all convex optimization
problems. The key element is the knowledge of a barrier function with a certain prop-
erty called self-concordance. Linear matrix inequalities are an important class of convex
constraints for which readily computable self-concordant barrier functions are known, and,
therefore, interior-point methods are applicable.

Independently of Nesterov and Nemirovskii, Alizadeh [26] and Kamath and Karmarkar [27,
28] generalized interior-point methods from linear programming to semidefinite program-
ming. Vast progress has been made in the last two years, and today almost all interior-point
methods for linear programming have been extended to semidefinite programming. This
recent research has largely concentrated on primal-dual methods in the hope of emulating
the excellent performance of primal-dual interior-point methods for large-scale linear pro-
gramming [29, 30]. The remainder of this section will concentrate on this recent work. We
should mention however that other methods have been used successfully, e.g., the ellipsoid
algorithm, the method of alternating projections, and primal interior-point methods such
as the projective algorithm and the method of centers. We refer to [5, p.80] or [3, §2] for
surveys of these earlier methods.

Primal-dual methods for SDP

The most promising methods for semidefinite programming solve the two problems (1)
and (2) simultaneously. These primal-dual methods are usually interpreted as methods for
following the primal-dual central path, which is defined as the set of solutions X (u), Z(p),
y(u) of the nonlinear equations

X>0,Z2>0
X7 =ul,



where p > 0 is a parameter. Note that these conditions are very similar to the optimality
conditions (4). The only difference is the last condition, X7 = pul, which replaces the
complementary slackness condition XZ = 0. It can be shown that the solution of (5) is
unique for p > 0 (assuming strict primal and dual feasibility), and that X (u), Z(u), y(u)
approach optimality if 1 goes to zero.

The central points X (p), y(p), Z(p) are also the minimizers of two convex functions:
X (1) minimizes

©p(pt, X) = —TrCX — plogdet X !

over all X > 0 with TrA;X + b; = 0; y(x) minimizes

@a(p,y) ="y — plogdet (—C - Z yﬁh) :

over all y with C' + >, y;4; < 0. These two functions are not only convex, but also
self-concordant, which allows us to apply Nesterov and Nemirovskii’s theory for proving
polynomial complexity of interior-point methods.

The idea behind most interior-point methods is to generate a sequence of X, y, Z that
converge to optimality, by following the central path for decreasing values of p. We will not
discuss in detail how this is done in practice, but instead concentrate on the most expensive
step of each iteration: the computation of primal and dual search directions X, dy and 6 7.
These search directions can usually be interpreted as Newton directions for solving the set of
nonlinear equations (5), i.e., we compute the search directions by linearizing (5) around the
current iterates and solving a set of linear equations. Several possibilities exist to linearize
these equations, and the particular choice distinguishes the different interior-point methods,
as we will now explain.

Let X >0, Z > 0, y be the current iterate. For simplicity we assume that these points
are feasible, i.e., we assume TrA; X +b; = 0 and Z + C + 371, y;4; = 0, although the
methods are readlly extended to infeasible starting points. A first poss1bility to linearize
X7 = ul is to write it as X = uZ~', and to linearize the equations (5) as

Trd;0X =0, i=1,...,m

=1

SX +pz7 6227 = uz7' - X.
If we eliminate 07 from the second and third equations, we obtain
TrA;6X =0, i=1,...,m (6)
T 26X 7 + fj SyiAi = w'ZX7Z - Z. (7)

i=1

This is a set of m+n(n+1)/2 equations in the m~+n(n+1)/2 variables dy, 6 X = § X7 € R™*™.
In the special case of the LP (3), where all matrices are diagonal, we can write §7 =
diag(dz), 0X = diag(dz), and

AT 0 or | 0
-tz A Sy | | p 2% — 2 |7
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where A =[a; ... ap].
A second possibility for linearizing the equation XZ = ul is to write it as Z = pX 1,
which leads to

Tr4;0X =0, i=1,....,m

i=1

pX VXX 462 = -Z+puX Tt
Eliminating 07, we obtain
TrA0X =0, i=1,....m
—puX XX 4 iéyiAi =7 —puX L.

i=1

Specialized to linear programming the equations become

AT 0 or | 0
—nX?2 A Sy | | z—pXte |
The first SDP methods were based on these primal or dual scalings (see for example,
Nesterov and Nemirovskii [17], Alizadeh [26], and Vandenberghe and Boyd [4]). In linear
programming, however, the primal and dual scalings are rarely used in practice. Instead,

one usually prefers a primal-dual symmetric scaling introduced by Kojima, Mizuno and
Yoshise [31]. For linear programming the resulting equations for the search directions have

the form
AT 0 or | 0 (8)
-X"'Z A Sy | | z—puX e |

These equations are obtained by linearizing X2 = ul as
XOZ +0X7Z =pul — XZ. 9)

Several researchers have demonstrated that methods that use this primal-dual symmetric
scaling can achieve a higher accuracy than methods based on the the primal or dual scaling
(see for example Wright [32]), and therefore the symmetric scaling is the basis of all practical
LP interior-point methods.

The extension of this symmetric primal-dual scaling to SDP is not straightforward: The
linearization (9) leads to a linear system

TrA0X =0,i=1,...,m (10)
—XNXZ+Y oyAi=7Z—pX! (11)

=1

but unfortunately the solution 0 X is not symmetric in general. Much of the most recent
research in SDP has therefore concentrated on extending the primal-dual symmetric scaling



from LP to SDP, and, as a result of this effort, very rapid progress has been made in the
last two years. Among the proposed symmetric primal-dual algorithms, three variations
seem to be the most promising. Helmberg, Rendl, Vanderbei, and Wolkowicz [33], Kojima,
Shidoh and Hara [34], and Monteiro [35] solve (10) and (11) and linearize the resulting 6.X.
Alizadeh, Haeberly and Overton [36] first write XZ = ul as XZ + ZX = 2ul and then
linearize this as

XoZ+0XZ + 726X +6ZX =2ul — X7 — 7X.

The resulting 6 X and §Z are automatically symmetric. Finally, Nesterov and Todd [37, 38],
and recently Sturm and Zhang [39], have defined a third direction, obtained as follows. First
a matrix R is computed such that RT XR = AY? and RTZ 'R = A2, where A is a diagonal

matrix with as diagonal elements the eigenvalues of XZ. One then solves the equations

TrA;0X =0,i=1,...,m (12)
—RRTSXRRT +3 6y Ai = Z — uX . (13)
i=1

to obtain the search directions X, 67, dy. Numerical details on this method can be found

in Todd, Toh and Tiitiincii [40]. Finally, Kojima, Shindoh and Hara [34], Monteiro [35], and

Monteiro and Zhang [41] have presented unifying frameworks for primal-dual methods.
Some other important recent articles and reports are listed in the references of this paper?.

Software packages

Several researchers have made available software for semidefinite programming. The first
implementation of an interior-point method for SDP was by Nesterov and Nemirovskii in
[65], using the projective algorithm [17]. Matlab’s LMI Control Toolbox [66] is based on
the same algorithm, and offers a graphical user interface and extensive support for control
applications. The code SP [67] is based on a primal-dual potential reduction method with
the Nesterov and Todd scaling. The code is written in C with calls to BLAS and LAPACK
and includes an interface to Matlab. SDPSOL [68] and LMITOOL [69] offer user-friendly
interfaces to SP that simplify the specification of SDPs where the variables have matrix
structure. The Induced-Norm Control Toolbox [70] is a toolbox for robust and optimal
control, in turn based on LMITOOL.

Several implementations of the most recent primal-dual methods are also available now.
SDPA [71] is a C++ code, based on the algorithm of Kojima, Shindoh and Hara [34].
CSDP [72] is a C implementation of the algorithm of Helmberg, Rendl, Vanderbei, and
Wolkowicz [33]. SDPHA [73] is a Matlab implementation of a homogeneous formulation of
the different primal-dual methods described above. SDPT3 [74] is a Matlab implementation
of the most important infeasible primal-dual path-following methods. SDPPACK [75] is an
implementation of the algorithm of [36]. It is written in Matlab, with critical parts written
in C to increase the efficiency. It also provides the useful feature of handling quadratic and
linear constraints directly.

2Most recent papers are available at the semidefinite programming homepage maintained by Cristoph
Helmberg (http://www.zib-berlin.de/ bzfhelmb/semidef.html) and the interior-point archive at Ar-
gonne National Laboratory (http://www.mcs.anl.gov/home/otc/InteriorPoint/index.html).
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Extensions

The determinant maximization problem

In their survey of LMI problems in control, Boyd et al. [3] also considered an extension of
the SDP (1), which was discussed in more detail in [76]. This extension can be written in
the following form:

minimize b7y — log det (—D — Z yiBi>
i=1

subject to C'+ Y y;4; <0 (14)
i=1
i=1
We will call this problem a maxdet-problem? since in most cases of interest (e.g., ellipsoidal
approximation problems) the term b”y is absent, so the problem reduces to maximizing the
determinant of —D — 3", y; B; subject to an additional LMI constraint. The maxdet-problem
is a convex optimization problem since the function logdet X ! is convex on the positive
definite cone.
An equivalent problem is the maxdet-problem in equality form:

maximize TrCX + TrDW + logdet W
subject to X >0, W >0 (15)

where X = X7 and W = W7 are the variables. Again it can be shown that problems (15)
and (14) are duals.

Maxdet-problems arise in many fields, including computational geometry, statistics, and
information and communication theory. Therefore the theory behind their solution is of
great interest, and the resulting algorithms have wide application. A list of applications and
an interior-point method for the maxdet-problem are described in [76]. Software for solving
maxdet-problems is available in [77], and has been incorporated in SDPSOL [68].

The generalized eigenvalue minimization problem

A third standard problem from [3] is the generalized eigenvalue minimization problem. Sup-
pose we have a pair of matrices (A(z), B(x)), both affine functions of z. In order to minimize
their maximum generalized eigenvalue, we can solve the optimization problem

minimize ¢
subject to tB(x) — A(x) >0 (16)
B(z) > 0.

3The problem was denoted CP in [3].



This is called a generalized linear-fractional problem. It includes the linear fractional problem

r+d

elex + f
subject to Ax +b>0, efz+f>0

minimize

as a special case.

Problem (16) is not a semidefinite program, however, because of the bilinear term ¢B(x).
It is a quasi-convex problem, and can still be efficiently solved. See Boyd and El Ghaoui [78],
Haeberly and Overton [79], and Nesterov and Nemirovskii [17, 80, 81] for details on special-
ized algorithms, and [3] for applications of this problem in control. An implementation of
the Nesterov and Nemirovskii algorithm is also provided in the LMI Control toolbox [66].

The bilinear matrix inequality problem

We finally consider an extension of the SDP (1), obtained by replacing the linear matrix
inequality constraints by a quadratic matrix inequality,

minimize b7y

m m
subject to C+ Y yidi + Y yiy;Bi; <0.

i=1 ij=1

(17)

This problem is nonconvex, but it is extremely general. For example, if the matrices C', A;,
and B;; are diagonal, the constraint in (17) reduces to a set of n (possibly indefinite) quadratic
constraints in z. Problem (17) therefore includes all quadratic optimization problems. It
also includes all polynomial problems (since by introducing new variables, one can reduce
any polynomial inequality to a set of quadratic inequalities), all {0, 1} and integer programs,
etc.

In control theory, a more restricted bilinear form seems to be general enough. Here
we split the variables in two vectors x and y, and replace the constraint by a bilinear (or
bi-affine) matrix inequality (BMI):

minimize ¢’z 4+ by

m [ m 1
subject to D + Z ;A + Z LBy + Z Z 2y Cir < 0. (18)

i=1 k=1 i=1 k=1

The problem data are the vectors ¢ € R™ and b € R and the symmetric matrices A;, B,
and Czk € Rnxn_

BMTIs include a wide variety of control problems, including synthesis with structured un-
certainty, fixed-order controller design, decentralized controller synthesis etc. (see Safonov,
Goh, and others [82, 83, 84, 85, 86, 87], El Ghaoui and Balakrishnan [88], etc). The funda-
mental difference with LMIs is that BMI problems are non-convex, and no non-exponential-
time algorithms for their solution are known to exist. The algorithms described in the above
references are either local methods that alternate between minimizing over x and y, or global
(branch and bound) techniques based on the solution of a sequence of LMI problems.



Conclusion
The current state of research on LMIs in control can be summarized:

e There has been intensive research on identifying control problems that can be cast
in terms of LMIs, and those for which an LMI formulation is unlikely to exist. In
the latter case, bilinear matrix inequalities (BMIs) have been recognized as a useful
formulation.

e The combined activity in mathematical programming and control theory has led to very
rapid progress in interior-point algorithms for solving SDPs, focusing on local conver-
gence rates, worst-case complexity, etc., and on extending to SDP the sophisticated
and efficient primal-dual interior-point methods developed for linear programming.

e Several basic software implementations of interior-point methods for SDP have become
available. These codes have proven useful for small to medium-sized problems.

Thus LMIs are becoming basic tools in control, much the way Riccati equations became
basic tools in the 1960s. At the same time, the current strong interest in the mathemati-
cal programming community is leading to more powerful algorithms for the LMI and BMI
problems that arise in control. We expect that this research will lead to a second generation
of general-purpose LMI codes, which will exploit more problem structure (e.g., sparsity) to
increase the efficiency. The analogy with linear programming illustrates the ramifications.
To a large extent, linear programming owes its success to the existence of general-purpose
software for large sparse LPs. On a more modest scale, the availability of efficient general-
purpose software for SDP would have a similar effect: it would make it possible to routinely
solve large SDPs in a wide variety of applications.
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