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A number of important problems from system and control theory can be numeri-cally solved by reformulating them as convex optimization problems with linear matrixinequality (LMI) constraints. While numerous articles have appeared cataloging appli-cations of LMIs to control system analysis and design, there have been few publicationsin the control literature describing the numerical solution of these optimization prob-lems. The purpose of this article is to provide an overview of the state of the art ofnumerical algorithms for LMI problems, and of the available software.IntroductionA wide variety of problems in systems and control theory can be cast or recast as semide�niteprogramming (SDP) problems1, that is, problems of the formminimize bTysubject to C + mXi=1 yiAi � 0; (1)where y 2 Rm is the variable and the matrices C = CT 2 Rn�n, and Ai = ATi 2 Rn�n aregiven. The inequality sign denotes matrix inequality, i.e., the matrix C+Pi yiAi is negativesemide�nite. The constraint C + mXi=1 yiAi � 0is called a linear matrix inequality (LMI). In other words, SDPs are convex optimizationproblems with a linear objective function and linear matrix inequality (LMI) constraints.�This paper is an updated version of the conference publication [1], which was intended as an introductionto the special session Algorithms and Software Tools for LMI Problems in Control at the 1996 IEEE CACSDsymposium in Dearborn.yDr. Vandenberghe is with the Department of Electrical Engineering at the University of California, LosAngeles, CA 90095-1594, telephone: 310-206-1259, fax: 310-206-4685, email: vandenbe@ee.ucla.edu.zDr. Balakrishnan is with the School of Electrical and Computer Engineering at Purdue University,West Lafayette, IN 47907-1285, telephone: 765-494-0728, fax: 765-494-3371, email: ragu@ecn.purdue.edu.Dr. Balakrishnan's research is supported in part by ONR under contract N00014-97-1-0640, and a GMFellowship.1We shall use SDP to mean both \semide�nite programming", as well as a \semide�nite program", i.e.,a semide�nite programming problem. 1



Though the form of the SDP (1) appears very specialized, it turns out that it is widelyencountered in systems and control theory. Examples include: multicriterion LQG, synthesisof linear state feedback for multiple or nonlinear plants (\multi-model control"), optimalstate-space realizations of transfer matrices, norm scaling, synthesis of multipliers for Popov-like analysis of systems with unknown gains, robustness analysis and robust controller design,gain-scheduled controller design, and many others.For a few very special cases there are \analytical solutions" to SDPs (via Riccati equationsfor the ones encountered with H2 and H1 control [2], for example), but in general theycan be solved numerically very e�ciently. In many cases|for example, with multi-modelcontrol [3]|the LMIs encountered in SDPs in systems and control theory have the formof simultaneous (coupled) Lyapunov or algebraic Riccati inequalities; using recent interior-point methods such problems can be solved in a time that is roughly comparable to the timerequired to solve the same number of (uncoupled) Lyapunov or Algebraic Riccati equations[3, 4]. Therefore the computational cost of extending current control theory that is basedon the solution of algebraic Riccati equations to a theory based on the solution of (multiple,simultaneous) Lyapunov or Riccati inequalities is modest.A number of publications can be found in the control literature that survey applications ofSDP to the solution of system and control problems. Perhaps the most comprehensive list canbe found in the book [3]. Since its publication, a number of papers have appeared chroniclingfurther applications of SDP in control; we cite for instance the survey article [5] that appearedin this magazine, and the special issue of the International Journal of Robust and NonlinearControl on Linear Matrix Inequalities in Control Theory and Applications, published recently,in November-December, 1996 [6]. The growing popularity of LMI methods for control is alsoevidenced by the large number of publications in recent control conferences.Special classes of the SDP have a long history in optimization as well. For example,certain eigenvalue minimization problems that can be cast as SDPs have been used for ob-taining bounds and heuristic solutions for combinatorial optimization problems (see [7, 8]and [9, Chapter 9]). The e�ciency of recent interior-point methods for SDP, which is directlyresponsible for the popularity of SDP in control, has therefore also attracted a great deal ofinterest in optimization circles, overshadowing earlier solution methods based on techniquesfrom nondi�erentiable optimization [8, 10, 11, 12, 13]. At every major optimization con-ference, there are workshops and special sessions devoted exclusively to SDP, and a specialissue of Mathematical Programming has recently been devoted to SDP [14]. This interestwas primarily motivated by applications of SDP in combinatorial optimization but, morerecently, also by the applications in control.The primary purpose of this article is to provide an overview of the state of the artof numerical algorithms for LMI problems, and of the available software. We �rst reviewthe de�nition and some basic properties of the semide�nite programming problem. Wethen describe recent developments in interior-point algorithms and available software. Weconclude with some extensions of SDP.
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Semide�nite programmingIn this section we provide a brief introduction to the semide�nite programming problem. Formore extensive surveys on the theory and applications of SDP, we refer to Alizadeh [15], Boydet al. [3], Lewis and Overton [16], Nesterov and Nemirovskii [17, x6.4], and Vandenbergheand Boyd [18].We have already de�ned an SDP formally in (1). To distinguish it from other formula-tions, we will refer to (1) as an SDP in inequality form. The optimization problemmaximize TrCXsubject to X � 0TrAiX + bi = 0; i = 1; : : : ; m (2)is called an SDP in equality form. Here, the variable is the matrix X = XT 2 Rn�n, andTr stands for trace, ie., sum of the diagonal entries of a square matrix. The SDP (1) can beeasily converted into (2) and vice-versa, so it is a matter of convention what we consider asthe `standard' form (although the inequality form appears to be more appropriate for controltheory).It turns out that the the semide�nite programs (1) and (2) can be regarded as gen-eralizations of several important optimization problems. For example, the linear program(LP) maximize cTxsubject to x � 0aTi x + bi = 0; i = 1; : : : ; m; (3)in which the inequality x � 0 denotes componentwise inequality, can be expressed as anSDP (2) with Ai = diag(ai) and C = diag(c), and X = diag(x). Semide�nite program-ming can also be regarded as an extension of linear programming where the componentwiseinequalities between vectors are replaced by matrix inequalities, or, equivalently, the �rstorthant is replaced by the cone of positive semide�nite matrices.It can be shown that problems (1) and (2) are duals of each other. More precisely, if `?is the optimal value of (2) and u? is the optimal value of (1), then we have:� weak duality: u? � `?;� strong duality: If (1) is strictly feasible (i.e., there exists a y with C +Pi yiAi < 0)or (2) is strictly feasible (i.e., there exists an X > 0 with TrAiX + bi = 0), thenu? = `?.The result follows from standard convex optimization duality. (A stronger duality the-ory that does not require strict feasibility was recently developed by Ramana, Tun�cel andWolkowicz [19].) Some connections between SDP duality and duality in control are exploredin [20].If we assume that both (1) and (2) are strictly feasible, then the optimal values in both
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problems are attained, and the solutions are characterized by the optimality conditionsX � 0; Z � 0TrAiX + bi = 0; i = 1; : : : ; mZ + C +Pmi=1 yiAi = 0XZ = 0: (4)The �rst three conditions state feasibility of X, Z and y. The last condition is calledcomplementary slackness. Interior-point methodsBrief historyThe ideas underlying interior-point methods for convex optimization can be traced back tothe sixties; see e.g., Fiacco and McCormick [21], Lieu and Huard [22], and Dikin [23]). Inter-est in them was revived in 1984, when Karmarkar introduced a polynomial-time interior-pointmethod for LP [24]. In 1988 Nesterov and Nemirovskii [25] showed that those interior-pointmethods for linear programming can, in principle, be generalized to all convex optimizationproblems. The key element is the knowledge of a barrier function with a certain prop-erty called self-concordance. Linear matrix inequalities are an important class of convexconstraints for which readily computable self-concordant barrier functions are known, and,therefore, interior-point methods are applicable.Independently of Nesterov and Nemirovskii, Alizadeh [26] and Kamath and Karmarkar [27,28] generalized interior-point methods from linear programming to semide�nite program-ming. Vast progress has been made in the last two years, and today almost all interior-pointmethods for linear programming have been extended to semide�nite programming. Thisrecent research has largely concentrated on primal-dual methods in the hope of emulatingthe excellent performance of primal-dual interior-point methods for large-scale linear pro-gramming [29, 30]. The remainder of this section will concentrate on this recent work. Weshould mention however that other methods have been used successfully, e.g., the ellipsoidalgorithm, the method of alternating projections, and primal interior-point methods suchas the projective algorithm and the method of centers. We refer to [5, p.80] or [3, x2] forsurveys of these earlier methods.Primal-dual methods for SDPThe most promising methods for semide�nite programming solve the two problems (1)and (2) simultaneously. These primal-dual methods are usually interpreted as methods forfollowing the primal-dual central path, which is de�ned as the set of solutions X(�), Z(�),y(�) of the nonlinear equationsX � 0; Z � 0TrAiX + bi = 0; i = 1; : : : ; mZ + C +Pmi=1 yiAi = 0XZ = �I; (5)4



where � � 0 is a parameter. Note that these conditions are very similar to the optimalityconditions (4). The only di�erence is the last condition, XZ = �I, which replaces thecomplementary slackness condition XZ = 0. It can be shown that the solution of (5) isunique for � > 0 (assuming strict primal and dual feasibility), and that X(�), Z(�), y(�)approach optimality if � goes to zero.The central points X(�), y(�), Z(�) are also the minimizers of two convex functions:X(�) minimizes 'p(�;X) = �TrCX � � log detX�1over all X > 0 with TrAiX + bi = 0; y(�) minimizes'd(�; y) = bT y � � log det �C � mXi=1 yiAi! ;over all y with C + Pmi=1 yiAi < 0. These two functions are not only convex, but alsoself-concordant, which allows us to apply Nesterov and Nemirovskii's theory for provingpolynomial complexity of interior-point methods.The idea behind most interior-point methods is to generate a sequence of X, y, Z thatconverge to optimality, by following the central path for decreasing values of �. We will notdiscuss in detail how this is done in practice, but instead concentrate on the most expensivestep of each iteration: the computation of primal and dual search directions �X, �y and �Z.These search directions can usually be interpreted as Newton directions for solving the set ofnonlinear equations (5), i.e., we compute the search directions by linearizing (5) around thecurrent iterates and solving a set of linear equations. Several possibilities exist to linearizethese equations, and the particular choice distinguishes the di�erent interior-point methods,as we will now explain.Let X > 0, Z > 0, y be the current iterate. For simplicity we assume that these pointsare feasible, i.e., we assume TrAiX + bi = 0 and Z + C + Pmy=1 yiAi = 0, although themethods are readily extended to infeasible starting points. A �rst possibility to linearizeXZ = �I is to write it as X = �Z�1, and to linearize the equations (5) asTrAi�X = 0; i = 1; : : : ; m�Z + mXi=1 �yiAi = 0�X + �Z�1�ZZ�1 = �Z�1 �X:If we eliminate �Z from the second and third equations, we obtainTrAi�X = 0; i = 1; : : : ; m (6)���1Z�XZ + mXi=1 �yiAi = ��1ZXZ � Z: (7)This is a set ofm+n(n+1)=2 equations in them+n(n+1)=2 variables �y, �X = �XT 2 Rn�n.In the special case of the LP (3), where all matrices are diagonal, we can write �Z =diag(�z), �X = diag(�x), and" AT 0���1Z2 A # " �x�y # = " 0��1Z2x� z # :5



where A = [a1 : : : am].A second possibility for linearizing the equation XZ = �I is to write it as Z = �X�1,which leads to TrAi�X = 0; i = 1; : : : ; m�Z + mXi=1 �yiAi = 0�X�1�XX�1 + �Z = �Z + �X�1:Eliminating �Z, we obtain TrAi�X = 0; i = 1; : : : ; m��X�1�XX�1 + mXi=1 �yiAi = Z � �X�1:Specialized to linear programming the equations become" AT 0��X�2 A # " �x�y # = " 0z � �X�1e # :The �rst SDP methods were based on these primal or dual scalings (see for example,Nesterov and Nemirovskii [17], Alizadeh [26], and Vandenberghe and Boyd [4]). In linearprogramming, however, the primal and dual scalings are rarely used in practice. Instead,one usually prefers a primal-dual symmetric scaling introduced by Kojima, Mizuno andYoshise [31]. For linear programming the resulting equations for the search directions havethe form " AT 0�X�1Z A # " �x�y # = " 0z � �X�1e: # : (8)These equations are obtained by linearizing XZ = �I asX�Z + �XZ = �I �XZ: (9)Several researchers have demonstrated that methods that use this primal-dual symmetricscaling can achieve a higher accuracy than methods based on the the primal or dual scaling(see for example Wright [32]), and therefore the symmetric scaling is the basis of all practicalLP interior-point methods.The extension of this symmetric primal-dual scaling to SDP is not straightforward: Thelinearization (9) leads to a linear systemTrAi�X = 0; i = 1; : : : ; m (10)�X�1�XZ + mXi=1 �yiAi = Z � �X�1 (11)but unfortunately the solution �X is not symmetric in general. Much of the most recentresearch in SDP has therefore concentrated on extending the primal-dual symmetric scaling6



from LP to SDP, and, as a result of this e�ort, very rapid progress has been made in thelast two years. Among the proposed symmetric primal-dual algorithms, three variationsseem to be the most promising. Helmberg, Rendl, Vanderbei, and Wolkowicz [33], Kojima,Shidoh and Hara [34], and Monteiro [35] solve (10) and (11) and linearize the resulting �X.Alizadeh, Haeberly and Overton [36] �rst write XZ = �I as XZ + ZX = 2�I and thenlinearize this as X�Z + �XZ + Z�X + �ZX = 2�I �XZ � ZX:The resulting �X and �Z are automatically symmetric. Finally, Nesterov and Todd [37, 38],and recently Sturm and Zhang [39], have de�ned a third direction, obtained as follows. Firsta matrix R is computed such that RTXR = �1=2 and RTZ�1R = �1=2, where � is a diagonalmatrix with as diagonal elements the eigenvalues of XZ. One then solves the equationsTrAi�X = 0; i = 1; : : : ; m (12)�RRT �XRRT + mXi=1 �yiAi = Z � �X�1: (13)to obtain the search directions �X, �Z, �y. Numerical details on this method can be foundin Todd, Toh and T�ut�unc�u [40]. Finally, Kojima, Shindoh and Hara [34], Monteiro [35], andMonteiro and Zhang [41] have presented unifying frameworks for primal-dual methods.Some other important recent articles and reports are listed in the references of this paper2.Software packagesSeveral researchers have made available software for semide�nite programming. The �rstimplementation of an interior-point method for SDP was by Nesterov and Nemirovskii in[65], using the projective algorithm [17]. Matlab's LMI Control Toolbox [66] is based onthe same algorithm, and o�ers a graphical user interface and extensive support for controlapplications. The code SP [67] is based on a primal-dual potential reduction method withthe Nesterov and Todd scaling. The code is written in C with calls to BLAS and LAPACKand includes an interface to Matlab. SDPSOL [68] and LMITOOL [69] o�er user-friendlyinterfaces to SP that simplify the speci�cation of SDPs where the variables have matrixstructure. The Induced-Norm Control Toolbox [70] is a toolbox for robust and optimalcontrol, in turn based on LMITOOL.Several implementations of the most recent primal-dual methods are also available now.SDPA [71] is a C++ code, based on the algorithm of Kojima, Shindoh and Hara [34].CSDP [72] is a C implementation of the algorithm of Helmberg, Rendl, Vanderbei, andWolkowicz [33]. SDPHA [73] is a Matlab implementation of a homogeneous formulation ofthe di�erent primal-dual methods described above. SDPT3 [74] is a Matlab implementationof the most important infeasible primal-dual path-following methods. SDPPACK [75] is animplementation of the algorithm of [36]. It is written in Matlab, with critical parts writtenin C to increase the e�ciency. It also provides the useful feature of handling quadratic andlinear constraints directly.2Most recent papers are available at the semide�nite programming homepage maintained by CristophHelmberg (http://www.zib-berlin.de/~bzfhelmb/semidef.html) and the interior-point archive at Ar-gonne National Laboratory (http://www.mcs.anl.gov/home/otc/InteriorPoint/index.html).7



ExtensionsThe determinant maximization problemIn their survey of LMI problems in control, Boyd et al. [3] also considered an extension ofthe SDP (1), which was discussed in more detail in [76]. This extension can be written inthe following form: minimize bTy � log det �D � mXi=1 yiBi!subject to C + mXi=1 yiAi � 0D + mXi=1 yiBi < 0: (14)We will call this problem a maxdet-problem3, since in most cases of interest (e.g., ellipsoidalapproximation problems) the term bTy is absent, so the problem reduces to maximizing thedeterminant of �D�Pi yiBi subject to an additional LMI constraint. The maxdet-problemis a convex optimization problem since the function log detX�1 is convex on the positivede�nite cone.An equivalent problem is the maxdet-problem in equality form:maximize TrCX +TrDW + log detWsubject to X � 0; W > 0TrAiX +TrBiW + bi = 0; i = 1; : : : ; m; (15)where X = XT and W = W T are the variables. Again it can be shown that problems (15)and (14) are duals.Maxdet-problems arise in many �elds, including computational geometry, statistics, andinformation and communication theory. Therefore the theory behind their solution is ofgreat interest, and the resulting algorithms have wide application. A list of applications andan interior-point method for the maxdet-problem are described in [76]. Software for solvingmaxdet-problems is available in [77], and has been incorporated in SDPSOL [68].The generalized eigenvalue minimization problemA third standard problem from [3] is the generalized eigenvalue minimization problem. Sup-pose we have a pair of matrices (A(x); B(x)), both a�ne functions of x. In order to minimizetheir maximum generalized eigenvalue, we can solve the optimization problemminimize tsubject to tB(x)� A(x) � 0B(x) � 0: (16)3The problem was denoted CP in [3].
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This is called a generalized linear-fractional problem. It includes the linear fractional problemminimize cTx + deTx+ fsubject to Ax+ b � 0; eTx + f > 0as a special case.Problem (16) is not a semide�nite program, however, because of the bilinear term tB(x).It is a quasi-convex problem, and can still be e�ciently solved. See Boyd and El Ghaoui [78],Haeberly and Overton [79], and Nesterov and Nemirovskii [17, 80, 81] for details on special-ized algorithms, and [3] for applications of this problem in control. An implementation ofthe Nesterov and Nemirovskii algorithm is also provided in the LMI Control toolbox [66].The bilinear matrix inequality problemWe �nally consider an extension of the SDP (1), obtained by replacing the linear matrixinequality constraints by a quadratic matrix inequality,minimize bT ysubject to C + mXi=1 yiAi + mXi;j=1 yiyjBij � 0: (17)This problem is nonconvex, but it is extremely general. For example, if the matrices C, Ai,andBij are diagonal, the constraint in (17) reduces to a set of n (possibly inde�nite) quadraticconstraints in x. Problem (17) therefore includes all quadratic optimization problems. Italso includes all polynomial problems (since by introducing new variables, one can reduceany polynomial inequality to a set of quadratic inequalities), all f0; 1g and integer programs,etc.In control theory, a more restricted bilinear form seems to be general enough. Herewe split the variables in two vectors x and y, and replace the constraint by a bilinear (orbi-a�ne) matrix inequality (BMI):minimize cTx + bTysubject to D + mXi=1 yiAi + lXk=1xkBk + mXi=1 lXk=1xiykCik � 0: (18)The problem data are the vectors c 2 Rm and b 2 Rl and the symmetric matrices Ai, Bk,and Cik 2 Rn�n.BMIs include a wide variety of control problems, including synthesis with structured un-certainty, �xed-order controller design, decentralized controller synthesis etc. (see Safonov,Goh, and others [82, 83, 84, 85, 86, 87], El Ghaoui and Balakrishnan [88], etc). The funda-mental di�erence with LMIs is that BMI problems are non-convex, and no non-exponential-time algorithms for their solution are known to exist. The algorithms described in the abovereferences are either local methods that alternate between minimizing over x and y, or global(branch and bound) techniques based on the solution of a sequence of LMI problems.9



ConclusionThe current state of research on LMIs in control can be summarized:� There has been intensive research on identifying control problems that can be castin terms of LMIs, and those for which an LMI formulation is unlikely to exist. Inthe latter case, bilinear matrix inequalities (BMIs) have been recognized as a usefulformulation.� The combined activity in mathematical programming and control theory has led to veryrapid progress in interior-point algorithms for solving SDPs, focusing on local conver-gence rates, worst-case complexity, etc., and on extending to SDP the sophisticatedand e�cient primal-dual interior-point methods developed for linear programming.� Several basic software implementations of interior-point methods for SDP have becomeavailable. These codes have proven useful for small to medium-sized problems.Thus LMIs are becoming basic tools in control, much the way Riccati equations becamebasic tools in the 1960s. At the same time, the current strong interest in the mathemati-cal programming community is leading to more powerful algorithms for the LMI and BMIproblems that arise in control. We expect that this research will lead to a second generationof general-purpose LMI codes, which will exploit more problem structure (e.g., sparsity) toincrease the e�ciency. The analogy with linear programming illustrates the rami�cations.To a large extent, linear programming owes its success to the existence of general-purposesoftware for large sparse LPs. On a more modest scale, the availability of e�cient general-purpose software for SDP would have a similar e�ect: it would make it possible to routinelysolve large SDPs in a wide variety of applications.References[1] L. Vandenberghe and V. Balakrishnan, \Algorithms and software tools for LMI problemsin control: An overview", in Proceedings of the 1996 IEEE International Symposium onComputer-Aided Control System Design, Dearborn, Michigan, 1996.[2] J. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, \State-space solutions to standardH2 and H1 control problems", IEEE Trans. Aut. Control, vol. AC-34, pp. 831{847, Aug.1989.[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systemand Control Theory, vol. 15 of Studies in Applied Mathematics, SIAM, Philadelphia, PA, June1994.[4] L. Vandenberghe and S. Boyd, \A primal-dual potential reduction method for problemsinvolving matrix inequalities", Mathematical Programming, vol. 69, pp. 205{236, July 1995.[5] R. E. Skelton and T. Iwasaki, \Increased roles of linear algebra in control education", IEEEControl Syst. Mag., vol. 15, pp. 76{89, 1995.10
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