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We consider nonlinear systems dx=dt = f(x(t)) where Df(x(t)) is known to lie in the

convex hull of L matrices A1, : : : , AL 2 R
n�n. For such systems, quadratic Lyapunov

functions can be determined using convex programming techniques [1]. This paper de-

scribes an algorithm that either �nds a quadratic Lyapunov function or terminates with

a proof that no quadratic Lyapunov function exists. The algorithm is an interior-point

method based on the theory developed by Nesterov and Nemirovsky [2].

1. AN EQUIVALENT OPTIMIZATION PROBLEM

Quadratic Lyapunov functions of the form xTPx can be determined by solving a set of

matrix inequalities for P :

AT
kP + PAk � 0; k = 1; : : : ; L

�I � P � I;
(1)

where I is the n � n identity matrix, and the notation X � 0 means that X is positive

semide�nite. The lower and upper bounds on P are added for numerical reasons. These

bounds limit the condition number of P to 1=�, which is not very restrictive as long as �

is a small number. The upper bound also guarantees that the set of feasible matrices P

is bounded.

Problem (1) can be converted into an optimization problem by adding an arti�cial

variable t:

minimize t

such that �AT
kP � PAk + tFk � 0; k = 1; : : : ; L

�P + tFL+1 + I � 0

P + tFL+2 � �I � 0

t � 0

(2)

The optimization algorithm requires a feasible solution to start with. Assume one has

a symmetric matrix P0 as initial guess for the matrix P . One can then choose Fk =
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I +AT
kP0 + P0Ak, k = 1; : : : ; L, FL+1 = P0 and FL+2 = (1 + �)I � P0. This implies that

t = 1, P = P0 satis�es the constraints (2). Starting with these initial values, one minimizes

t. If the minimum value of t is zero, a solution to the original feasibility problem (1) has

been found. If on the other hand the minimum value of t is greater than zero, we have

actually proven that the original problem is infeasible.

2. POTENTIAL FUNCTION

A number of very e�cient methods have been recently developed for solving optimiza-

tion problems over the cone of positive de�nite matrices. These so-called interior-point

methods were �rst introduced for linear programming by Karmarkar [3]. Since then, they

have been extended to general convex problems. The �rst uni�ed treatment can be found

in [2]. It is now possible to solve problems involving large matrix inequalities in a rea-

sonable amount of time. The worst-case e�ort can be shown to grow polynomially with

problem size; the performance is even better in practice.

The most e�cient interior-point methods are based on a potential function. For prob-

lem (2) one can use

 (P; t) = q log t�
L+2X
k=1

log detXk (3)

where

Xk
�

= �AT
kP � PAk + tFk; k = 1; : : :L

XL+1
�

= �P + tFL+1 + I;

XL+2
�

= P + tFL+2 � �I;

and q is a positive scalar. The potential function  (P; t) consists of two parts. The �rst

term, q log t, is concave and rewards a decrease in t. The second term, �
PL+2

k=1 log detXk,

acts as a barrier for the feasible set.

Although the function  itself is not convex, it can be shown that exp is convex if

q > n(L + 2). This property has the important consequence that local minima of  will

necessarily be unique and global.

3. MINIMIZATION OF THE POTENTIAL FUNCTION

Interior-point methods use a damped Newton method for minimizing the potential

function (see [2]). Skipping details, this amounts to repeatedly computing a step �P , �t

by solving the overdetermined system:

I � X
�1=2
k

�
�AT

k �P � �PAk + �tFk
�
X
�1=2
k ; k = 1; : : : ; L

I � X
�1=2
L+1 (��P + �tFL+1)X

�1=2
L+1

I � X
�1=2
L+2 (�P + �tFL+2)X

�1=2
L+2

�q � t�1�t (4)
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in a least-squares sense. One then takes a suitably scaled step in this direction.

If the problem is feasible, it can be shown that this Newton step reduces the potential

function at least by an absolute constant in each iteration. This property is crucial in

establishing a proof of polynomiality of the algorithm [2].

4. DETECTION OF INFEASIBILITY

If the potential function is not unbounded below, but reaches its minimum for some

(P �; t�) with t� > 0, we may conclude that the problem (1) is infeasible. A formal proof

of infeasibility can be derived from duality theory [2]. It consists in generating a set of

n� n matrices Zk � 0, k = 1; : : : ; L+ 2 that satisfy:

Tr ZL+1 � �Tr ZL+2 < 0

�

LX
k=1

�
ZkA

T
k +AkZk

�
� ZL+1 + ZL+2 = 0

L+2X

k=1

Tr FkZk = 1:

A set of matricesZk satisfying these conditions can be derived from the minimizers (P �; t�)

at a negligible computational cost.

5. NUMERICAL EXAMPLE

Interior-point methods typically require a small number of iterations, but each iteration

involves solving a large least-squares problem. There is no need, however, to solve these

least-squares problems exactly. Approximate solutions can already yield descent directions

that are su�cient for polynomiality [4]. The use of iterative methods such as conjugate

gradients and LSQR [5] to approximately solve the least-squares problems can therefore

lead to very considerable savings in computer time.

The numerical data for Fig. 1 were obtained as follows. We randomly generate 20�20

matrices �Ak, k = 1; : : : ; 50, and construct problems of the form (1) by taking Ak =

�I + � �Ak; k = 1; : : : ; L.

The problem will clearly be feasible for small values of � and infeasible for larger

values. Figure 1 shows the total cpu-time (on a SUN 4/670) and the number of iterations

for di�erent values of �. From these data, we note that the algorithm is fast if the problem

is clearly feasible or infeasible, and becomes slower as we approach the boundary between

feasibility and infeasibility.

In this example, the optimization problem (2) has 211 unknowns (the scalar t plus the

elements of the symmetric matrix P ). The least-squares problem (4) that has to be solved

in each iteration has size 10921 � 211.
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Figure 1. Total cpu-time and number of iterations for the experiment described in Sec-

tion 5. The instances marked with '�' were feasible; the instances marked with '�' were

infeasible.
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