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Entropic Proximal Operators for Nonnegative
Trigonometric Polynomials

Hsiao-Han Chao and Lieven Vandenberghe

Abstract—Signal processing applications of semidefinite opti-
mization are often rooted in sum-of-squares representations of
nonnegative trigonometric polynomials. Interior-point solvers for
semidefinite optimization can handle constraints of this form
with a per-iteration-complexity that is cubic in the degree of the
trigonometric polynomial. The purpose of this paper is to discuss
first-order methods with a lower complexity per iteration. The
methods are based on generalized proximal operators defined
in terms of the Itakura–Saito distance. This is the Bregman
distance defined by the negative entropy function. The choice
for the Itakura–Saito distance is motivated by the fact that
the associated generalized projection on the set of normalized
nonnegative trigonometric polynomials can be computed at a
cost that is roughly quadratic in the degree of the polynomial.
The generalized projection is the key operation in generalized
proximal first-order methods that use Bregman distances instead
of the squared Euclidean distance. The paper includes numeri-
cal results with Auslender and Teboulle’s accelerated proximal
gradient method for Bregman distances.

I. INTRODUCTION

OPTIMIZATION problems over the cone of nonnegative
trigonometric polynomials or its dual cone, the cone of

positive semidefinite Toeplitz matrices, are common in signal
processing and system identification [1]–[8]. Recent examples
include superresolution techniques for spectrum estimation
and gridless compressed sensing [9]–[11]. If the cost function
admits an efficient semidefinite representation, such problems
can be solved by general-purpose interior-point solvers for
semidefinite optimization. To be specific, let K be the cone
of nonnegative trigonometric polynomials of degree p or less:

K = {x ∈ Rp+1 | Fx(ejω) ≥ 0 ∀ω} (1)

where Fx(z) = x0 +
∑p
k=1 xk(z + z−1) is the Laurent poly-

nomial with coefficients x = (x0, . . . , xp). The convex cone
K can be expressed as the image of the positive semidefinite
cone under a linear transformation,

K = {D(X) | X ∈ Sp+1
+ } (2)

where Sp+1
+ is the set of symmetric positive semidefinite

matrices of order p+ 1, and the linear mapping D maps X to
the (p+ 1)-vector of its diagonal sums, i.e.,

D(X)k =

p−k∑
i=0

Xi,i+k, k = 0, . . . , p (3)

(see [3], [5], [6]). If f is a cost function with an epigraph
{(x, t) | f(x) ≤ t} that can be represented by linear matrix
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inequalities, then the equivalence between (1) and (2) allows
us to formulate the problem of minimizing f(x) over K as
a semidefinite program (SDP), and solve it using general-
purpose SDP solvers. The interior-point algorithms imple-
mented in these solvers have a complexity of O(p4) per
iteration, if we assume that the complexity is dominated by
the cost of handling the constraint (2) (i.e., ignoring the cost
of handling the constraints that represent the epigraph of f ).
The special-purpose interior-point algorithms developed in
[5], [12], [13] reduce the complexity to O(p3) per iteration.
First-order proximal algorithms such as the proximal gradient
algorithm [14], [15] or the alternating direction method of
multipliers (ADMM) [16] offer no immediate improvement
over the O(p3) per-iteration-complexity of the customized
interior-point methods, since they require at each iteration a
Euclidean projection on the positive semidefinite cone (i.e.,
an eigenvalue decomposition of order p + 1) and, moreover,
converge more slowly than interior-point methods.

The purpose of this paper is to describe faster first-order
methods, with a complexity of roughly O(p2) or O(p(log p)2)
operations per iteration. The algorithms are based on general-
ized proximal operators defined in terms of the Itakura–Saito
distance

d(x, v) =
1

2π

∫ 2π

0

(
Fx(ejω)

Fv(ejω)
− log

Fx(ejω)

Fv(ejω)
− 1) dω, (4)

with domain dom d = (K \{0})× (intK). The Itakura–Saito
distance is the Bregman distance associated with the negative
entropy function

φ(x) = − 1

2π

∫ 2π

0

logFx(ejω) dω. (5)

We present an efficient method for computing a generalized
projection x = Π(a, v), defined as the solution of the problem

minimize 〈a, x〉+ d(x, v)
subject to x0 = 1

(6)

for an arbitrary (p + 1)-vector a and a vector v ∈ intK. If
we interpret Fx(ejω) as a power spectrum, then the constraint
x0 = 1 normalizes the total power

x0 =
1

2π

∫ 2π

0

Fx(ejω)dω. (7)

Our method for (6) reduces the problem to a nonlinear
equation in one variable (equivalently, an unconstrained dif-
ferentiable convex optimization problem in one variable) that
can be solved using Newton’s method. Each Newton iteration
requires the solution of a positive definite Toeplitz equation,
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which takes O(p2) operations using Levinson’s algorithm, or
O(p(log p)2) operations using superfast Toeplitz solvers. Since
the number of Newton steps is small and weakly dependent
on problem size, we conclude that the complexity of solving
problem (6) is roughly O(p2) or O(p(log p)2).

The Itakura–Saito projection operation (6) should be com-
pared with the Euclidean projection of the vector v−a on the
set {x ∈ K | x0 = 1}, i.e., the solution of

minimize 〈a, x〉+ 1
2‖x− v‖

2

subject to x ∈ K, x0 = 1
(8)

where ‖u‖2 = 〈u, u〉. This is a non-trivial convex optimization
problem and more expensive to solve than (6) (indeed, it is
an example of the general problem of minimizing a convex
function f(x) over K that we discuss in this paper); see [3],
[6].

To test the effectiveness of the entropic projection operator,
we use it in an accelerated proximal gradient method [17],
[18] for optimization problems of the form

minimize f(x)
subject to x ∈ K, x0 = 1,

(9)

where f is a differentiable convex function. The entropic
projection operator can be used in other types of first-order
methods for Bregman distances as well, that solve (9) under
weaker conditions on f , for example, mirror descent [19] or
the primal-dual method of [20].

The generalized projection can be further extended to define
generalized proximal operators, which map vectors a and v to
the solution of

minimize 〈a, x〉+ g(x0) +
1

t
d(x, v) (10)

where g is a possibly nondifferentiable convex function of one
variable and t > 0. This is useful for optimization problems

minimize f(x) + g(x0)
subject to x ∈ K, (11)

with differentiable f . The second term in the cost function
assigns a cost to the total power (7).

The rest of the paper is organized as follows. In Sec-
tion II we discuss the negative entropy function (5) and its
conjugate. The main results of the paper are in Section III,
where we discuss the associated Bregman distance (4) and
present the algorithm for the Itakura–Saito projection (6).
Section IV contains numerical examples with a generalized
proximal gradient method based on the Itakura–Saito distance.
The two appendices contain important background material.
In Appendix A we review algorithms from statistical signal
processing and numerical linear algebra related to positive
definite Toeplitz systems and the Jury stability test. These
topics, and the connections between them, are important
for the duality theory in Section II and the fast projection
algorithm in Section III. Appendix B gives more details and
a proof of convergence for the generalized proximal gradient
method used in the numerical experiments.

II. ENTROPY

The purpose of this section is to state the properties of the
negative entropy function (5) that will be important for our
main results in Section III.

We first introduce some notation. Throughout the paper we
use the inner product

〈x, y〉 = x0y0 + 2x1y1 + · · ·+ 2xpyp (12)

=
1

2π

∫ 2π

0

Fx(ejω)Fy(ejω) dω,

on Rp+1. The adjoint of the linear mapping D defined in (3),
for this inner product on Rp+1 and the trace inner product
on Sp+1, is the function T : Rp+1 → Sp+1 that maps
y = (y0, y1, . . . , yp) to the symmetric Toeplitz matrix with
first column y:

T (y) =


y0 y1 · · · yp
y1 y0 · · · yp−1
...

...
. . .

...
yp yp−1 · · · y0

 . (13)

We also denote by J (b), where b = (b0, b1, . . . , bp), the matrix
with elements

J (b) =


b0/2 0 · · · 0 0
b1/2 b0 · · · 0 0
...

...
. . .

...
...

bp−1/2 bp−2 · · · b0 0
bp/2 bp−1 · · · b1 b0



+


b0/2 b1 · · · bp−1 bp
b1/2 b2 · · · bp 0
...

... . .
. ...

...
bp−1/2 bp · · · 0 0
bp/2 0 · · · 0 0

 . (14)

This matrix is known as the Jury matrix [21]. Note that
T (y)b = J (b)y for all y and b.

Appendix A discusses factorization algorithms for positive
definite Toeplitz matrices and nonsingular Jury matrices. These
results may be summarized as follows. First, suppose T (y) is
positive definite, and let b = (b0, . . . , bp) be the solution of
the linear equation

T (y)b = e, (15)

where e = (1, 0, . . . , 0). Then the polynomial b0zp+b1z
p−1+

· · ·+ bp is stable (has all its zeros inside the unit circle). The
classical algorithm for solving this equation is the Levinson–
Durbin algorithm, which computes a factorization

UT (y)UT = diag(σ2
p, . . . , σ

2
0), (16)

where 0 < σp ≤ · · · ≤ σ0 and

U =


1 ap1 ap2 · · · app
0 1 ap−1,1 · · · ap−1,p−1
0 0 1 · · · ap−2,p−2
...

...
...

. . .
...

0 0 0 · · · 1

 . (17)
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(For future reference, we also mention that the factoriza-
tion (16) still exists if T (y) is positive semidefinite, but not
positive definite, if one extends the factorization to allow
0 = σp ≤ · · · ≤ σ0.) The complexity of the Levinson–Durbin
algorithm is order p2 operations.

The first column of the equation T (y)UT =
U−1 diag(σ2

p, . . . , σ
2
0) is the Yule–Walker equation

y0 y1 · · · yp
y1 y0 · · · yp−1
...

...
. . .

...
yp yp−1 · · · y0




1
ap1
...
app

 =


σ2
p

0
...
0

 . (18)

The Levinson–Durbin algorithm can be used to solve the Yule–
Walker equation (i.e., find ap1, . . . , app, σ2

p, given y) in O(p2)
operations. Several more recent algorithms for positive definite
Toeplitz systems are even faster, with an order p(log p)2 or
p(log p)3 complexity [22], [23].

Second, suppose the polynomial B(z) = b0z
p + b1z

p−1 +
· · · + bp is stable. Then the Jury matrix J (b) is nonsingular,
and the unique solution y of the equation

J (b)y = e (19)

defines a positive definite Toeplitz matrix T (y). This equation
can be solved by a recursive algorithm that is essentially the
Jury stability test applied to B(z). The algorithm computes a
factorization of J (b) and can be interpreted as a backward
Levinson–Durbin algorithm.

A. Dual cone and conjugate entropy

Recall the definition of the cone of nonnegative trigonomet-
ric polynomials in (1) and its semidefinite characterization (2).
The dual cone K∗ = {y | 〈y, x〉 ≥ 0 ∀x ∈ K} is the cone of
positive semidefinite Toeplitz matrices

K∗ = {y | T (y) � 0}. (20)

In the following sections we discuss two related convex
functions, associated with the cones K and K∗. The first
function is the negative entropy

φ(x) = − 1

2π

∫ 2π

0

logFx(ejω)dω, (21)

with domain domφ = K \ {0}. In Section III this function
will be used as the kernel to define a Bregman distance.

The second function is

ψ(y) = log(eTT (y)−1e) (22)

with domain domψ = intK∗. (Recall that e = (1, 0, . . . , 0),
so eTT (y)−1e = (T (y)−1)00.) The function ψ can be
evaluated by solving the Yule–Walker equation (18) with
coefficient matrix T (y), since eTT (y)−1e = 1/σ2

p. Another
useful expression for ψ is

ψ(y) = − log(y0 − ỹT T̃ (y)−1ỹ) (23)

where we refer to a partition of T (y) as

T (y) =


y0 y1 · · · yp
y1 y0 · · · yp−1
...

...
. . .

...
yp yp−1 · · · y0

 =

[
y0 ỹT

ỹ T̃ (y)

]
.

The expression in (23) shows that ψ is a convex function,
since the argument of the logarithm is concave in y.

We will see that the two functions form a pair of conjugates,
up to a change of sign and a constant:

φ∗(y) = ψ(−y)− 1, ψ∗(x) = φ(−x)− 1. (24)

Discussions of the duality relations between the two functions
and their importance in signal processing can be found in [24],
[25].

B. Semidefinite representations

To derive the duality between functions φ(x) and ψ(y), it
will be useful to express the two functions as optimal values
of convex optimization problems.

We first consider the negative entropy function φ. If x ∈
K \ {0}, then Fx(z) has a spectral factorization

Fx(z) = B∗(z)B(z) (25)

where B(z) = b0 + b1z
−1 + · · ·+ bpz

−p and B∗(z) = B(1/z),
with real coefficients b0, . . . , bp and b0 > 0. The factor B(z)
can be chosen to have all its zeros on or inside the unit circle
(B(z) 6= 0 for |z| > 1). If x ∈ intK, then B(z) can be chosen
to have its zeros inside the unit circle. This choice of B(z) is
known as the minimum-phase spectral factor and is unique.
From the minimum-phase spectral factors we immediately
obtain the value of the negative entropy function:

φ(x) = −2 log b0. (26)

The minimum-phase spectral factorization of positive
trigonometric polynomials is efficiently computed by the cep-
stral method, described in [26, appendix D] [27, §5.4], or
by the Newton method proposed by Tunnicliffe Wilson [28].
Tunnicliffe Wilson’s method finds the coefficients b in the
spectral factorization (25) by solving the equivalent set of
quadratic equations D(bbT ) = x via Newton’s method.

It is also known that spectral factorization problems can
be formulated as semidefinite programming problems with
low-rank solutions. Replacing bbT with a positive semidefinite
matrix X ∈ Sp+1 gives a convex relaxation

D(X) = x, X � 0.

The feasible solution X with maximum element X00 = eTXe
can be shown to be equal to X = bbT , where b is the vector
of coefficients of the minimum-phase spectral factor; see [29]
[30, theorem 6.6] [6, theorem 2.15]. If we combine this fact
with the expression (26), we see that the negative entropy φ(x)
is the optimal value of the convex optimization problem

minimize − log(eTXe)
subject to D(X) = x, X � 0

(27)
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in the variable X , as a function of the right-hand side x of
the equality constraint.

Convex duality then gives another expression for φ(x). A
convenient dual for (27) can be derived starting from the
reformulation

minimize − log v
subject to eTXe = v

D(X) = x, X � 0,
(28)

with an extra scalar variable v. The Lagrange dual is

maximize logw − 〈x, y〉+ 1
subject to weeT � T (y),

(29)

with a scalar variable w and a vector variable y. These vari-
ables are the Lagrange multipliers for the equality constraints
in (28). Since strong duality holds (the dual problem is strictly
feasible), φ(x) is also equal to the optimal value of (29).

The dual problem (29) can be further simplified by elimi-
nating w. Dual feasibility requires the Toeplitz matrix T (y) to
be positive semidefinite. It therefore has a factorization (16),
and the inequality in the dual problem can be written as

diag(σ2
p, . . . , σ

2
0) = UT (y)UT � w(Ue)(Ue)T = weeT .

If T (y) is singular, we have σ2
p = 0 and there exists no

solution with positive w, so the problem is infeasible. If
T (y) is nonsingular, we have 0 < σ2

p ≤ · · · ≤ σ2
0 , so

w = σ2
p = 1/(eTT (y)−1e) at the optimum. The result of this

elimination step is an unconstrained optimization problem in
the variable y:

maximize −ψ(y)− 〈x, y〉+ 1. (30)

The optimal value of this problem is again equal to φ(x).
Using similar arguments, we derive semidefinite program-

ming representations of ψ(y). If T (y) is positive definite, then
ψ(y) is the optimal value of the problem

minimize − logw
subject to weeT � T (y),

(31)

with variable w. The dual of this problem is

maximize log(eTXe)− 〈D(X), y〉+ 1
subject to X � 0,

(32)

with a symmetric variable X . Since φ(x) is the optimal value
of (27), the dual can be written as

maximize −φ(x)− 〈x, y〉+ 1, (33)

with variable x. By strong duality, the optimal values of (32)
and (33) are also equal to ψ(y).

C. Gradients

We have seen how φ(x) can be evaluated via spectral
factorization, and ψ(y) by solving a Yule–Walker equation.
We now discuss algorithms for computing the gradients of the
two functions.

Suppose x ∈ intK = int domφ. The optimal value of (27)
and of the dual problem (29) is φ(x). From convex duality

theory, if the dual has a unique optimal solution y, then the
optimal value is differentiable and

∇φ(x) = −y.

The techniques described in Appendix A allow us to construct
the unique dual optimal solution y from the primal optimal
solution, as follows. A primal feasible X and dual feasible y,
w are optimal for (27) and (29) if they satisfy

w = X−100 , (T (y)− weeT )X = 0 (34)

(see [31, chapter 5]). The second equality is known as com-
plementary slackness. Now let b be the vector of coefficients
of the minimum-phase spectral factor, so X = bbT is optimal
for (27). Then, from (34) the dual optimal solution w, y sat-
isfies w = 1/b20 and J (b)y = T (y)b = (1/b0)e. The solution
y can be computed using Algorithm A.2 and the factorization
of J (b) given in (65). Algorithm A.2 thus provides an O(p2)
algorithm for computing the gradient of φ at a point x ∈ intK,
from its spectral factor.

The function ψ is clearly differentiable, with gradient

∇ψ(y) = − 1

eTT (y)−1e
D(T (y)−1eeTT (y)−1). (35)

The gradient is easily obtained from the solution of the Yule–
Walker equation (18). If we define a = (1, ap1, . . . , app), then
∇ψ(y) = −(1/σ2

p)D(aaT ).

D. Legendre property

We have shown that φ(x) is the optimal value of (30):

φ(x) = sup
y

(−〈x, y〉 − ψ(y)) + 1 = ψ∗(−x) + 1. (36)

This is the second of the conjugacy relations (24). Similarly,
from the fact that ψ(y) is the optimal value of (33) we
conclude that

ψ(y) = sup
x

(−〈x, y〉 − φ(x)) + 1 = φ∗(−y) + 1. (37)

This gives the first identity in (24). The relation (37) can also
be obtained directly from (36) by noting that ψ is a closed
convex function (closed because its domain is open, and its
value ψ(y) tends to infinity as y approaches the boundary of
its domain and σp → 0). Therefore ψ∗∗ = ψ [32, theorem
12.2], and the identity φ∗(y) = ψ(−y)− 1 follows by taking
the conjugates of the two sides of (36).

In addition to being closed, convex, and differentiable on
an open domain intK∗, the function ψ is strictly convex. It is
therefore a convex function of Legendre type [32, p.258]. By
[32, theorem 26.5] the pair (intK,φ) is also of Legendre type,
and the gradient ∇ψ is a one-to-one mapping from intK∗ to
− intK, with inverse

(∇ψ)−1(x) = −∇φ(−x). (38)

Algorithms A.1 and A.2 give efficient algorithms for evalu-
ating the two gradient mappings. Even though the function
φ is finite on the boundary of K (except at the origin), it
is essentially smooth, i.e., ‖∇φ(x)‖ grows unboundedly as x
approaches the boundary [32, p.251].
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III. ENTROPIC PROXIMAL OPERATORS

Proximal algorithms, such as the projected and proximal
gradient methods and their accelerated variants [14], [33], the
Douglas–Rachford method and alternating direction method
of multipliers [16], [34], or Dykstra’s sequential projection
method [35], depend on efficient methods for evaluating the
proximal operators of cost functions. The proximal operator
of a convex function g is the mapping

proxg(u) = argmin
x

(g(x) +
1

2
‖x− u‖22), (39)

where ‖·‖2 is the Euclidean norm. If g is the indicator function
of a set, this is the Euclidean projection of u on the set.
Useful extensions of the proximal methods are obtained by
replacing the squared Euclidean distance in the definition by a
generalized Bregman distance function, in the hope of making
the generalized proximal operators or projections easier to
compute.

Let h : Rn → R be a closed strictly convex function
with int (domh) 6= ∅, and assume h is differentiable on
int (domh). The Bregman distance with kernel h is the
function

dh(x, v) = h(x)− h(v)− 〈∇h(v), x− v〉, (40)

with domain dom dh = domh × int (domh). For example,
the squared Euclidean distance dh(x, v) = (1/2)‖x − v‖22 is
the Bregman distance for h(x) = (1/2)‖x‖22 and the standard
inner product 〈u, v〉 = uT v. The best known non-quadratic
example is the relative entropy

dh(x, v) =

n∑
i=1

(xi log (xi/vi)− xi + vi), (41)

which is the Bregman distance for the negative entropy func-
tion h(x) =

∑
i xi log xi and the standard inner product.

From the definition (40) it is clear that dh is convex in x
for fixed v. By convexity of h, we also have dh(x, v) ≥ 0 for
all (x, v) ∈ dom dh. Strict convexity of h further implies that
dh(x, v) = 0 only if x = v. However, dh(x, v) 6= dh(v, x) in
general, so dh(x, v) is not a true distance.

There is an extensive literature on optimization methods
that use Bregman distances (see, for example, the book [36]),
and the properties that the generalized distance function must
satisfy depend on the algorithm in which they are applied
[37]. In the numerical experiments of the next section we
will apply one specific algorithm, Auslender and Teboulle’s
generalization of an accelerated proximal gradient method due
to Nesterov [17], [18]. The generalized proximal operator used
in this method is defined as

proxhg (a, v) = argmin
x

(〈a, x〉+ g(x) + dh(x, v)), (42)

where dh is a Bregman distance (40). On the right-hand side
of (42), the vectors a and v are given, with v ∈ int (domh).
The variable in the minimization problem is x and the feasible
set is dom g ∩ domh. This is a generalization of (39): if
dh(x, v) = (1/2)‖x−v‖22 and 〈a, x〉 = aTx, then the solution
of (42) is proxg(v − a).

Optimization algorithms that use the generalized proxi-
mal operator (42) require that for every a and every v ∈
int (domh), the minimizer in (42) is a unique and easily
computed point x̂ ∈ int (domh). (It must be in the interior
because later in the algorithm it will be used as the sec-
ond argument in another evaluation of (42).) The classical
example is the indicator g(x) = δC(x) of the hyperplane
C = {x | 1Tx = 1}, and the relative entropy function (41).
With this choice of g and dh, the solution of the optimization
problem in (42) is

x̂i =
vie
−ai∑n

j=1 vje
−aj

, i = 1, . . . , n.

Sufficient conditions that guarantee existence in int (domh)
and uniqueness of the solution of (42) are discussed in papers
on generalized distances (for example, [19], [37]).

In the following sections we consider the generalized prox-
imal operator (42) defined by the Itakura–Saito distance (43)
and the inner product (12).

A. Itakura–Saito and Kullback–Leibler distance

The Bregman distance dφ for the negative entropy ker-
nel (21) and the inner product (12) is called the Itakura–Saito
distance. To simplify notation we omit the subscript in dφ,
and define

d(x, v) = φ(x)− φ(v)− 〈∇φ(v), x− v〉 (43)

=
1

2π

∫ 2π

0

(
Fx(ejω)

Fv(ejω)
− log

Fx(ejω)

Fv(ejω)
− 1) dω.

The domain of d is (K \ {0}) × (intK). The Itakura–Saito
distance was first proposed and has been studied extensively in
speech processing [38], [39]. For surveys of the Itakura–Saito
and other spectral distance measures, see [40]–[42].

As we will see below, the Legendre property of the kernel
function φ guarantees that the Itakura–Saito generalized proxi-
mal operators yield points in the interior of K. This makes the
Itakura–Saito distance well suited for the proximal methods
discussed in Section IV, and forms a key difference with the
better known Kullback–Leibler divergence,

1

2π

∫ 2π

0

(Fx(ejω) log
Fx(ejω)

Fv(ejω)
− Fx(ejω) + Fv(e

jω))dω.

The Kullback–Leibler divergence is also a Bregman distance,
namely for the kernel function

φ̃(x) =
1

2π

∫ 2π

0

Fx(ejω) logFx(ejω)dω. (44)

However, the function φ̃ is not essentially smooth, i.e., its
gradient does not necessarily go to infinity as x approaches
the boundary of K. Figure 1 illustrates the different behavior
of φ and φ̃ near the boundary of K.

B. Strong convexity

Another important property of the Itakura–Saito distance,
required for its use in generalized proximal gradient methods,
follows from the strong convexity of the negative entropy
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Fig. 1. Top. Contour lines of the function φ(1, x1, x2), defined in (21), on
the set {(x1, x2) | (1, x1, x2) ∈ K}. Bottom. Contour lines of the function
φ̃(1, x1, x2) defined in (44). Both functions are finite on the boundary.

function φ(x) when restricted to a bounded set. We define
the norm

‖x‖1 =
1

2π

∫ 2π

0

|Fx(ejω)|dω.

With respect to this norm the function φ is 1-strongly convex
on the set {x | ‖x‖ ≤ 1} where ‖x‖ = 〈x, x〉1/2. In other
words,

d(x, v) ≥ 1

2
‖x− v‖21 (45)

for all (x, v) ∈ dom d with ‖x‖ ≤ 1 and ‖v‖ ≤ 1. To see
this, we consider v ∈ intK and x ∈ K \ {0}, and define
s(t) = φ(v + tw) with w = x− v. The second derivative is

s′′(t) =
1

2π

∫ 2π

0

Fw(ejω)2

Fv+tw(ejω)2
dω

≥
(

1

2π

∫ 2π

0

Fw(ejω)2

Fv+tw(ejω)2
dω

)
‖v + tw‖2

≥ ‖w‖21.

The first inequality follows from ‖v+tw‖ ≤ 1, and the second
inequality from the Cauchy–Schwarz inequality. Integrating
the inequality s′′(t) ≥ ‖w‖21 twice gives (45). More generally,

d(x, v) ≥ (σ/2)‖x − v‖21 when ‖x‖ ≤ 1/
√
σ and ‖v‖ ≤

1/
√
σ.

C. Projection

We first take for g in (42) the indicator function of {x |
x0 = 1} and denote the generalized proximal operator by

Π(a, v) = argmin
x0=1

(〈a, x〉+ d(x, v)) (46)

To simplify notation we define c = a−∇φ(v) and write the
minimization problem in the definition as

minimize 〈c, x〉+ φ(x)
subject to x0 = 1.

(47)

The feasible set is a compact set {x ∈ K | x0 = 1}. Since φ
is strictly convex and essentially smooth, the problem has a
unique solution in intK, for every c. The optimality conditions
for the projection problem are

∇φ(x) = −c− λe, 〈e, x〉 = 1.

The variable λ is a Lagrange multiplier for the equality
constraint in (47). The unknown x can be eliminated from
the first equation, using the inverse gradient mapping in (38).
Substituting x = −∇ψ(c + λe) in the second equation gives
a nonlinear equation

〈e,∇ψ(c+ λe)〉+ 1 = 0.

More explicitly, in view of (35), λ is the root of the equation

−e
T (T (c) + λI)−2e

eT (T (c) + λI)−1e
+ 1 = 0 (48)

in the interval (−λmin(T (c)),∞). After solving the nonlinear
equation for λ, we compute the solution of the Yule–Walker
equation with coefficient matrix T (c)+λI , and obtain x from
the expression (35).

Solving (48) is equivalent to solving the dual of prob-
lem (47), which is given by

maximize −φ∗(−c− λe)− λ = −ψ(c+ λe)− λ+ 1.

As we have seen, the negative of the cost function

h(λ) = ψ(c+ λe) + λ− 1

= log(eT (T (c) + λI)−1e) + λ− 1

is strictly convex and differentiable on the interval
(−λmin(T (c)),∞). It increases to ∞ as λ → −λmin(T (c))
and as λ → ∞. The optimal λ can therefore be found by
setting the derivative of h to zero. This gives equation (48).

To solve the nonlinear equation (48), one can minimize
h(λ) by Newton’s method with a backtracking line search,
or use a safeguarded Newton method. To check whether λ >
−λmin(T (c)), one can use the Levinson–Durbin algorithm A.1
and terminate the recursion early, as soon as a reflection
coefficient with |κk| ≥ 1 is found.

A starting value λ > −λmin(T (c)) is easily found by
embedding T (c) in a symmetric circulant matrix. The smallest
eigenvalue of the circulant matrix is a lower bound on the
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smallest eigenvalue of T (c) and can be computed by the
discrete Fourier transform.

The derivative h′(λ) is the left-hand side of (48). The second
derivative is

− (eT (T (c) + λI)−2e)2

(eT (T (c) + λI)−1e)2
+ 2

eT (T (c) + λI)−3e

eT (T (c) + λI)−1e
.

The value of h(λ) and its derivatives follow from the solution
of linear equations with coefficient matrix T (c) + λI . They
can be computed in order p2 operations by the Levinson–
Durbin algorithm, or in order p(log p)2 operations by superfast
algorithms for positive definite Toeplitz systems.

Let λ? be the solution of (48). The derivative h′(λ)
increases monotonically from −∞ to zero on the interval
(−λmin(T (c)), λ?] and from zero to one on the interval
[λ?,∞). When started at a point λ(0) ∈ (−λmin(T (c)), λ?),
Newton’s method with unit steps produces an increasing
sequence of values that converges to λ? from the left. When
started at a point λ(0) ∈ (λ?,∞), the Newton update may be
infeasible, and backtracking or bisection steps can be taken to
find a point in (−λmin(T (c)), λ(0)).

In practice, a small number of Newton iterations (on the
order of 10) is sufficient, almost independent of problem size.
The cost of the projection algorithm is therefore a small
multiple of the cost of solving a positive definite Toeplitz
system.

D. Proximal operator

The method of the previous section can be extended to
generalized proximal operators (42) where g(x) has the form
g(x) = g̃(x0), with g̃ a convex function of one variable. The
generalized proximal operator maps vectors a ∈ Rp+1 and
v ∈ intK to the vector

argmin
x

(〈a, x〉+ g̃(x0) + d(x, v)). (49)

The projection operator discussed in Section III-C is a special
case with g̃ the indicator function of {1}. Other interesting
choices are the indicator function of [0, 1] and g̃(t) = t2 on
t ≥ 0. This generalized proximal operator arises, for example,
in proximal gradient algorithms for problems

minimize f(x) + g̃(x0)
subject to x ∈ K,

with convex differentiable f .
We will assume that limt→∞ g̃(t)/t = ∞ and, without

loss of generality, that dom g̃ ⊆ R+. This implies that the
conjugate g̃∗(λ) is defined for all λ [32, corollary 13.3.1]. If
we introduce an auxiliary variable u and define c = a−∇φ(v),
the minimization in the definition (49) is

minimize 〈c, x〉+ g̃(u) + φ(x)
subject to 〈e, x〉 = u.

The Lagrange dual of this problem is

maximize − ψ(c+ λe)− g̃∗(λ) + 1.

If g̃∗ is simple, as in the examples mentioned above, this
optimization problem with one variable can be solved by
modifying the methods described in Section III-C.

IV. NUMERICAL EXPERIMENTS

In this section we use the generalized projection Π(a, v) in
an accelerated proximal gradient method for solving convex
problems of the form

minimize f(x)
subject to x ∈ K, x0 = 1,

(50)

where f is convex and differentiable. The algorithm is IGA
(Improved Interior Gradient Algorithm) from [17], and is
also discussed in [18, Algorithm 1]. It is an extension to
non-Euclidean projections of an accelerated proximal gradient
algorithm by Nesterov. The algorithm generates three strictly
feasible sequences vk, xk, yk, using the following recursion
started at a strictly feasible v0 = x0:

yk = (1− θk)xk−1 + θkv
k−1 (51a)

vk = Π(τk∇f(yk), vk−1) (51b)
xk = (1− θk)xk−1 + θkv

k. (51c)

Appendix B gives more details, including strategies for choos-
ing the parameters θk ∈ (0, 1) and τk > 0. (In the experiments
we used the monotonic search strategy.)

A. Covariance estimation

As a first example, we consider a variation of the line
spectrum estimation example in [43, §5.1]. We estimate the
parameters in a signal model

s(t) =

ρ∑
k=1

cke
jωkt + w(t), (52)

where w(t) is white noise with variance σ2. Under standard
assumptions [44, §4.1] the covariance matrix of s(t) of order
p+ 1 is given by

R = σ2I +

ρ∑
k=1

|ck|2


1
ejωk

...
ejpωk




1
ejωk

...
ejpωk


H

, (53)

i.e., a positive multiple of the identity plus a rank-ρ positive
semidefinite Toeplitz matrix. If the line spectrum has Hermi-
tian symmetry, the signal is real and the covariance matrix is
symmetric. To fit a covariance matrix R = T (r) to observed
data, we introduce variables t = σ2 and y = r− te, and solve
a convex problem

minimize y0 + γf̃(y + te)
subject to y ∈ K∗. (54)

The second term in the objective measures the quality of the fit
of the matrix T (y)+tI = T (y+te) to the observed data. The
first term in the objective is a multiple of the trace of T (y) and
is added to encourage low-rank solutions. The coefficient γ is
a positive regularization parameter. The dual of this problem
can be written as

maximize −γf̃∗((x− e)/γ)
subject to x ∈ K, x0 = 1,

(55)
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Fig. 3. True and estimated line spectrum (red circles and blue stem lines,
respectively) and dual optimal polynomial Fx(ejω) (solid line).

where f̃∗ is the conjugate of f̃ . If f̃∗ is differentiable, this is
of the form (50) with f(x) = γf̃∗((x− e)/γ).

In the example we take a quadratic penalty function f̃(r) =
‖T (r)−Rs‖2F , where Rs is a sample covariance matrix. With
this choice, f̃∗ is quadratic. The sample covariance matrix
is constructed from N = 150 samples of a time series s(t)
of the form (52), shown in Figure 2. We take ρ = 4, and
the frequencies ωk and magnitudes |ck| indicated with red
circles in Figure 3. The noise is Gaussian white noise with
variance σ2 = 64. The sample covariance matrix of order
p+1 = 30 is constructed as Rs = HHT /(N−p) where H is
the (p+ 1)× (N − p) Hankel matrix with s(1), . . . , s(N − p)
in its first row.

Figure 3 shows the result for γ = 2 · 10−4. As can be seen,
the recovered spectrum is quite accurate. The estimated noise
variance σ2 is 77.2.

Figure 4 shows the error versus iteration number, for the
algorithms started at x0 = e. The relative optimality gap is
computed as (f(xk) − fopt)/|fopt|, where f(x) denotes the
negative of the dual objective value in (55) and fopt is the
optimal value computed by CVX [45]. The error decreases
roughly as 1/k2.
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Fig. 4. Convergence of the generalized proximal gradient method applied
to (55).

B. Euclidean projection on nonnegative polynomials

To evaluate the complexity for large p, we test the gen-
eralized proximal gradient method on a family of test prob-
lems (50) with f(x) =

∑p
k=1(xk − ak)2. This problem arises

in signal processing, as the problem of finding the normalized
autocorrelation sequence closest to a given sequence [3], [6].

The experiment was performed on an Intel Core i5-2410M
2.30GHz CPU with 6GB RAM and 64-bit operating system,
using MATLAB version 7.12 (R2011a). The initial stepsize is
τ0 = 10/p. The monotone search strategy in Appendix B (with
β = 2) is used. In most problems less than five search steps
during the first few iterations of the algorithm were needed.

In Figure 5 we compare the complexity of the generalized
proximal gradient method (51) with general-purpose interior-
point solvers called via CVX. The problem instances are
randomly generated, with a from the normal distribution
N(0, I). For the first three data points (p+1 = 200, 400, 800),
SDPT3 [46] was used as the interior-point method. Each
of these data points is an average over 10 instances. For
p + 1 = 1000 and higher, SeDuMi [47] with the low-
precision option was used. The first three of these data points
are averages over five instances. For p + 1 = 2000, only
one instance was used. The blue curve is the total time
for the proximal gradient method, averaged over the same
instances as the interior-point solvers. The iteration was started
at x0 = e and terminated when the relative suboptimality
was less than 10−4. The CVX solution was used to evaluate
the suboptimality. The number of iterations for the interior-
point solvers was generally between 10 and 30, and for the
proximal gradient method between 100 and 200. On average
about 10 Newton iterations were sufficient to evaluate the
generalized projections. From Figure 5, it can be observed
that the proximal gradient method exhibits a complexity under
O(p2), whereas the SDP solvers have a complexity close to
O(p4).

In Figure 6 we show results for larger problems of size
up to 8000. Each data point is an average over five in-
stances, and the iteration was terminated when the relative
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Fig. 5. Top. Time for proximal gradient method and general-purpose interior-
point methods (IPM) versus problem size. Bottom. Time per iteration for the
proximal gradient method.

improvement in the cost function, defined as |mini<k f(xi)−
f(xk)|/mini≤k f(xi), was below 10−6.

V. CONCLUSION

We discussed a generalized proximal operator for the
cone of nonnegative trigonometric polynomials, based on the
Itakura–Saito distance. Projections in this distance have a
complexity that is roughly quadratic in the degree of the
polynomial. Proximal algorithms based on the generalized
distance therefore scale better than standard (Euclidean) proxi-
mal algorithms, which require eigenvalue decompositions, and
interior-point methods, which have a complexity that is cubic
or higher.

In the experiments we used the accelerated proximal gra-
dient method (IGA) from [17], which applies to problems
in the form (50) with a differentiable convex objective f .
For problems with additional constraints or nondifferentiable
cost functions, the first-order methods in [19], [20], [48], [49]
are interesting alternatives that can be implemented with the
entropic proximal operators introduced in this paper.
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Fig. 6. Time for the proximal gradient method versus problem size.

APPENDIX A
FORWARD AND BACKWARD LEVINSON–DURBIN

ALGORITHM

In this appendix we review some results and algorithms
from statistical signal processing. More details on these al-
gorithms may be found in textbooks on statistical signal
processing, for example, [50, chapter 10] or [51, chapter 11].

A. Levinson–Durbin algorithm

The Levinson–Durbin algorithm [52, §4.7] is a fast al-
gorithm for the Cholesky factorization of the inverse of a
positive definite Toeplitz matrix T (y), given its first column
y = (y0, . . . , yp). The computed factorization is

UT (y)UT = diag(σ2
p, . . . , σ

2
0), (56)

where 0 < σp ≤ · · · ≤ σ0 and U is the triangular
matrix (17). For theoretical purposes, it is useful to note that
the algorithm can be extended to Toeplitz matrices that are
positive semidefinite, but not positive definite. In that case
we can still compute a factorization of the form (56), where
0 ≤ σp ≤ · · · ≤ σ0.
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Algorithm A.1. Levinson–Durbin algorithm.
Input. The coefficients y0, . . . , yp of a Toeplitz matrix
T (y).

Output. If T (y) is positive semidefinite, a matrix U
and coefficients σ0, . . . , σp that satisfy (56), (17),
and 0 ≤ σp ≤ · · · ≤ σ0.

Algorithm. Define σ0 =
√
y0. For k = 0, . . . , p − 1,

execute the following steps.
• If σk = 0, set κk = 0. Otherwise, define

κk = −yk+1 + ykak1 + · · ·+ y1akk
σ2
k

. (57)

• If |κk| > 1, terminate. The matrix T (y) is not
positive semidefinite.

• Compute σk+1 = σk(1− κ2k)1/2 and
ak+1,1

...
ak+1,k

ak+1,k+1

 =


ak1 akk
...

...
akk ak1
0 1


[

1
κk

]
. (58)

The algorithm has complexity O(p2).
The update (58) can be written concisely using polynomial

notation, if we define polynomials A0(z) = 1,

Ak(z) = zk + ak1z
k−1 + · · ·+ ak,k−1z + akk, (59)

for k = 1, . . . , p, and the reversed polynomials Âk(z) =
zkAk(1/z) = akkz

k + · · · + ak1z + 1. With this notation,
the update (58) can be written[

Ak+1(z)

Âk+1(z)

]
=

[
1 κk
κk 1

] [
zAk(z)

Âk(z)

]
, (60)

starting at A0(z) = 1. Another useful form is in terms of the
(p+ 1)-vectors

a(k) = (1, ak1, . . . , akk, 0, . . . , 0). (61)

The recursion (58) is a linear transformation

a(k+1) = Hka
(k), (62)

where
Hk =

[
Ik+2 + κkJk+2 0

0 Ip−k−1

]
(63)

and Jr is the r × r identity with its columns reversed.
We mention two properties of the factorization (56) that

are used in the paper. The Levinson–Durbin algorithm solves
the Yule–Walker equation (18) (i.e., computes ap1, . . . , app,
σ2
p, given y) in O(p2) operations. The solution is unique if

the p × p Toeplitz matrix with first column y0, . . . , yp−1 is
positive definite. If T (y) is positive definite, then σ2

p 6= 0, and
b = σ−2p (1, ap1, . . . , app) is the solution of (15).

Second, if T (y) is positive definite, then the polynomials
Ak(z) defined in (59) are stable. In particular, the polynomial

b0z
p + b1z

p−1 + · · ·+ bp = Ap(z)/σ2
p

is stable. To show this, one can note that if Ak(z) is a stable
polynomial, then |Ak(z)| ≥ |Âk(z)| holds for |z| ≥ 1. (This
is easily seen from the fact that |z−a|/|1− āz| ≥ 1 if |a| < 1

and |z| ≥ 1.) Therefore, if Ak(z) is stable and |κk| < 1,
then Ak+1(z) defined in (60) is nonzero for |z| ≥ 1. Since
A0(z) = 1, stability of the polynomials Ak(z) follows by
induction.

B. Jury stability test

In this section we discuss an algorithm that can be seen as
the Levinson–Durbin algorithm run backwards. The algorithm
is equivalent to the Jury test for determining the stability of a
real polynomial. The connection between the Jury test and the
Levinson–Durbin algorithm was made by Vieira and Kailath
[53]. In the next section we will see that the algorithm also
computes a factorization of the Jury matrix defined in (14).

We use the same notation (17) as before.

Algorithm A.2. Jury stability test.
Input. The coefficients b0, . . . , bp of a polynomial
B(z) = b0z

p + · · ·+ bp, with b0 > 0.
Output. If B(z) is stable, a unit upper triangular matrix
U with first row (b0, . . . , bp)/b0 and coefficients 0 <
σp ≤ · · · ≤ σ0 such that U−1 diag(σ2

p, . . . , σ
2
0)U−T

is Toeplitz.
Algorithm. Define σp = 1/

√
b0 and

(ap1, . . . , app) = (b1/b0, . . . , bp/b0).

For k = p− 1, . . . , 0, execute the following steps.
• Define κk = ak+1,k+1. If |κk| ≥ 1, terminate. The

polynomial B(z) is not stable.
• Otherwise, compute σk = σk+1/

√
1− κ2k andak1...

akk

 =
1

1− κ2k

ak+1,1 ak+1,k

...
...

ak+1,k ak+1,1

[ 1
−κk

]
.

The Jury stability test is successful if |κk| < 1 for k = p −
1, . . . , 0, or, equivalently, σ0 ≥ σ1 ≥ · · · ≥ σp > 0. The
complexity of this algorithm is O(p2).

The relation with the Levinson–Durbin algorithm is clear if
we write the update in Algorithm A.2 as a recursion for the
polynomials Ak(z) (with coefficients aki, as defined in (59)),[

zAk(z)

Âk(z)

]
=

[
1 κk
κk 1

]−1 [Ak+1(z)

Âk+1(z)

]
,

and compare this with (60). The choice κk = ak+1,k+1 ensures
that Ak(z) is a polynomial of degree k. This form of the
recursion also explains why the Jury test works. Suppose
Ak+1(z) is stable. Then |κk| < 1, since |ak+1,k+1| is the
product of the absolute values of the zeros of Ak+1(z).
Moreover, since |Ak+1(z)| ≥ |Âk+1(z)| for |z| ≥ 1, the
polynomial Ak(z) is nonzero for |z| ≥ 1. Therefore if the
recursion starts with a stable polynomial Ap(z) = (1/b0)B(z),
then the polynomials Ak(z) are stable and |κk| < 1 for
k = p−1, . . . , 0. The converse can be shown as in the proof of
stability of the polynomials generated by the Levinson–Durbin
algorithm. If |κk| < 1 for k = 0, . . . , p−1, then the recursion
Ak+1(z) = zAk(z)+κkÂk(z) started at A0(z) = 1 generates
a sequence of stable polynomials.
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In terms of the vectors a(k) defined as in (61), the recursion
in Algorithm A.2 can be written as

a(k) = H−1k a(k+1), (64)

with Hk defined in (63), where κk is the reflection coefficient
computed by Algorithm A.2.

C. Factorization of Jury matrix

Vostrý in [54] points out that Algorithm A.2 computes a
factorization of the Jury matrix (14). Using the formula (64)
for the recursion of Algorithm A.2, we find that

b−10 H−10 · · ·H
−1
p−1J (b) =

[
1 0
0 L

]
, (65)

where L is the p× p unit lower-triangular matrix

1 0 0 · · · 0 0
a11 1 0 · · · 0 0
a22 a21 1 · · · 0 0
...

...
...

. . .
...

...
ap−2,p−2 ap−2,p−3 ap−2,p−4 · · · 1 0
ap−1,p−1 ap−1,p−2 ap−1,p−3 · · · ap−1,1 1


.

The factorization shows that the Jury matrix is nonsingular if
the vector b defines a stable polynomial. It also provides an
O(p2) algorithm for solving equations with coefficient matrix
J (b). In particular, it can be used to solve (19). To compute
y = J (b)−1e, we first compute

1

b0
H−10 · · ·H

−1
p−1e = (σ2

0 ,−κ0σ2
0 , . . . ,−κp−1σ2

p−1)

and then calculate y using forward substitution with the
triangular matrix on the right-hand side of (65). In other words,
from the output of Algorithm A.2, the solution of (19) can be
computed as y0 = σ2

0 and

yk+1 = −σ2
kκk − y1akk − · · · − ykak1, (66)

for k = 0, . . . , p− 1.

APPENDIX B
GENERALIZED PROXIMAL GRADIENT METHOD

This appendix describes the accelerated proximal gradient
method used in the experiments, including a convergence
proof. The proof follows [18] and is included to clarify where
our assumptions on the problem and the Bregman distance
are needed. These conditions are slightly weaker than the ones
stated in [18, p.17]. The proof also justifies the third parameter
selection strategy discussed below.

We consider an optimization problem

minimize F (x) = f(x) + g(x), (67)

in which the objective is split as a sum of two convex
functions. We assume that ∅ 6= dom g ⊆ dom f and that f is
differentiable with a Lipschitz continuous gradient on dom g,
i.e., there exists a constant L such that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2 (68)

for all x, y ∈ dom g. In addition, we assume that dh is a
Bregman distance with kernel h, and that for every a and
every v ∈ int (domh), the generalized proximal operator
proxhτg(τa, v) defined in (42), is well defined, i.e., the op-
timization problem

minimize 〈a, x〉+ g(x) +
1

τ
dh(x, v) (69)

has a unique solution in dom g ∩ int (domh). Here τ is a
positive proximal stepsize. We also assume that

dh(x, y) ≥ 1

2
‖x− y‖2 (70)

for all x ∈ dom g ∩ domh and y ∈ dom g ∩ int (domh).
The norm on the right-hand side of (70) is the same norm as
in (68). Finally, we assume that the problem (67) is solvable
and has a solution x? ∈ dom g ∩ domh.

The following algorithm is IGA in [17] and Algorithm 1 in
[18]. We start at x0 = v0 ∈ dom g ∩ int (domh) and run the
iteration

yk = (1− θk)xk−1 + θkv
k−1 (71a)

vk = proxhτkg(τk∇f(yk), vk−1) (71b)

xk = (1− θk)xk−1 + θkv
k. (71c)

Suitable choices for the parameters θk ∈ [0, 1] and τk > 0 are
discussed below. Since the minimizer vk in step (71b) is in
the convex set dom g∩ int (domh), all iterates yk, vk, xk are
in dom g ∩ int (domh). The update in the second step (71b)
is therefore well defined at all iterations.

We discuss three strategies for choosing θk and τk. The
first option requires knowledge of L, the Lipschitz constant
in (68) with respect to a norm that also satisfies (70). Several
strategies have been proposed to avoid this and replace L with
an adaptively adjusted estimate λk [18], [33], [55]–[57]. The
second and third methods below are examples of this.

In each method we will choose θ1 = 1, θk ∈ (0, 1) for
k > 1, and τk > 0 subject to the two conditions:

F (xk) ≤ (1− θk)F (xk−1) + θk(g(vk) + f(yk)

+ 〈∇f(yk), vk − yk〉+
1

τk
dh(vk, vk−1)), (72)

and
τk(1− θk)θk−1 ≤ τk−1θk. (73)

We will see that these conditions imply that

F (xk)− F (x?) ≤ θk
τk
dh(x?, x0). (74)

Each of the following three parameter selection methods
satisfies (72) and (73), with θk/τk = O(1/k2).

a) Known Lipschitz constant: We choose τk = 1/(Lθk)
and a sequence θk that satisfies θ1 = 1 and

(1− θk)θ2k−1 ≤ θ2k, k > 1. (75)

A simple choice is θk = 2/(k + 1). The sequence that
decreases most quickly, subject to the constraint (75), is
obtained by imposing equality in (73). This gives the recursion

θk =
−θ2k−1 +

√
θ4k−1 + 4θ2k−1

2
.
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To show that (72) holds, we apply (68) with x = xk and
y = yk, substitute (71c) for xk on the right-hand side, simplify
the argument of the norm using (71a), and apply (70) to obtain

f(xk) ≤ (1− θk)(f(yk) + 〈∇f(yk), xk−1 − yk〉)

+ θk(f(yk) + 〈∇f(yk), vk − yk〉+
1

τk
d(vk, vk−1)).

The inequality (72) now follows from convexity of f and
Jensen’s inequality for g applied to (71c).

b) Monotonic search: This is the strategy of [18], [33].
We choose a fixed sequence θk that satisfies (75), as in the
previous strategy. We choose λ0 > 0, and at iteration k choose
for λk the smallest element of {βiλk−1 | i = 0, 1, 2, . . .},
for which τk = 1/(λkθk) satisfies (72). Here β > 1. The
inequality (73) holds because

τkθk = 1/λk ≤ 1/λk−1 = τk−1θk−1

and (75) holds. The procedure guarantees that λk ≤ λmax =
max {λ0, βL} because, as shown above, (72) holds for θkτk ≤
1/L. Therefore

θk
τk
≤ θ2kλmax ≤

4λmax

(k + 1)2
= O(

1

k2
).

In this method, testing a candidate λk requires the evaluation
of the generalized proximal operator in step (71b), and evalua-
tions of f(xk), g(xk), g(vk), and dh(vk, vk−1). These function
values are needed to verify whether the inequality (72) holds.

c) Non-monotonic search: The third method does not
force λk to be monotonically increasing as in the second
method. At each iteration, choose some λ̂k > 0, and take
the smallest λk in {βiλ̂k | i = 0, 1, 2, . . .} that satisfies (72)
with θk defined as the positive root of

λkθ
2
k = λk−1θ

2
k−1(1− θk),

and τk = 1/(θkλk). Lipschitz continuity of ∇f guarantees
that (72) holds if λk = 1/(θkτk) ≥ L. Therefore the
selected parameter satisfies λk ≤ max{λ̂k, βL}. The second
condition (73) is satisfied by construction of θk. Finally, it can
be shown that θk/τk = O(1/k2) [55, lemma 2.2]. The steps
in this method are more expensive than in the second method.
When testing a candidate λk, we also change θk and therefore
yk, so we need to recompute the f(yk) and ∇f(yk).

We now prove the inequality (74). We will need the follow-
ing lemma [18, proposition 1]. If x̂ ∈ int(domh) is a solution
of (69), then for all x ∈ dom g ∩ domh,

〈a, x̂〉+ g(x̂)− 〈a, x〉 − g(x)

≤ 1

τ
(dh(x, v)− dh(x̂, v)− dh(x, x̂)). (76)

Suppose (72) holds. By definition, vk satisfies an inequality
of the form (76), i.e., for x ∈ dom g ∩ domh,

〈∇f(yk), vk〉+ g(vk)− 〈∇f(yk), x〉 − g(x)

≤ 1

τk
(dh(x, vk−1)− dh(vk, vk−1)− dh(x, vk)).

Evaluating this at x = x? and combining the result with (72)
gives

F (xk)− (1− θk)F (xk−1) +
θk
τk

(dh(x?, vk)− dh(x?, vk−1))

≤ θk(f(yk) + 〈∇f(yk), x? − yk〉+ g(x?))

≤ θkF (x?).

Re-arranging gives
τk
θk

(F (xk)− F (x?)) + dh(x?, vk)

≤ (1− θk)τk
θk

(F (xk−1)− F (x?)) + dh(x?, vk−1).

Combining these inequalities recursively using (73) gives (74).
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[54] Z. Vostrý, “New algorithm for polynomial spectral factorization with
quadratic convergence. Part I,” Kybernetika, vol. 11, pp. 415–422, 1975.
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