
Optim Eng (2007) 8: 67–127
DOI 10.1007/s11081-007-9001-7

E D U C AT I O NA L S E C T I O N

A tutorial on geometric programming

Stephen Boyd · Seung-Jean Kim ·
Lieven Vandenberghe · Arash Hassibi

Received: 17 March 2005 / Revised: 15 September 2005 /
Published online: 10 April 2007
© Springer Science+Business Media, LLC 2007

Abstract A geometric program (GP) is a type of mathematical optimization problem
characterized by objective and constraint functions that have a special form. Recently
developed solution methods can solve even large-scale GPs extremely efficiently and
reliably; at the same time a number of practical problems, particularly in circuit de-
sign, have been found to be equivalent to (or well approximated by) GPs. Putting
these two together, we get effective solutions for the practical problems. The basic
approach in GP modeling is to attempt to express a practical problem, such as an en-
gineering analysis or design problem, in GP format. In the best case, this formulation
is exact; when this is not possible, we settle for an approximate formulation. This
tutorial paper collects together in one place the basic background material needed
to do GP modeling. We start with the basic definitions and facts, and some methods
used to transform problems into GP format. We show how to recognize functions and
problems compatible with GP, and how to approximate functions or data in a form
compatible with GP (when this is possible). We give some simple and representative
examples, and also describe some common extensions of GP, along with methods for
solving (or approximately solving) them.

S. Boyd · S.-J. Kim (�)
Information Systems Laboratory, Department of Electrical Engineering, Stanford University,
Stanford, CA 94305, USA
e-mail: sjkim@stanford.edu

S. Boyd
e-mail: boyd@stanford.edu

L. Vandenberghe
Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA
e-mail: vandenbe@ucla.edu

A. Hassibi
Clear Shape Technologies, Inc., Sunnyvale, CA 94086, USA
e-mail: arash@clearshape.com

68 S. Boyd et al.

Keywords Convex optimization · Geometric programming ·
Generalized geometric programming · Interior-point methods

1 The GP modeling approach

A geometric program (GP) is a type of mathematical optimization problem charac-
terized by objective and constraint functions that have a special form. The importance
of GPs comes from two relatively recent developments:

• New solution methods can solve even large-scale GPs extremely efficiently and
reliably.

• A number of practical problems, particularly in electrical circuit design, have re-
cently been found to be equivalent to (or well approximated by) GPs.

Putting these two together, we get effective solutions for the practical problems. Nei-
ther of these developments is widely known, at least not yet. Nor is the story over:
Further improvements in GP solution methods will surely be developed, and, we be-
lieve, many more practical applications of GP will be discovered. Indeed, one of our
principal aims is to broaden knowledge and awareness of GP among potential users,
to help accelerate the hunt for new practical applications of GP.

The basic approach is to attempt to express a practical problem, such as an engi-
neering analysis or design problem, in GP format. In the best case, this formulation is
exact; when this isn’t possible, we settle for an approximate formulation. Formulating
a practical problem as a GP is called GP modeling. If we succeed at GP modeling,
we have an effective and reliable method for solving the practical problem.

We will see that GP modeling is not just a matter of using some software package
or trying out some algorithm; it involves some knowledge, as well as creativity, to be
done effectively. Moreover, success isn’t guaranteed: Many problems simply cannot
be represented, or even approximated, as GPs. But when we do succeed, the results
are very useful and impressive, since we can reliably solve even large-scale instances
of the practical problem.

It’s useful to compare GP modeling and modeling via general purpose nonlinear
optimization (also called nonlinear programming, or NLP). NLP modeling is rela-
tively easy, since the objective and constraint functions can be any nonlinear func-
tions. In contrast, GP modeling can be much trickier, since we are rather constrained
in the form the objective and constraint functions can take. Solving a GP is very easy;
but solving a general NLP is far trickier, and always involves some compromise (such
as accepting a local instead of a global solution). When we do GP modeling, we are
limiting the form of the objective and constraint functions. In return for accepting
this limitation, though, we get the benefit of extremely efficient and reliable solution
methods, that scale gracefully to large-scale problems.

A good analogy can be made with linear programming (LP). A linear program is
an optimization problem with an even stricter limitation on the form of the objective
and constraint functions (i.e., they must be linear). Despite what appears to be a very
restrictive form, LP modeling is widely used, in many practical fields, because LPs
can be solved with great reliability and efficiency. (This analogy is no accident—LPs
and GPs are both part of the larger class of convex optimization problems.)

A tutorial on geometric programming 69

This tutorial paper collects together in one place the basic background material
needed to do GP modeling. We start with the basic definitions and facts, and some
methods used to transform problems into GP format. We show how to recognize
functions and problems compatible with GP, and how to approximate functions or
data in a form compatible with GP (when this is possible). We give some simple and
representative examples, and also describe some common extensions of GP, along
with methods for solving (or approximately solving) them. This paper does not cover
the detailed theory of GPs (such as optimality conditions or duality) or algorithms
for solving GPs; our focus is on GP modeling.

This tutorial paper is organized as follows. In Sect. 2, we describe the basic form of
a GP and some simple extensions, and give a brief discussion of how GPs are solved.
We consider feasibility analysis, trade-off analysis, and sensitivity analysis for GPs
in Sect. 3, illustrated with simple numerical examples. In Sect. 4, we give two longer
examples to illustrate GP modeling, one from wireless communications, and the other
from semiconductor device engineering. We move on to generalized geometric pro-
gramming (GGP), a significant extension of GP, in Sect. 5, and give a number of ex-
amples from digital circuit design and mechanical engineering in Sect. 6. In Sect. 7,
we describe several more advanced techniques and extensions of GP modeling, and
in Sect. 8 we describe practical methods for fitting a function or some given data in a
form that is compatible with GP. In Sect. 9 we describe some extensions of GP that
result in problems that, unlike GP and GGP, are difficult to solve, as well as some
heuristic and nonheuristic methods that can be used to solve them. We conclude the
tutorial with notes and references in Sect. 10.

2 Basic geometric programming

2.1 Monomial and posynomial functions

Let x1, . . . , xn denote n real positive variables, and x = (x1, . . . , xn) a vector with
components xi . A real valued function f of x, with the form

f (x) = cx
a1
1 x

a2
2 · · ·xan

n , (1)

where c > 0 and ai ∈ R, is called a monomial function, or more informally, a mono-
mial (of the variables x1, . . . , xn). We refer to the constant c as the coefficient of the
monomial, and we refer to the constants a1, . . . , an as the exponents of the monomial.
As an example, 2.3x2

1x−0.15
2 is a monomial of the variables x1 and x2, with coefficient

2.3 and x2-exponent −0.15.
Any positive constant is a monomial, as is any variable. Monomials are closed

under multiplication and division: if f and g are both monomials then so are fg

and f/g. (This includes scaling by any positive constant.) A monomial raised to any
power is also a monomial:

f (x)γ = (cx
a1
1 x

a2
2 · · ·xan

n)γ = cγ x
γ a1
1 x

γa2
2 · · ·xγan

n .

The term ‘monomial’, as used here (in the context of geometric programming)
is similar to, but differs from the standard definition of ‘monomial’ used in algebra.

70 S. Boyd et al.

In algebra, a monomial has the form (1), but the exponents ai must be nonnegative
integers, and the coefficient c is one. Throughout this paper, ‘monomial’ will refer to
the definition given above, in which the coefficient can be any positive number, and
the exponents can be any real numbers, including negative and fractional.

A sum of one or more monomials, i.e., a function of the form

f (x) =
K∑

k=1

ckx
a1k

1 x
a2k

2 · · ·xank
n , (2)

where ck > 0, is called a posynomial function or, more simply, a posynomial (with
K terms, in the variables x1, . . . , xn). The term ‘posynomial’ is meant to suggest a
combination of ‘positive’ and ‘polynomial’.

Any monomial is also a posynomial. Posynomials are closed under addition, mul-
tiplication, and positive scaling. Posynomials can be divided by monomials (with the
result also a posynomial): If f is a posynomial and g is a monomial, then f/g is a
posynomial. If γ is a nonnegative integer and f is a posynomial, then f γ always
makes sense and is a posynomial (since it is the product of γ posynomials).

Let us give a few examples. Suppose x, y, and z are (positive) variables. The
functions (or expressions)

2x, 0.23, 2z
√

x/y, 3x2y−.12z

are monomials (hence, also posynomials). The functions

0.23 + x/y, 2(1 + xy)3, 2x + 3y + 2z

are posynomials but not monomials. The functions

−1.1, 2(1 + xy)3.1, 2x + 3y − 2z, x2 + tanx

are not posynomials (and therefore, not monomials).

2.2 Standard form geometric program

A geometric program (GP) is an optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

(3)

where fi are posynomial functions, gi are monomials, and xi are the optimization
variables. (There is an implicit constraint that the variables are positive, i.e., xi > 0.)
We refer to the problem (3) as a geometric program in standard form, to distinguish
it from extensions we will describe later. In a standard form GP, the objective must
be posynomial (and it must be minimized); the equality constraints can only have the
form of a monomial equal to one, and the inequality constraints can only have the
form of a posynomial less than or equal to one.

A tutorial on geometric programming 71

As an example, consider the problem

minimize x−1y−1/2z−1 + 2.3xz + 4xyz

subject to (1/3)x−2y−2 + (4/3)y1/2z−1 ≤ 1,

x + 2y + 3z ≤ 1,

(1/2)xy = 1,

with variables x, y and z. This is a GP in standard form, with n = 3 variables, m = 2
inequality constraints, and p = 1 equality constraints.

We can switch the sign of any of the exponents in any monomial term in the
objective or constraint functions, and still have a GP. For example, we can change the
objective in the example above to x−1y1/2z−1 + 2.3xz−1 + 4xyz, and the resulting
problem is still a GP (since the objective is still a posynomial). But if we change
the sign of any of the coefficients, or change any of the additions to subtractions,
the resulting problem is not a GP. For example, if we replace the second inequality
constraint with x +2y −3z ≤ 1, the resulting problem is not a GP (since the left-hand
side is no longer a posynomial).

The term geometric program was introduced by Duffin, Peterson, and Zener in
their 1967 book on the topic (Duffin et al. 1967). It’s natural to guess that the name
comes from the many geometrical problems that can be formulated as GPs. But in
fact, the name comes from the geometric-arithmetic mean inequality, which played a
central role in the early analysis of GPs.

It is important to distinguish between geometric programming, which refers to
the family of optimization problems of the form (3), and geometric optimization,
which usually refers to optimization problems involving geometry. Unfortunately,
this nomenclature isn’t universal: a few authors use ‘geometric programming’ to
mean optimization problems involving geometry, and vice versa.

2.3 Simple extensions of GP

Several extensions are readily handled. If f is a posynomial and g is a monomial, then
the constraint f (x) ≤ g(x) can be handled by expressing it as f (x)/g(x) ≤ 1 (since
f/g is posynomial). This includes as a special case a constraint of the form f (x) ≤ a,
where f is posynomial and a > 0. In a similar way if g1 and g2 are both monomial
functions, then we can handle the equality constraint g1(x) = g2(x) by expressing it
as g1(x)/g2(x) = 1 (since g1/g2 is monomial). We can maximize a nonzero mono-
mial objective function, by minimizing its inverse (which is also a monomial).

As an example, consider the problem

maximize x/y

subject to 2 ≤ x ≤ 3,

x2 + 3y/z ≤ √
y,

x/y = z2,

(4)

72 S. Boyd et al.

with variables x, y, z ∈ R (and the implicit constraint x, y, z > 0). Using the simple
transformations described above, we obtain the equivalent standard form GP

minimize x−1y

subject to 2x−1 ≤ 1, (1/3)x ≤ 1,

x2y−1/2 + 3y1/2z−1 ≤ 1,

xy−1z−2 = 1.

It’s common to refer to a problem like (4), that is easily transformed to an equiva-
lent GP in the standard form (3), also as a GP.

2.4 Example

Here we give a simple application of GP, in which we optimize the shape of a box-
shaped structure with height h, width w, and depth d . We have a limit on the total
wall area 2(hw + hd), and the floor area wd , as well as lower and upper bounds on
the aspect ratios h/w and w/d . Subject to these constraints, we wish to maximize the
volume of the structure, hwd . This leads to the problem

maximize hwd

subject to 2(hw + hd) ≤ Awall, wd ≤ Aflr,

α ≤ h/w ≤ β, γ ≤ d/w ≤ δ.

(5)

Here d , h, and w are the optimization variables, and the problem parameters are Awall

(the limit on wall area), Aflr (the limit on floor area), and α, β, γ, δ (the lower and
upper limits on the wall and floor aspect ratios). This problem is a GP (in the extended
sense, using the simple transformations described above). It can be transformed to the
standard form GP

minimize h−1w−1d−1

subject to (2/Awall)hw + (2/Awall)hd ≤ 1, (1/Aflr)wd ≤ 1,

αh−1w ≤ 1, (1/β)hw−1 ≤ 1,

γwd−1 ≤ 1, (1/δ)w−1d ≤ 1.

2.5 How GPs are solved

As mentioned in the introduction, the main motivation for GP modeling is the great
efficiency with which optimization problems of this special form can be solved. To
give a rough idea of the current state of the art, standard interior-point algorithms
can solve a GP with 1000 variables and 10000 constraints in under a minute, on a
small desktop computer (see Boyd and Vandenberghe 2004). For sparse problems
(in which each constraint depends on only a modest number of the variables) far
larger problems are readily solved. A typical sparse GP with 10000 variables and
1000000 constraints, for example, can be solved in minutes on a desktop computer.

A tutorial on geometric programming 73

(For sparse problems, the solution time depends on the particular sparsity pattern.) It’s
also possible to optimize a GP solver for a particular application, exploiting special
structure to gain even more efficiency (or solve even larger problems).

In addition to being fast, interior-point methods for GPs are also very robust. They
require essentially no algorithm parameter tuning, and they require no starting point
or initial guess of the optimal solution. They always find the (true, globally) opti-
mal solution, and when the problem is infeasible (i.e., the constraints are mutually
inconsistent), they provide a certificate showing that no feasible point exists. General
methods for NLP can be fast, but are not guaranteed to find the true, global solution,
or even a feasible solution when the problem is feasible. An initial guess must be
provided, and can greatly affect the solution found, as well as the solution time. In
addition, algorithm parameters in general purpose NLP solvers have to be carefully
chosen.

In the rest of this section, we give a brief description of the method used to solve
GPs. This is not because the GP modeler needs to know how GPs are solved, but
because some of the ideas will resurface in later discussions.

The main trick to solving a GP efficiently is to convert it to a nonlinear but convex
optimization problem, i.e., a problem with convex objective and inequality constraint
functions, and linear equality constraints. Efficient solution methods for general con-
vex optimization problems are well developed (Boyd and Vandenberghe 2004). The
conversion of a GP to a convex problem is based on a logarithmic change of vari-
ables, and a logarithmic transformation of the objective and constraint functions. In
place of the original variables xi , we use their logarithms, yi = logxi (so xi = eyi).
Instead of minimizing the objective f0, we minimize its logarithm logf0. We replace
the inequality constraints fi ≤ 1 with logfi ≤ 0, and the equality constraints gi = 1
with loggi = 0. This results in the problem

minimize logf0(e
y)

subject to logfi(e
y) ≤ 0, i = 1, . . . ,m,

loggi(e
y) = 0, i = 1, . . . , p,

(6)

with variables y = (y1, . . . , yn). Here we use the notation ey , where y is a vector, to
mean componentwise exponentiation: (ey)i = eyi .

This new problem (6) doesn’t look very different from the original GP (3); if any-
thing, it looks more complicated. But unlike the original GP, this transformed version
is convex, and so can be solved very efficiently. (See Boyd and Vandenberghe 2004 for
convex optimization problems, including methods for solving them; Sect. 4.5 gives
more details of the transformation of a GP to a convex problem.)

It’s interesting to understand what it means for the problem (6) to be convex. We
start with the equality constraints. Suppose g is a monomial,

g(x) = cx
a1
1 x

a2
2 · · ·xan

n .

Under the transformation above, it becomes

logg(ey) = log c + a1 logx1 + · · · + an logxn = log c + a1y1 + · · · + anyn,

74 S. Boyd et al.

which is an affine function of variables yi . (An affine function is a linear function
plus a constant.) Thus, a monomial equality constraint g = 1 is transformed to a
linear equation in the new variables,

a1y1 + · · · + anyn = − log c.

(In a convex optimization problem, all equality constraint functions must be linear.)
The posynomial inequality constraints are more interesting. If f is a posynomial,

the function

F(y) = logf (ey)

is convex, which means that for any y, ỹ, and any θ with 0 ≤ θ ≤ 1, we have

F(θy + (1 − θ)ỹ) ≤ θF (y) + (1 − θ)F (ỹ). (7)

The point θy + (1 − θ)ỹ is a (componentwise) weighted arithmetic mean of y and ỹ.
Convexity means that the function F , evaluated at a weighted arithmetic mean of two
points, is no more than the weighted arithmetic mean of the function F evaluated at
the two points. (For much more on convexity, see Boyd and Vandenberghe 2004).

In terms of the original posynomial f and variables x and x̃, the convexity in-
equality above can be stated as

f (xθ
1 x̃1−θ

1 , . . . , xθ
n x̃1−θ

n) ≤ f (x1, . . . , xn)
θf (x̃1, . . . , x̃n)

1−θ . (8)

The point with coefficients xθ
i x̃1−θ

i is a weighted geometric mean of x and x̃. The
inequality (8) above means that the posynomial f , when evaluated at a weighted
geometric mean of two points, is no more than the weighted geometric mean of the
posynomial f evaluated at the two points. This is a very basic property of posynomi-
als, which we’ll encounter later.

We emphasize that in most cases, the GP modeler does not need to know how
GPs are solved. The transformation to a convex problem is handled entirely by the
solver, and is completely transparent to the user. To the GP modeler, a GP solver can
be thought of as a reliable black box, that solves any problem put in GP form. This is
very similar to the way a numerical linear algebra subroutine, such as an eigenvalue
subroutine, is used.

3 Feasibility, trade-off, and sensitivity analysis

3.1 Feasibility analysis

A basic part of solving the GP (3) is to determine whether the problem is feasible,
i.e., to determine whether the constraints

fi(x) ≤ 1, i = 1, . . . ,m, gi(x) = 1, i = 1, . . . , p (9)

are mutually consistent. This task is called the feasibility problem. It is also some-
times called the phase I problem, since some methods for solving GPs involve two

A tutorial on geometric programming 75

distinct phases: in the first, a feasible point is found (if there is one); in the second,
an optimal point is found.

If the problem is infeasible, there is certainly no optimal solution to the GP prob-
lem (3), since there is no point that satisfies all the constraints. In a practical setting,
this is disappointing, but still very useful, information. Roughly speaking, infeasibil-
ity means the constraints, requirements, or specifications are too tight, and cannot be
simultaneously met; at least one constraint must be relaxed.

When a GP is infeasible, it is often useful to find a point x̂ that is as close as
possible to feasible, in some sense. Typically the point x̂ is found by minimizing
some measure of infeasibility, or constraint violation. (The point x̂ is not optimal for
the original problem (3) since it is not feasible.) One very common method is to form
the GP

minimize s

subject to fi(x) ≤ s, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

s ≥ 1,

(10)

where the variables are x, and a new scalar variable s. We solve this problem (which
itself is always feasible, assuming the monomial equality constraints are feasible), to
find an optimal x̄ and s̄. If s̄ = 1, then x̄ is feasible for the original GP; if s̄ > 1, then
the original GP is not feasible, and we take x̂ = x̄. The value s̄ tells us how close to
feasible the original problem is. For example, if s̄ = 1.1, then the original problem
is infeasible, but, roughly speaking, only by 10%. Indeed, x̄ is a point that is within
10% of satisfying all the inequality constraints.

There are many variations on this method. One is based on introducing indepen-
dent variables si for the inequality constraints, and minimizing their product:

minimize s1 · · · sm
subject to fi(x) ≤ si , i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

si ≥ 1, i = 1, . . . ,m,

(11)

with variables x and s1, . . . , sn. Like the problem above, the optimal si are all one
when the original GP is feasible. When the original GP is infeasible, however, the
optimal x obtained from this problem typically has the property that it satisfies most
(but not all) of the inequality constraints. This is very useful in practice since it sug-
gests which of the constraints should be relaxed to achieve feasibility. (For more on
methods for obtaining points that satisfy many constraints, see Boyd and Vanden-
berghe 2004, Chap. 11.4.)

GP solvers unambiguously determine feasibility. But they differ in what point (if
any) they return when a GP is determined to be infeasible. In any case, it is always
possible to set up and solve the problems described above (or others) to find a poten-
tially useful ‘nearly feasible’ point.

76 S. Boyd et al.

3.2 Trade-off analysis

In trade-off analysis we vary the constraints, and see the effect on the optimal value
of the problem. This reflects the idea that in many practical problems, the constraints
are not really set in stone, and can be changed, especially if there is a compelling
reason to do so (such as a drastic improvement in the objective obtained).

Starting from the basic GP (3), we form a perturbed GP, by replacing the number
one that appears on the right-hand side of each constraint with a parameter:

minimize f (x)

subject to fi(x) ≤ ui, i = 1, . . . ,m,

gi(x) = vi, i = 1, . . . , p.

(12)

Here ui and vi are positive constants. When ui = 1 and vi = 1, this reduces to the
original GP (3). We let p(u, v) denote the optimal value of the perturbed problem (12)
as a function of u and v. Thus, the value p(1,1) (where 1 denotes a vector with all
components one) is equal to the optimal value of the original GP (3).

If ui > 1, then the ith inequality constraint for the perturbed problem,

fi(x) ≤ ui,

is loosened, compared to the inequality in the standard problem,

fi(x) ≤ 1.

Conversely, if ui < 1, then the ith inequality constraint for the perturbed problem is
tightened compared to the ith inequality in the standard problem. We can interpret the
loosening and tightening quantitatively: for ui > 1, we can say that the ith inequality
constraint has been loosened by 100(ui − 1) percent; for ui < 1, then we can say that
the ith inequality constraint has been tightened by 100(1 −ui) percent. Similarly, the
number vi can be interpreted as a shift in the ith equality constraint.

It’s important to understand what p(u, v) means. It gives the optimal value of the
problem, after we perturb the constraints, and then optimize again. When u and v

change, so does (in general) the associated optimal point. There are several other per-
turbation analysis problems one can consider. For example, we can ask how sensitive
a particular point x is, with respect to the objective and constraint functions (i.e.,
we can ask how much fi and gi change when we change x). But this perturbation
analysis is unrelated to trade-off analysis.

In optimal trade-off analysis, we study or examine the function p(u, v) for certain
values of u and v. For example, to see the optimal trade-off of the ith inequality
constraint and the objective, we can plot p(u, v) versus ui , with all other uj and
all vj equal to one. The resulting curve, called the optimal trade-off curve, passes
through the point given by the optimal value of the original GP when ui = 1. As ui

increases above one, the curve must decrease (or stay constant), since by relaxing the
ith constraint we can only improve the optimal objective. The optimal trade-off curve
flattens out when ui is made large enough that the ith constraint is no longer relevant.
When ui is decreased below one, the optimal value increases (or stays constant). If
ui is decreased enough, the perturbed problem can become infeasible.

A tutorial on geometric programming 77

Fig. 1 Optimal trade-off curves
of maximum volume V versus
maximum floor area Aflr, for
three values of maximum wall
area Awall

When multiple constraints are varied, we obtain an optimal trade-off surface. One
common approach is to plot trade-off surfaces with two parameters as a set of trade-
off curves for several values of the second parameter. An example is shown in Fig. 1,
which shows optimal trade-off curves of optimal (maximum) volume versus Aflr, for
three values of Awall, for the simple example problem (5) given on page 72. The other
problem parameters are α = 0.5, β = 2, γ = 0.5, δ = 2.

The optimal trade-off curve (or surface) can be found by solving the perturbed
GP (12) for many values of the parameter (or parameters) to be varied. Another com-
mon method for finding the trade-off curve (or surface) of the objective and one or
more constraints is the weighted sum method. In this method we remove the con-
straints to be varied, and add positive weighted multiples of them to the objective.
(This results in a GP, since we can always add a positive weighted sum of monomi-
als or posynomials to the objective.) For example, assuming that the first and second
inequality constraints are to be varied, we would form the GP

minimize f (x) + λ1f1(x) + λ2f2(x)

subject to fi(x) ≤ 1, i = 3, . . . ,m,

gi(x) = 1, i = 1, . . . , p.

(13)

By solving the weighted sum GP (13), we always obtain a point on the optimal trade-
off surface. To obtain the surface, we solve the weighted sum GP for a variety of
values of the weights. This weighted sum method is closely related to duality theory, a
topic beyond the scope of this tutorial; we refer the reader to Boyd and Vandenberghe
(2004) for more details.

3.3 Sensitivity analysis

Sensitivity analysis is closely related to trade-off analysis. In sensitivity analysis, we
consider how small changes in the constraints affect the optimal objective value. In
other words, we are interested in the function p(u, v) for ui and vi near one; this
means that the constraints in the perturbed GP (12) aren’t very different from the
constraints in the original GP (3). Assuming that the optimal objective value p(u, v)

is differentiable (which need not be the case, in general) at ui = 1, vi = 1, changes in
optimal objective value with respect to small changes in ui can be predicted from the

78 S. Boyd et al.

partial derivative

∂p

∂ui

∣∣∣∣
u=1,v=1

.

This is nothing more than that slope of the trade-off curve as it passes through the
point u = 1, v = 1.

It is more useful to work with a normalized derivative, that gives the fractional or
relative change in the optimal objective, given a fractional or relative change in ui .
We define the optimal sensitivity, or just sensitivity, of the GP (3), with respect to the
ith inequality constraint, as

Si = ∂ logp

∂ logui

∣∣∣∣
u=1,v=1

= ∂ logp

∂ui

∣∣∣∣
u=1,v=1

. (14)

(This is the slope of the trade-off curve on a log-log plot.) The optimal sensitivities are
also called the optimal dual variables for the problem; see Boyd and Vandenberghe
(2004). The sensitivity Si gives the (approximate) fractional change in optimal value
per fractional change in the right-hand side of the ith inequality. Since the optimal
value p decreases when we increase ui , we always have Si ≤ 0. If the ith inequality
constraint is not tight at the optimum, then we have Si = 0, which means that a small
change in the right-hand side of the ith constraint (loosening or tightening) has no
effect on the optimal value of the problem.

As an example, suppose we have S1 = −0.2 and S2 = −5.5. This means that if we
relax the first constraint by 1% (say), we would expect the optimal objective value
to decrease by about 0.2%; if we tighten the first inequality constraint by 1%, we
expect the optimal objective value to increase by about 0.2%. On the other hand if
we relax the second inequality constraint by 1%, we expect the optimal objective
value to decrease by the much larger amount 5.5%; if we tighten the first constraint
by 1%, we expect the optimal objective value to increase by the much larger amount
5.5%. Roughly speaking, we can say that while both constraints are tight, the second
constraint is much more tightly binding than the first.

For equality constraints we define the optimal sensitivity the same way:

Ti = ∂ logp

∂ logvi

∣∣∣∣
u=1,v=1

= ∂ logp

∂vi

∣∣∣∣
u=1,v=1

. (15)

Here the sign of Ti tells us whether a small increase in the right-hand side of the ith
equality constraint increases or decreases the optimal objective value. The magnitude
tells us how sensitive the optimal value is to the right-hand side of the ith equality
constraint.

Optimal sensitivities can be very useful in practice. If a constraint is tight at the
optimum, but has a small sensitivity, then small changes in the constraint won’t af-
fect the optimal value of the problem much. On the other hand, a constraint that is
tight and has a large sensitivity is one that (for small changes) will greatly change the
optimal value: if it is loosened (even just a small amount), the objective is likely to de-
crease considerably; if it is tightened, even just a little bit, the optimal objective value
will increase considerably. Roughly speaking, a constraint with a large sensitivity can
be considered more strongly binding than one with a small sensitivity.

A tutorial on geometric programming 79

Table 1 Changes in maximum volume with changes in floor and wall area constraints. The first two
columns give the change in the constraints. The third column gives the actual change in maximum volume,
found by solving the GP with the new constraints, and the fourth column gives the change in maximum
volume predicted by the optimal sensitivities

	Aflr 	Awall 	V 	Vpred

0% 0% 0% 0%

0% +5% +6.1% +6.3%

0% −5% −6.5% −6.3%

+5% 0% +1.0% +1.2%

−5% 0% −1.5% −1.2%

+5% −5% −6.1% −5.0%

The optimal sensitivities are also useful when a problem is infeasible. Assuming
we find a point that minimizes some measure of infeasibility, the sensitivities associ-
ated with the constraints can be very informative. Each one gives the (approximate)
relative change in the optimal infeasibility measure, given a relative change in the
constraint. The constraints with large sensitivities are likely candidates for the ones
to loosen (for inequality constraints), or modify (for equality constraints) to make the
problem feasible.

One very important fact is that when we solve a GP, we get the sensitivities of
all constraints at no extra cost. This is because modern methods for solving GPs
solve both the primal (i.e., original) problem, and its dual (which is related to the
sensitivities) simultaneously. (See Boyd and Vandenberghe (2004).)

To illustrate these ideas, we consider again the simple example problem (5) given
on page 72. We solve the problem with parameters

Aflr = 1000, Awall = 200, α = 0.5, β = 2, γ = 0.5, δ = 2.

The associated maximum volume is V = 5632. The optimal sensitivities associated
with the floor area constraint and the wall area constraint are

Sflr = 0.249, Swall = 1.251.

(These are both positive since increasing the area limits increases the maximum vol-
ume obtained.) Thus we expect that a 1% increase in allowed floor space to result
in around 0.25% increase in maximum volume, and a 1% increase in allowed wall
space to result in around 1.25% increase in maximum volume.

To check these approximations, we change the two wall area constraints by various
amounts, and compare the predicted change in maximum volume (from the sensitiv-
ities) with the actual change in maximum volume (found by forming and solving the
perturbed GP). The results are shown in Table 1. The sensitivities give reasonable
predictions of the change in maximum volume when the constraints are tightened or
loosened. One interesting pattern can be seen in the data: the maximum volume pre-
dicted by the sensitivities is always more than the actual maximum volume obtained.
In other words, the prediction of the objective based on the sensitivities is always
larger than the true optimal objective obtained. This is always the case, due to the
convex optimization formulation; see Boyd and Vandenberghe (2004), Chap. 5.6.2.

80 S. Boyd et al.

4 GP examples

In this section we give two simple examples of GP applications.

4.1 Power control

Several problems involving power control in communications systems can be cast as
GPs (see, e.g., Kandukuri and Boyd 2002; Julian et al. 2002; Foschini and Miljanic
1993). We consider a simple example here. We have n transmitters, labeled 1, . . . , n,
which transmit at (positive) power levels P1, . . . ,Pn, which are the variables in our
power control problem. We also have n receivers, labeled 1, . . . , n; receiver i is meant
to receive the signal from transmitter i. The power received from transmitter j , at
receiver i, is given by

GijPj .

Here Gij , which is positive, represents the path gain from transmitter j to receiver i.
The signal power at receiver i is GiiPi , and the interference power at receiver i is∑

k �=i GikPk . The noise power at receiver i is given by σi . The signal to interference
and noise ratio (SINR) of the ith receiver/transmitter pair is given by

Si = GiiPi

σi + ∑
k �=i GikPk

. (16)

We require that the SINR of any receiver/transmitter pair is at least a given threshold
Smin:

GiiPi

σi + ∑
k �=i GikPk

≥ Smin, i = 1, . . . , n.

We also impose limits on the transmitter powers,

P min
i ≤ Pi ≤ P max

i , i = 1, . . . , n.

The problem of minimizing the total transmitter power, subject to these con-
straints, can be expressed as

minimize P1 + · · · + Pn

subject to P min
i ≤ Pi ≤ P max

i , i = 1, . . . , n,

GiiPi/(σi + ∑
k �=i GikPk) ≥ Smin, i = 1, . . . , n.

This is not a GP, but is easily cast as a GP, by taking the inverse of the SINR con-
straints:

σi + ∑
k �=i GikPk

GiiPi

≤ 1/Smin, i = 1, . . . , n.

(The left-hand side is a posynomial.) This allows us to solve the power control prob-
lem via GP.

A tutorial on geometric programming 81

This simple version of the problem can also be solved using linear programming,
by expressing the SINR constraints as linear inequalities,

σi +
∑

k �=i

GikPk ≤ GiiPi/S
min, i = 1, . . . , n.

But the GP formulation allows us to handle the more general case in which the re-
ceiver interference power is any posynomial function of the powers. For example,
interference contributions from intermodulation products created by nonlinearities in
the receivers typically scale as polynomials in the powers. Third order intermodula-
tion power from the first and second transmitted signals scales as P1P

2
2 or P 2

1 P2; if
terms like these are added to the interference power, the power allocation problem
above is still a GP. Choosing optimal transmit powers in such cases is complex, but
can be formulated as a GP.

4.2 Optimal doping profile

We consider a simple version of a problem that arises in semiconductor device engi-
neering, described in more detail in Joshi et al. (2005). The problem is to choose the
doping profile (also called the acceptor impurity concentration) to obtain a transistor
with favorable properties. We will focus on one critical measure of the transistor: its
base transit time, which determines (in part) the speed of the transistor.

The doping profile, denoted NA(x), is a positive function of a space variable x

over the interval 0 ≤ x ≤ WB, where WB is the base width. The base transit time,
denoted τB, is determined by the doping profile. A simplified model for τB is given
by

τB =
∫ WB

0

n2
i (x)

NA(x)

(∫ WB

x

NA(y)

n2
i (y)Dn(y)

dy

)
dx, (17)

where ni is the intrinsic carrier concentration, and Dn is the carrier diffusion coeffi-
cient. Over the region of interest, these can be well approximated as

Dn(x) = Dn0

(
NA(x)

Nref

)−γ1

, n2
i (x) = n2

i0

(
NA(x)

Nref

)γ2

,

where Nref, Dn0, ni0, γ1, and γ2 are (positive) constants. Using these approximations
we obtain the expression

τB = κ

∫ WB

0
NA(x)γ2−1

(∫ WB

x

NA(y)1+γ1−γ2dy

)
dx, (18)

where κ is a constant.
The basic optimal doping profile design problem is to choose the doping profile to

minimize the base transit time, subject to some constraints:

minimize τB
subject to Nmin ≤ NA(x) ≤ Nmax for 0 ≤ x ≤ WB,

|N ′
A(x)| ≤ αNA(x) for 0 ≤ x ≤ WB,

NA(0) = N0, NA(WB) = Nc.

(19)

82 S. Boyd et al.

Here Nmin and Nmax are the minimum and maximum values of the doping profile, α

is a given maximum (percentage) doping gradient, and N0 and Nc are given initial
and final values for the doping profile. The problem (19) is an infinite dimensional
problem, since the optimization variable is the doping profile NA, a function of x.

To solve the problem we first discretize with M +1 points uniformly spaced in the
interval [0,WB], i.e., xi = iWB/M , i = 0, . . . ,M . We then have the approximation

τ̂B = κ
WB

M + 1

M∑

i=0

v
γ2−1
i

(
WB

M + 1

M∑

j=i

v
1+γ1−γ2
j

)
, (20)

where vi = NA(xi). This shows that τ̂B is a posynomial function of the variables
v0, . . . , vM . We can approximate the doping gradient constraint |N ′

A(x)| ≤ αNA(x)

as

(1 − αWB/(M + 1))vi ≤ vi+1 ≤ (1 + αWB/(M + 1))vi, i = 0, . . . ,M − 1.

(We can assume M is large enough that 1 − α/M > 0.)
Using these approximations, the optimal doping profile problem reduces to the GP

minimize τ̂B

subject to Nmin ≤ vi ≤ Nmax, i = 0, . . . ,M,

(1 − αWB/(M + 1))vi ≤ vi+1 ≤ (1 + αWB/(M + 1))vi,

i = 0, . . . ,M − 1,

v0 = N0, vM = Nc,

with variables v0, . . . , vM .
Now that we have formulated the problem as a GP, we can consider many exten-

sions and variations. For example, we can use more accurate (but GP compatible)
expressions for the base transit time, a more accurate (but GP compatible) approxi-
mation for the intrinsic carrier concentration and the carrier diffusion coefficient, and
we can add any other constraints that are compatible with GP.

5 Generalized geometric programming

In this section we first describe some extensions of GP that are less obvious than the
simple ones described in Sect. 2.3. This leads to the idea of generalized posynomials,
and an extension of geometric programming called generalized geometric program-
ming.

5.1 Fractional powers of posynomials

We have already observed that posynomials are preserved under positive integer pow-
ers. Thus, if f1 and f2 are posynomials, a constraint such as f1(x)2 + f2(x)3 ≤ 1 is

A tutorial on geometric programming 83

a standard posynomial inequality, once the square and cube are expanded. But the
same argument doesn’t hold for a constraint such as

f1(x)2.2 + f2(x)3.1 ≤ 1, (21)

which involves fractional powers, since the left-hand side is not a posynomial. Nev-
ertheless, we can handle the inequality (21) in GP, using a trick.

We introduce new variables t1 and t2, along with the inequality constraints

f1(x) ≤ t1, f2(x) ≤ t2, (22)

which are both compatible with GP. The new variables t1 and t2 act as upper bounds
on the posynomials f1(x) and f2(x), respectively. Now, we replace the (nonposyno-
mial) inequality (21) with the inequality

t2.2
1 + t3.1

2 ≤ 1, (23)

which is a valid posynomial inequality.
We claim that we can replace the nonposynomial fractional power inequality (21)

with the three inequalities given in (22) and (23). To see this, we note that if x satis-
fies (21), then x, t1 = f1(x), and t2 = f2(x) satisfy (22) and (23). Conversely, if x, t1,
and t2 satisfy (22) and (23), then x, t1 = f1(x), and t2 = f2(x) satisfy (22) and (23).
Here we use the critical fact that if t1 and t2 satisfy (23), and we reduce them (for ex-
ample, setting them equal to f1(x) and f2(x), respectively) then they still satisfy (22).
This relies on the fact that the posynomial t2.2

1 + t3.1
2 is an increasing function of t1

and t2.
More generally, we can see that this method can be used to handle any number of

positive fractional powers occurring in an optimization problem. We can handle any
problem which has the form of a GP, but in which the posynomials are replaced with
positive fractional powers of posynomials. We will see later that positive fractional
powers of posynomials are special cases of generalized posynomials, and a problem
with the form of a GP, but with fi fractional powers of posynomials, is a generalized
GP.

As an example, consider the problem

minimize
√

1 + x2 + (1 + y/z)3.1

subject to 1/x + z/y ≤ 1,

(x/y + y/z)2.2 + x + y ≤ 1,

with variables x, y, and z. This problem is not a GP, since the objective and second
inequality constraint functions are not posynomials. Applying the method above, we

84 S. Boyd et al.

obtain the GP

minimize t0.5
1 + t3.1

2

subject to 1 + x2 ≤ t1,

1 + y/z ≤ t2,

1/x + z/y ≤ 1,

t2.2
3 + x + y ≤ 1,

x/y + y/z ≤ t3.

We can solve the problem above by solving this GP, with variables x, y, z, t1, t2,
and t3.

This method for handling positive fractional powers can be applied recursively.
For example, a (nonposynomial) constraint such as

x + y + ((1 + xy)1/2 + (1 + y/z)1/2)3.1 ≤ 1

can be replaced with

x + y + t3.1
1 ≤ 1, t

1/2
2 + t

1/2
3 ≤ t1, 1 + xy ≤ t2, 1 + y/z ≤ t3,

where t1, t2, and t3 are new variables.
The same idea also applies to other composite functions of posynomials. If f0 is

a posynomial of k variables, with all its exponents positive (or zero), and f1, . . . , fk

are posynomials, then the composition function inequality

f0(f1(x), . . . , fk(x)) ≤ 1

can be handled by replacing it with

f0(t1, . . . , tk) ≤ 1, f1(x) ≤ t1, . . . , fk(x) ≤ tk,

where t1, . . . , tk are new variables. This shows that products, as well as sums, of
fractional positive powers of posynomials can be handled.

5.2 Maximum of posynomials

In the previous section, we showed how positive fractional powers of posynomials,
while not posynomials themselves, can be handled via GP by introducing a new vari-
able and a bounding constraint. In this section we show how the same idea can be
applied to the maximum of some posynomials. Suppose f1, f2, and f3 are posyno-
mials. The inequality constraint

max{f1(x), f2(x)} + f3(x) ≤ 1 (24)

is certainly not a posynomial inequality (unless we have f1(x) ≥ f2(x) for all x, or
vice versa). Indeed, the maximum of two posynomials is generally not differentiable
(where the two posynomials have the same value), whereas a posynomial is every-
where differentiable.

A tutorial on geometric programming 85

To handle (24) in GP, we introduce a new variable t , and two new inequalities, to
obtain

t + f3(x) ≤ 1, f1(x) ≤ t, f2(x) ≤ t

(which are valid GP inequalities). The same arguments as above show that this set of
constraints is equivalent to the original one (24).

The same idea applies to a maximum of more than two posynomials, by simply
adding extra bounding inequalities. As with positive fractional powers, the idea can
be applied recursively, and indeed, it can be mixed with the method for handling
positive fractional powers. As an example, consider the problem

minimize max{x + z,1 + (y + z)1/2}
subject to max{y, z2} + max{yz,0.3} ≤ 1,

3xy/z = 1,

which is certainly not a GP. Applying the methods of this and the previous section,
we obtain the equivalent GP

minimize t1

subject to x + z ≤ t1, 1 + t
1/2
2 ≤ t1,

y + z ≤ t2,

t3 + t4 ≤ 1,

y ≤ t3, z2 ≤ t3,

yz ≤ t4, 0.3 ≤ t4,

3xy/z = 1.

5.3 Generalized posynomials

We say that a function f of positive variables x1, . . . , xn is a generalized posynomial
if it can be formed from posynomials using the operations of addition, multiplication,
positive (fractional) power, and maximum.

Let us give a few examples. Suppose x1, x2, x3 are positive variables. The function

max{1 + x1,2x1 + x0.2
2 x−3.9

3 }
is a generalized posynomial, since it is the maximum of two posynomials. The func-
tion

(0.1x1x
−0.5
3 + x1.7

2 x0.7
3)1.5

is a generalized posynomial, since it is the positive power of a posynomial. All of the
functions appearing in the examples of the two previous sections, as the objective or
on the left-hand side of the inequality constraints, are generalized posynomials.

As a more complex example, the function

h(x) = (1 + max{x1, x2})(max{1 + x1,2x1 + x0.2
2 x−3.9

3 }
+ (0.1x1x

−0.5
3 + x1.7

2 x0.7
3)1.5)1.7

86 S. Boyd et al.

is a generalized posynomial. This can be seen as follows:

• x1 and x2 are variables, and therefore posynomials, so h1(x) = max{x1, x2} is a
generalized posynomial.

• 1 + x1 and 2x1 + x0.2
2 x−3.9

3 are posynomials, so h2(x) = max{1 + x1,2x1 +
x0.2

2 x−3.9
3 } is a generalized posynomial.

• 0.1x1x
−0.5
3 + x1.7

2 x0.7
3 is a posynomial, so h3(x) = (0.1x1x

−0.5
3 + x1.7

2 x0.7
3)1.5 is a

generalized posynomial.
• h can be expressed as h(x) = (1+h1(x))(h2(x)+h3(x))1.7 (i.e., by addition, mul-

tiplication, and positive power, from h1, h2, and h3) and therefore is a generalized
posynomial.

Generalized posynomials are (by definition) closed under addition, multiplication,
positive powers, and maximum, as well as other operations that can be derived from
these, such as division by monomials. They are also closed under composition in the
following sense. If f0 is a generalized posynomial of k variables, for which no vari-
able occurs with a negative exponent, and f1, . . . , fk are generalized posynomials,
then the composition function

f0(f1(x), . . . , fk(x))

is a generalized posynomial.
A very important property of generalized posynomials is that they satisfy the con-

vexity property (7) that posynomials satisfy. If f is a generalized posynomial, the
function

F(y) = logf (ey)

is a convex function: for any y, ỹ, and any θ with 0 ≤ θ ≤ 1, we have

F(θy + (1 − θ)ỹ) ≤ θF (y) + (1 − θ)F (ỹ).

In terms of the original generalized posynomial f and variables x and x̃, we have the
inequality

f (xθ
1 x̃1−θ

1 , . . . , xθ
n x̃1−θ

n) ≤ f (x1, . . . , xn)
θf (x̃1, . . . , x̃n)

1−θ ,

for any θ with 0 ≤ θ ≤ 1.

5.4 Generalized geometric program

A generalized geometric program (GGP) is an optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

(25)

where g1, . . . , gp are monomials and f0, . . . , fm are generalized posynomials. Since
any posynomial is also a generalized posynomial, any GP is also a GGP.

A tutorial on geometric programming 87

While GGPs are much more general than GPs, they can be mechanically converted
to equivalent GPs using the transformations described in Sects. 5.1 and 5.2. As a
result, GGPs can be solved very reliably and efficiently, just like GPs. The conversion
from GGP to GP can be done automatically by a parser, that automatically carries
out the transformations described in Sects. 5.1 and 5.2 as it parses the expressions
describing the problem. In particular, the GP modeler (or user of a GGP parser) does
not need to know the transformations described in Sects. 5.1 and 5.2. The GP modeler
only needs to know the rules for forming a valid GGP, which are very simple to state.
There is no need for the user to ever see, or even know about, the extra variables
introduced in the transformation from GGP to GP.

Unfortunately, the name ‘generalized geometric program’ has been used to refer to
several different types of problems, in addition to the one above. For example, some
authors have used the term to refer to what is usually called a signomial program
(described in Sect. 9.1), a very different generalization of a GP, which in particular
cannot be reduced to an equivalent GP, or easily solved.

Once we have the basic idea of a parser that scans a problem description, verifies
that it is a valid GGP and transforms it to GP form (for numerical solution), we
can add several useful extensions. The parser can also handle inequalities involving
negative terms in expressions, negative powers, minima, or terms on the right-hand
side of inequalities, in cases when they can be transformed to valid GGP inequalities.
For example, the inequality

x + y + z − min{√xy, (1 + xy)−0.3} ≤ 0 (26)

(which is certainly not a valid generalized posynomial inequality) could be handled
by a parser by first replacing the minimum with a variable t1 and two upper bounds,
to obtain

x + y + z − t1 ≤ 0, t1 ≤ √
xy, t1 ≤ (1 + xy)−0.3.

Moving terms around (by adding or multiplying) we obtain

x + y + z ≤ t1, t1 ≤ √
xy, t1t

0.3
2 ≤ 1, 1 + xy ≤ t2,

which is a set of posynomial inequalities. (Of course we have to be sure that the
transformations are valid, which is the case in this example.)

The fact that a parser can recognize an inequality like (26) and transform it to a set
of valid posynomial constraints is a double-edged sword. The ability to handle a wider
variety of constraints makes the modeling job less constrained, and therefore easier.
On the other hand, few people would immediately recognize that the inequality (26)
can be transformed, or understand why it is a valid inequality. A user who does not
understand why it is valid will have no idea how to modify the constraint (e.g., add
terms, change coefficients or exponents) so as to maintain a valid inequality.

6 GGP examples

In this section we give simple examples of GGP applications.

88 S. Boyd et al.

Fig. 2 A floor planning
example with four rectangles A,
B , C, and D

6.1 Floor planning

In a floor planning problem, we have some rectangles that are to be configured and
placed in such a way that they do not overlap. The objective is usually to minimize the
area of the bounding box, which is the smallest rectangle that contains the rectangles
to be configured and placed. Each rectangle can be reconfigured, within some limits.
For example we might fix the area of each rectangle, but not the width and height
separately.

The constraint that the rectangles do not overlap makes the general floor planning
problem a complicated combinatorial optimization or packing problem. However, if
the relative positioning of the boxes is specified, the floor planning problem can be
formulated as a GP, and therefore easily solved (see Boyd and Vandenberghe 2004,
Chap. 8.8, or the early paper of Rosenberg 1989). For each pair of rectangles, we
specify that one is left of, or right of, or above, or below the other. This information
can be given in many ways, such as a table, a pair of graphs (one for horizontal
and one for vertical relations), or a slicing tree; see Boyd and Vandenberghe (2004),
Chap. 8.8, or Sherwani (1999).

Instead of describing the general case, we will consider a specific example with
4 rectangles, labeled A, B, C, and D, shown in Fig. 2. The relative positioning con-
straints are:

• A is to the left of B.
• C is to the left of D.
• A and B are above C and D.

These guarantee that the rectangles do not overlap.
The width of A and B together is wA + wB, and the width of C and D together is

wC + wD. Therefore the width of the bounding box is

W = max{wA + wB,wC + wD}.

A tutorial on geometric programming 89

The height of A and B together is max{hA, hB}, and the height of C and D together
is max{hC, hD}, so the height of the bounding box is

H = max{hA, hB} + max{hC, hD}.
The bounding box area is

WH = max{wA + wB,wC + wD}(max{hA, hB} + max{hC, hD}).
This expression looks complicated, but we recognize it as a generalized posynomial
of the variables wA, . . . ,wD and hA, . . . , hD.

The problem of minimizing bounding box area, with given rectangle areas and
limits on aspect ratios, is

minimize max{wA + wB,wC + wD}(max{hA, hB} + max{hC, hD})
subject to hAwA = a, hBwB = b, hCwC = c, hDwD = d,

1/αmax ≤ hA/wA ≤ αmax, . . . ,1/αmax ≤ hD/wD ≤ αmax.

This is a GGP, with variables wA, . . . ,wD and hA, . . . , hD. The parameters a, b, c,
and d are the given rectangle areas, and αmax is the maximum allowed aspect ratio.
The more general case (i.e., with many more rectangles, and more complex relative
positioning constraints) is also easily posed as a GGP.

Let’s look at a specific numerical instance of our simple example, with areas

a = 0.2, b = 0.5, c = 1.5, d = 0.5.

Figure 3 shows optimal trade-off curve of minimum bounding box area versus the
maximum aspect ratio αmax. Naturally, the minimum area obtained decreases as we
relax (i.e., loosen) the aspect ratio constraint. At the upper left is the design corre-
sponding to αmax = 1. In this case each of the rectangles is fixed to be square. The
flat portion at the right part of the trade-off curve is also easily understood. With a
loose enough constraint on aspect ratio, the rectangles can configure themselves so
that they give a perfect packing; there is no unused space inside the bounding box.
In this case, the bounding box area is just the sum of the rectangle areas (which are
given), which is clearly optimal. The trade-off plot shows that this perfect packing
occurs for αmax ≥ 2.86.

6.2 Digital circuit gate sizing

We consider a digital circuit consisting of a set of gates (that perform logic functions),
interconnected by wires. For simplicity we’ll assume that each gate has a single out-
put, and one or more inputs. Each output is connected via a wire to the inputs of one
or more other gates, or some external circuitry. Each input is connected to the output
of another gate, or to some external circuitry. A path through the circuit is a sequence
of gates, with each gate’s output connected to the following gate’s input. We assume
that the circuit topology has no loops, i.e., no paths start and end at the same gate.

Each gate is to be sized. In the simplest case, each gate has a variable xi ≥ 1
associated with it, which gives a scale factor for the size of the transistors it is made

90 S. Boyd et al.

Fig. 3 Optimal trade-off curves
of minimum bounding box area
versus maximum aspect ratio
αmax

from. The scale factors of the gates, which are the optimization variables, affect the
total circuit area, the power consumed by the circuit, and the speed of the circuit
(which determines how fast the circuit can operate).

The area of a scaled gate is proportional to the scale factor xi , so total circuit area
has the form

A =
n∑

i=1

aixi,

where ai is the area of gate i with unit scaling. Similarly, the energy lost when a gate
transitions (i.e., its output changes logic value) is also approximately proportional to
the scale factor. The total power consumed by the circuit has the form

P =
n∑

i=1

fieixi,

where fi is the frequency of transition of the gate, and ei is the energy lost when the
gate transitions. Total circuit power and area are both posynomial functions of the
scale factors.

Each gate has an input capacitance Ci , which is an affine function of its scale
factor:

Ci = αi + βixi,

and a driving resistance Ri , which is approximately inversely proportional to the
scale factor:

Ri = γi/xi .

The delay Di of a gate is the product of its driving resistance, and the sum of the
input capacitances of the gates its output is connected to (if it is not an output gate)

A tutorial on geometric programming 91

Fig. 4 Digital circuit with 7
gates

or its load capacitance (if it is an output gate):

Di =
{

Ri

∑
j∈F(i) Cj for i not an output gate,

RiC
out
i for i an output gate.

(Here F(i) is the set of gates whose input is connected to the output of gate i and Cout
i

represents the load capacitance of an output gate.) Combining these three formulas,
we see that the gate delay Di is a posynomial function of the scale factors.

We measure the speed of the circuit using its maximum or worst-case delay D,
which is the maximum total delay along any path through the circuit. Since the delay
of each gate is posynomial, the total delay along any path is also posynomial (since
it is a sum of gate delays). The maximum path delay, over all possible paths, is a
generalized posynomial, since it is the maximum of a set of posynomials.

We can pose the digital circuit gate scaling problem as the problem of choosing
the scale factors to give minimum delay, subject to limits on the total area and power:

minimize D

subject to P ≤ P max, A ≤ Amax,

xi ≥ 1, i = 1, . . . , n.

(Here P max and Amax are given limits on the total power and area.) Since D is a
generalized posynomial, this is a GGP.

As a specific example, consider the digital circuit shown in Fig. 4. This small
circuit has 7 gates, and only 7 paths. The worst-case delay is given by

D = max{D1 + D4 + D6, D1 + D4 + D7, D2 + D4 + D6,

D2 + D4 + D7, D2 + D5 + D7, D3 + D5 + D6, D3 + D7}. (27)

In larger circuits, the number of paths can be very large, and it is not practical to
form an expression like (27) for D, by listing the paths. A simple recursion for D

can be used to avoid enumerating all paths. We define Ti as the maximum delay over
all paths that end with gate i. (We can interpret Ti as the latest time at which the
output of gate i can transition, assuming the input signals transition at t = 0.) We can
compute Ti via a recursion, as follows.

92 S. Boyd et al.

Fig. 5 Optimal trade-off curves
of minimum delay Dmin versus
maximum power P max, for
three values of maximum area
Amax

• For gates whose inputs are not connected to other gates, we take Ti = Di .
• For other gates, we take Ti = maxTj + Di , where the maximum is over all gates

that drive gate i.

Finally, we can express the delay D as the maximum over all Ti , over all output gates.
Note that this recursion shows that each Ti is a generalized posynomial of the gate
scaling factors.

For the particular example described above, the recursion is

Ti = Di, i = 1,2,3,

T4 = max{T1, T2} + D4,

T5 = max{T2, T3} + D5,

T6 = T4 + D6,

T7 = max{T3, T4, T5} + D7,

D = max{T6, T7}.
(For this small example, the recursion gives no real savings over the expression (27)
above based on enumeration of the paths, but in larger circuits the savings can be
dramatic.)

We now consider a specific instance of the problem, with parameters

ai = 1, αi = 1, βi = 1, γi = 1, i = 1, . . . ,7,

f1 = 1, f2 = 0.8, f3 = 1, f4 = 0.7, f5 = 0.7,

f6 = 0.5, f7 = 0.5, e1 = 1, e2 = 2, e3 = 1,

e4 = 1.5, e5 = 1.5, e6 = 1, e7 = 2,

and load capacitances Cout
6 = 10, Cout

7 = 10. Figure 5 shows optimal trade-off curves
of the minimum delay versus maximum allowed power, for three values of maximum
area.

A tutorial on geometric programming 93

Fig. 6 Left. Two-bar truss.
Right. Cross section of the bars

6.3 Truss design

We consider a simple mechanical design problem, expanded from an example given
in Bazaraa et al. (1993), p. 8. Figure 6 shows a two-bar truss with height 2h and
width w. The two bars are cylindrical tubes with inner radius r and outer radius R.
We are interested in determining the values of h, w, r , and R that minimize the weight
of the truss subject to a number of constraints.

The cross-sectional area A of the bars is given by

A = 2π(R2 − r2),

and the weight of the truss is proportional to the total volume of the bars, which is
given by

2A
√

w2 + h2.

This is the cost function in the design problem. Since A = 2π(R2 − r2), it is not
a generalized posynomial in the original design variables h, w, r , and R. We will
address this issue later.

The structure should be strong enough for two loading scenarios. In the first sce-
nario a vertical force F1 is applied to the node; in the second scenario the force is
horizontal with magnitude F2. The constraint that the truss should be strong enough
to carry the load F1 means that the stress caused by the external force F1 must not
exceed a given maximum value. To formulate this constraint, we first determine the
forces in each bar when the structure is subjected to the vertical load F1. From force
equilibrium and the geometry of the problem we can determine that the magnitudes
of the forces in two bars are equal and given by

√
w2 + h2

2h
F1.

The maximum force in each bar is equal to the cross-sectional area times the maxi-
mum allowable stress σ (which is a given constant). This gives us the first constraint:

√
w2 + h2

2h
F1 ≤ σA.

94 S. Boyd et al.

When F2 is applied, the magnitudes of the forces in two bars are again equal and
given by

√
w2 + h2

2w
F2,

which gives us the second constraint:

√
w2 + h2

2w
F2 ≤ σA.

We also impose limits

wmin ≤ w ≤ wmax, hmin ≤ h ≤ hmax

on the width and the height of the structure, and limits

1.1r ≤ R ≤ Rmax

on the outer bar radius.
The design problem is:

minimize 2A
√

w2 + h2

subject to F1
√

w2 + h2/h ≤ σA,

F2
√

w2 + h2/w ≤ σA,

wmin ≤ w ≤ wmax, hmin ≤ h ≤ hmax,

1.1r ≤ R ≤ Rmax.

This is not a GGP in the variables h, w, r , and R, since A = 2π(R2 − r2) is not a
monomial function of the variables. But a simple change of variables converts it to a
GGP. We will use A as a variable, instead of R. For R, we use

R =
√

A/(2π) + r2, (28)

which a generalized posynomial in r and A. Using the variables h, w, r , and A, the
problem above is almost a GGP. The only constraint that doesn’t fit the required form
is

1.1r ≤ R =
√

A/(2π) + r2.

But we can express this as 1.12r2 ≤ A/(2π) + r2, i.e.,

0.21r2 ≤ A/(2π),

which is compatible with GGP.

A tutorial on geometric programming 95

Fig. 7 An interconnect network
consisting of an input (the
voltage source and resistance)
driving a tree of 5 wire segments
(shown as boxes labeled
1, . . . ,5) and capacitive loads
C1, . . . ,C5

In summary, the truss design problem can be expressed as the GGP

minimize 2A
√

w2 + h2

subject to F1
√

w2 + h2/h ≤ σA,

F2
√

w2 + h2/w ≤ σA,

wmin ≤ w ≤ wmax, hmin ≤ h ≤ hmax,√
A/(2π) + r2 ≤ Rmax,

0.21r2 ≤ A/(2π),

with variables h, w, r , and A. (After solving this GGP, we can recover R from A

using (28).)

6.4 Wire sizing

We consider the problem of determining the widths w1, . . . ,wn of n wire segments
in an interconnect network in an integrated circuit. The interconnect network forms
a tree; its root is driven by the input signal (which is to be distributed), which is
modeled as a voltage source and a series resistance. Each wire segment has a given
capacitive load Ci connected to it. A simple interconnect network is shown in Fig. 7.

We will use a simple π model for each wire segment, as shown in Fig. 8. The wire
resistance and capacitances are given by

Ri = αi

li

wi

, Ci = βiliwi + γili ,

where li and wi are the length and width of the wire segment, and αi , βi , and γi

are positive constants that depend on the physical properties of the routing layer of
the wire segment. The wire segment resistance and capacitance are both posynomial
functions of the wire widths wi , which will be our design variables.

Substituting this π model for each of the wire segments, the interconnect network
becomes a resistor-capacitor (RC) tree. Each branch has the associated wire resis-
tance. Each node has several capacitances to ground: the load capacitance, the capac-
itance contributed by the upstream wire segment, and the capacitances contributed by

96 S. Boyd et al.

Fig. 8 Wire segment with
length li and width wi (left) and
its π model (right)

Fig. 9 RC tree model of the
interconnect network in Fig. 7
using the π model

each of the downstream wire segments. The capacitances at each node can be added
together. The resulting RC tree has resistances and capacitances which are posyno-
mial functions of the wire segment widths wi . As an example, the network in Fig. 7
yields the RC tree shown in Fig. 9, where

C̃0 = C1,

C̃1 = C1 + C1 + C2 + C4,

C̃2 = C2 + C2 + C3,

C̃4 = C4 + C4 + C5,

C̃5 = C5 + C5.

When the voltage source switches from one value to another, there is a delay before
the voltage at each capacitor converges to the new value. We will use the Elmore delay
to measure this. (The Elmore delay to capacitor i is the area under its voltage versus
time plot, for t ≥ 0, when the input voltage source switches from 1 to 0 at t = 0.) For
an RC tree circuit, the Elmore delay Dk to capacitor k is given by the formula

Dk =
n∑

i=1

C̃i

(∑
R’s upstream from capacitors k and i

)
.

The Elmore delay is a sum of products of C̃i ’s and Rj ’s, and therefore is a posynomial
function of the wire widths (since each of these is a posynomial function of the wire
widths). The critical delay of the interconnect network is the largest Elmore delay to
any capacitor in the network:

D = max{D1, . . . ,Dn}.

A tutorial on geometric programming 97

(This maximum always occurs at the leaves of the tree.) The critical delay is a gener-
alized posynomial of the wire widths, since it is a maximum of a set of posynomials.

As an example, the Elmore delays to (leaf) capacitors 3 and 5 in the RC tree in
Fig. 9 are given by

D3 = C̃3(R0 + R1 + R2 + R3) + C̃2(R0 + R1 + R2) + C̃0R0 + C̃1(R0 + R1)

+ C̃4(R0 + R1) + C̃5(R0 + R1) + C̃6(R0 + R1),

D5 = C̃5(R0 + R1 + R4 + R5) + C̃4(R0 + R1 + R4) + C̃0R0 + C̃1(R0 + R1)

+ C̃2(R0 + R1) + C̃3(R0 + R1).

For this interconnect network, the critical delay is D = max{D3,D5}.
Now we can formulate the wire sizing problem, i.e., the problem of choosing the

wire segment widths w1, . . . ,wn. We impose lower and upper bounds on the wire
widths,

wmin
i ≤ wi ≤ wmax

i ,

as well as a limit on the total wire area,

l1w1 + · · · + lnwn ≤ Amax.

Taking critical delay as objective, we obtain the problem

minimize D

subject to wmin
i ≤ wi ≤ wmax

i , i = 1, . . . , n,

l1w1 + · · · + lnwn ≤ Amax,

(29)

with variables w1, . . . ,wn. This is a GGP.
This formulation can be extended to use more accurate models of wire segment

resistance and capacitance, as long as they are generalized posynomials of the wire
widths. Wire sizing using Elmore delay goes back to Fishburn and Dunlop (1985);
for some more recent work on wire (and device) sizing via Elmore delay, see, e.g.,
Shyu et al. (1988), Sapatnekar et al. (1993), Sapatnekar (1996).

7 More transformations

In this section we describe a few more advanced techniques used to express problems
in GP (or GGP) form.

7.1 Function composition

In Sect. 5.4 we described methods for handling problems whose objective or con-
straint functions involve composition with the positive power function or the max-
imum function. It’s possible to handle composition with many other functions. As

98 S. Boyd et al.

a common example, we consider the function 1/(1 − z). Suppose we have the con-
straint

1

1 − q(x)
+ f (x) ≤ 1, (30)

where q and f are generalized posynomials, and we have the implicit constraint
q(x) < 1. We replace the first term by a new variable t , along with the constraint
1/(1 − q(x)) ≤ t , which can be expressed as the generalized posynomial inequality
q(x) + 1/t ≤ 1, to obtain

t + f (x) ≤ 1, q(x) + 1/t ≤ 1.

This pair of inequalities is equivalent to the original one (30) above, using the same
argument as in Sect. 5.4.

A more general variation on this transformation can be used to handle a constraint
such as

p(x)

r(x) − q(x)
+ f (x) ≤ 1,

where r is monomial, p, q , and f are generalized posynomials, and we have the
implicit constraint q(x) < r(x). We replace this inequality constraint with

t + f (x) ≤ 1, q(x) + p(x)/t ≤ r(x),

where t is a new variable.
The idea that composition of a generalized posynomial with 1/(1 − z) can be

handled in GP can be guessed from its Taylor series,

1

1 − z
= 1 + z + z2 + · · · ,

which is a limit of polynomials with positive coefficients. This analysis suggests that
we can handle composition of a generalized posynomial with any function whose
series expansion has no negative coefficients, at least approximately, by truncating
the series. In some cases (such as 1/(1 − z)), the composition can be handled exactly.

Another example is the exponential function. Since the Taylor series for the expo-
nential has all coefficients positive, we can guess that the exponential of a generalized
posynomial can by handled as it were a generalized posynomial. One good approxi-
mation is

ef (x) ≈ (1 + f (x)/a)a,

where a is large. If f is a generalized posynomial, the right-hand side is a generalized
posynomial. This approximation is good for small enough f (x); if f (x) is known to
be near, say, the number b, we can use the approximation

ef (x) = ebef (x)−b ≈ eb(1 + (f (x) − b)/a)a,

which is a generalized posynomial provided a > b.
It’s also possible to handle exponentials of posynomials exactly, i.e., without ap-

proximation. We replace a term of the form ef (x) with a new variable t , which can

A tutorial on geometric programming 99

be used anywhere a posynomial can be, and we add the constraint ef (x) ≤ t to our
problem. This results in a problem that would be a GP, except for the exponential
constraint ef (x) ≤ t . To solve the problem, we carry out the same logarithmic trans-
formation used to solve GPs. First we take the logarithm of the original variables x

as well as the new variable t , so our variables become y = logx and s = log t , and
then we take the logarithm of both sides of each constraint. The posynomial objec-
tive, posynomial inequality, and monomial equality constraints transform as usual
to a convex objective and inequality constraints, and linear equality constraints. The
exponential constraint becomes

log ef (ey) ≤ log es,

i.e., f (ey) ≤ s, which is a convex constraint on y and s, since f (ey) is a convex
function of y. Thus, the logarithmic transformation yields a convex problem, which
is not quite the same as the one obtained from a standard GP, but is still easily solved.

In summary, exponential terms can be handled exactly, but with the disadvantage
of requiring software that can handle a wider class of problems than GP. For this rea-
son, the most common approach is to use an approximation such as the one described
above.

7.2 Additive log terms

In the preceding section, we saw that the exponential of a generalized posynomial can
be well approximated as a generalized posynomial, and therefore used in the objective
or inequality constraints, anywhere a generalized posynomial can. It turns out that the
logarithm of a generalized posynomial can also be (approximately) incorporated in
the inequality constraints, but in more restricted ways. Suppose we have a constraint
of the form

f (x) + logq(x) ≤ 1,

where f and q are generalized posynomials. This constraint is a bit different from the
ones we have seen so far, since the left-hand side can be negative. To (approximately)
handle this constraint, we use the approximation

logu ≈ a(u1/a − 1),

valid for large a, to obtain

f (x) + a(q(x)1/a − 1) ≤ 1.

This inequality is not a generalized posynomial inequality, but it can be expressed as
the generalized posynomial inequality

f (x) + aq(x)1/a ≤ 1 + a.

Like exponentials, additive log terms can be also be handled exactly, again with
the disadvantage of requiring specialized software. Using the variables y = logx, we
can write f (x) + logq(x) ≤ 1 as

f (ey) + logq(ey) ≤ 1.

This is a convex constraint, and so can be handled directly.

100 S. Boyd et al.

7.3 Mixed linear geometric programming

In generalized geometric programming, the right-hand side of any inequality con-
straint must be a monomial. The right-hand side of an inequality constraint can never
be a sum of two or more terms (except in trivial cases, such as when one of the terms
is a multiple of the other). There is one special case, however, when it is possible to
handle constraints in which the right-hand side is a sum of terms. Consider a problem
of the form

minimize f0(x) + h0(z)

subject to fi(x) ≤ hi(z), i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

(31)

where the variables are x ∈ Rn and z ∈ Rk , f0, . . . , fm are generalized posynomi-
als, g1, . . . , gp are monomials, and h0, . . . , hm are affine, i.e., linear functions plus
a constant. This problem form can be thought of as a combination or hybrid of a
GGP and a linear program (LP): without the variable x, it reduces to an LP; without
the z variable (so the affine functions reduce to constants), it reduces to a GGP. For
this reason the problem (31) is called a mixed linear geometric program. In a mixed
linear geometric program, we partition the optimization variables into two groups:
the variables x1, . . . , xn, which appear in the posynomials and monomials, and the
variables z1, . . . , zk , which appear in the affine function part of the objective, and on
the right-hand side of the inequality constraints.

Mixed linear geometric programs can be solved very efficiently, just like GGPs.
The method uses the usual logarithmic transform for the variables x1, . . . , xn, but
keeps the variables z1, . . . , zk as they are; moreover, we do not take the logarithm of
both sides of the mixed constraints, as we do for the standard posynomial inequality
or monomial equality constraints. This transformation yields

fi(e
y) ≤ hi(z), i = 1, . . . ,m,

which are convex constraints in y and z, so the mixed linear geometric program
becomes a convex optimization problem. This problem is not the same as would be
obtained from a GP or GGP, but nevertheless is easily solved.

7.4 Generalized posynomial equality constraints

In a GGP (or GP), the only equality constraints allowed involve monomials. In some
special cases, however, it is possible to handle generalized posynomial equality con-
straints in GGP. This idea can be traced back at least to 1978 (Wilde 1978).

We first describe the method for the case with only one generalized posynomial
equality constraint (since it is readily generalizes to the case of multiple generalized
posynomial equality constraints). We consider the problem

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

h(x) = 1,

(32)

A tutorial on geometric programming 101

with optimization variables x1, . . . , xn, where gi are monomials, and fi and h are
generalized posynomials. Without the last generalized posynomial equality con-
straint, this is a GGP. With the last constraint, however, the problem is very difficult
to solve, at least globally. (It is a special case of a signomial program, discussed in
Sect. 9.)

We first form the GGP relaxation of the problem (32),

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

h(x) ≤ 1,

(33)

by replacing the generalized posynomial equality with an inequality. This problem is
a GGP and therefore easily solved. It is called a relaxation since we have relaxed (or
loosened) the last equality constraint, by allowing h(x) < 1 as well as h(x) = 1.

Let x̄ be an optimal solution of the relaxed problem (33). If we have h(x̄) = 1,
then x̄ is also an optimal solution of the original problem (32), and we are done. Of
course this need not happen; we can have h(x̄) < 1, in which case x̄ is not feasible
for the original problem. In some cases, though, we can modify the point x̄ so that it
remains optimal for the relaxation (33), but also satisfies the generalized posynomial
equality constraint (and therefore is optimal for the original problem (32)).

Suppose we can find a variable xk with the following properties:

• The variable xk does not appear in any of the monomial equality constraint func-
tions.

• The objective and inequality constraint functions f0, . . . , fm are all monotone de-
creasing in xk , i.e., if we increase xk (holding all other variables constant), the
functions f0, . . . , fm decrease, or remain constant.

• The generalized posynomial function h is monotone strictly increasing in xk , i.e.,
if we increase xk (holding all other variables constant), the function h increases.

Now suppose we start with the point x̄, and increase xk , i.e., we consider the point

x̃ = (x̄1, . . . , x̄k−1, x̄k + u, x̄k+1, . . . , x̄n),

where u is a scalar that we increase from u = 0. By the first property, the monomial
equality constraints are unaffected, so the point x̃ satisfies them, for any value of u.
By the second property, the point x̃ continues to satisfy the inequality constraints,
since increasing u decreases (or keeps constant) the functions f1, . . . , fm. The same
argument tells us than the point x̃ has an objective value that is the same, or better
than, the point x̄. As we increase u, h(x̃) increases. Now we simply increase u until
we have h(x̃) = 1 (h can be increased as much as we like, as a consequence of the
convexity of logh(ey), where x = ey). The resulting x̃ is an optimal solution of the
problem (32). Increasing xk until the generalized posynomial equality constraint is
satisfied is called tightening.

The same method can be applied when the monotonicity properties are reversed,
i.e., if f0, . . . , fm are monotone increasing functions of xk , and h is strictly monotone
decreasing in xk . In this case we tighten by decreasing xk until the generalized posyn-
omial constraint is satisfied.

102 S. Boyd et al.

As with the other tricks and transformations described, this one can be automated.
Starting with a problem, with the objective and constraint functions given as ex-
pressions involving variables, powers, sum, and maximum, it is easy to check the
monotonicity properties of the functions, and to determine if a variable xk with the
required monotonicity properties exists.

The same idea can be used to solve a problem with multiple generalized posyno-
mial equality constraints,

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

hi(x) = 1, i = 1, . . . , k,

(34)

where fi and hi are generalized posynomials, and gi are monomials. We form and
solve the GGP relaxation

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

hi(x) ≤ 1, i = 1, . . . , k,

(35)

and let x̄ denote an optimal solution. In this case, we need a different variable for each
generalized posynomial equality constraint, with the monotonicity properties given
above. We re-order the variables so that x1 is the variable we increase to cause h1(x)

to increase to one, x2 is the variable we increase to cause h2(x) to increase to one, and
so on. The simple method of increasing or decreasing one of the variables until the
equality constraint is satisfied cannot be used in this case, since increasing x1 to make
h1(x) increase to one can decrease h2(x) (and vice versa). But we can find a common
adjustment of the variables x1, . . . , xk that results in all the equality constraints being
tightened simultaneously, by forming and solving an auxiliary GGP:

maximize x1 · · ·xk

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

hi(x) ≤ 1, i = 1, . . . , k,

f0(x) ≤ f �,

(36)

where f � is the optimal value of the relaxed problem (35). The feasible set of this
problem is the optimal set of the relaxed problem (35); the objective in the auxil-
iary problem is to maximize the product of the variables used to tighten the equality
constraints. Any optimal solution of this auxiliary problem (36) is an optimal solu-
tion of the original problem (34). (We can use any objective that puts pressure on the
variables x1, . . . , xk to increase; for example, we can minimize 1/x1 + · · · + 1/xk .)

As in the case of a single generalized posynomial constraint, it is easy to automate
the task of finding a set variables used to tighten the equality constraints, and form
the auxiliary problem (36).

A tutorial on geometric programming 103

8 Approximation and fitting

In this section we first address some fundamental theoretical questions:

• What functions can be approximated by monomials or generalized posynomials?
• When can an optimization problem be approximated as a GGP?

We then discuss practical methods for approximating a given function, or some given
data, by a monomial or generalized posynomial function. These fitting and approx-
imation methods can be used to derive GP compatible approximate expressions and
problem formulations.

8.1 Theory

Suppose f is a positive function of positive variables x1, . . . , xn. We consider the
question: When can f be approximated by a monomial or generalized posynomial
function?

At least in principle, the answer is simple. We first form the logarithmically trans-
formed function

F(y) = logf (ey)

(which is used to transform a GP to a convex problem). Then we have the following:

• f can be approximated by a monomial if and only if F can be approximated by an
affine function, i.e., a constant plus a linear function.

• f can be approximated by a generalized posynomial if and only if F can be ap-
proximated by a convex function.

Here we are being informal about what exactly we mean by ‘can be approximated’,
but the statements can easily be made precise.

We have already seen that when f is a monomial, the logarithmically transformed
function F is affine, and that when f is a generalized posynomial, F is convex. It’s
easy to show the converse for monomials: if F is affine, then f is a monomial. The
interesting part here is the converse for generalized posynomials, i.e., the observation
that if F can be approximated by a convex function, then f can be approximated by
a generalized posynomial.

To show this, suppose F ≈ φ, where φ is a convex function. A basic result of
convex analysis is that any convex function can be arbitrarily well approximated by a
piecewise linear convex function, expressed as a maximum of a set of affine functions;
see, e.g., Boyd and Vandenberghe (2004). Thus, we have bki for which

F(y) ≈ φ(y) ≈ max
i=1,...,p

(b0i + b1iy1 + · · · + bniyn).

Taking the exponential of both sides, and changing variables back to x, we have

f (x) ≈ max
i=1,...,p

eb0i xb1i · · ·xbni .

The right-hand side is the maximum of p monomials, and is therefore a generalized
posynomial. (Such a function is sometimes called a max-monomial.)

104 S. Boyd et al.

Fig. 10 The three functions
given in (37), on a log-log plot

It can be difficult to determine whether a function of many variables is convex (or
nearly convex), but there are a number of techniques that can be used to verify or
disprove convexity (see Boyd and Vandenberghe 2004 for much more on this topic).
For the special case n = 1, convexity is readily determined by simply plotting the
function F(y), and checking that it has positive (upward) curvature. This is the same
as plotting f (x) on a log-log plot, and checking that the resulting graph has positive
curvature. For functions of many variables, we can use the fact that a function is
convex only if it is convex when restricted to any line. Thus, we can plot F(y0 +
tv) versus t , for various values of y0 and v. If any of these plots reveal negative
(downward) curvature, then F is not convex.

As an example, we consider the three functions of one variable,

tanh(x),
0.5

1.5 − x
,

2√
π

∫ ∞

x

e−t2
dt, (37)

and ask whether each can be approximated by a monomial or generalized posynomial,
over the range 0.01 ≤ x ≤ 1. These functions are plotted on a log-log plot in Fig. 10.
From the figure we can see that the first function can be reasonably well fit by a
monomial, since its graph is relatively straight. The second function can be fit by a
generalized posynomial, since its graph is convex, i.e., curves upward, on this log-log
plot. The third function cannot be fit very well by a generalized posynomial, since its
graph exhibits substantial downward curvature. (Note, however, that the reciprocal
of the third function has upward curvature, and therefore can be fit by a generalized
posynomial.)

Convexity of F can be stated in terms of f , our original function. It means that f

must satisfy the inequality (8),

f (xθ
1 x̃1−θ

1 , . . . , xθ
n x̃1−θ

n) ≤ f (x1, . . . , xn)
θf (x̃1, . . . , x̃n)

1−θ ,

for any θ with 0 ≤ θ ≤ 1. In other words, when f is evaluated at a weighted geometric
mean of two points, it cannot be more than the weighted geometric mean of the
function f evaluated at the two points. In Sect. 2.5, we noted that this inequality is
satisfied by posynomials; what we know now is that its approximate satisfaction is
the necessary and sufficient condition for a function to have a generalized posynomial
approximation.

A tutorial on geometric programming 105

We conclude this section by asking: When can an optimization problem of the
form

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

(38)

with positive variables x1, . . . , xn, be approximated by a GGP? From the discussion
above, we see that the answer is:

• The transformed objective and inequality constraint functions Fi(y) = logfi(e
y)

must be nearly convex.
• The transformed equality constraint functions Gi(y) = logGi(e

y) must be nearly
affine.

8.2 Local monomial approximation

We consider the problem of finding a monomial approximation of a differentiable
positive function f near a point x (with xi > 0). Asking for a monomial ap-
proximation of f (x) near x corresponds to asking for an affine approximation of
F(y) = logf (ey) near y = logx. But such an approximation is provided by the first
order Taylor approximation of F :

F(z) ≈ F(y) +
n∑

i=1

∂F

∂yi

(zi − yi), (39)

which is valid for z ≈ y. (The derivatives here are evaluated at y.)
We have

∂F

∂yi

= 1

f (ey)

∂f

∂xi

eyi = xi

f (x)

∂f

∂xi

,

where the partial derivatives of f are evaluated at x. Using this formula, and taking
the exponential of (39), we get

f (ez) ≈ f (x)

n∏

i=1

exp

(
xi

f (x)

∂f

∂xi

(zi − yi)

)
.

Defining wi = ezi , we can express this as

f (w) ≈ f (x)

n∏

i=1

(
wi

xi

)ai

, (40)

where

ai = xi

f (x)

∂f

∂xi

(evaluated at x). The approximation (40) is valid for w ≈ x; the right-hand side is the
best local monomial approximation of f near x.

106 S. Boyd et al.

8.3 Monomial fitting

Suppose we are given data points

(x(i), f (i)), i = 1, . . . ,N,

where x(i) ∈ Rn are positive vectors and f (i) are positive constants. The goal is to fit
the data with a monomial f (x) = cx

a1
1 · · ·xan

n . In other words, we want to find c > 0
and a1, . . . , an so that

f (x(i)) ≈ f (i), i = 1, . . . ,N.

This monomial fitting task can be done several ways.
The simplest approach follows the method used for monomial function approxi-

mation. We let y(i) = logx(i), and replace f (x(i)) ≈ f (i) with logf (ey(i)
) ≈ logf (i),

to get

log c + a1y
(i)
1 + · · · + any

(i)
n ≈ logf (i), i = 1, . . . ,N.

This is a set of linear (approximate) equalities, in the unknowns log c, a1, . . . , an. We
can find an approximate solution via least-squares, by choosing log c and a1, . . . , an

to minimize the sum of the squared errors,

N∑

i=1

(log c + a1y
(i)
1 + · · · + any

(i)
n − logf (i))2.

(In other words, we use simple linear regression to find log c and a1, . . . , an, given
the data y(1), . . . , y(N) and f (1), . . . , f (N).)

This simple least-squares method can be modified and extended in several ways.
We can introduce weights in the least-squares objective, in order to give more or less
weight to the individual errors. We can also regularize, by adding a term

λ

n∑

i=1

a2
i

to the least-squares objective, where λ is a positive constant. By adding this term
to the least-squares objective (which penalizes the approximation error) we add a
penalty for large values of the exponents ai . The parameter λ is chosen to give a
trade-off between good fit and small values of the exponents. We can also regularize
with a term of the form

λ

n∑

i=1

|ai |,

which results in a problem that can be posed and solved as a quadratic program (QP).
This regularization tends to find good monomial fits with many, or at least several, of
the coefficients ai equal to zero. (See Boyd and Vandenberghe 2004, Chap. 6.5.) In
other words, we tend to fit the data using monomials that (where possible) depend on
only a few of the variables.

A tutorial on geometric programming 107

Another useful modification of the basic least-squares method is to add constraints
(such as lower and upper bounds) on the unknowns log c and a1, . . . , an. (The re-
sulting problem can be solved using quadratic programming.) For more on fitting
methods, see Boyd and Vandenberghe (2004), Chap. 6.

One drawback of using a simple fitting method applied to the logarithm of the data
is that the error or residual is implicitly taken to be

| logf (x(i)) − logf (i)|.
While this residual clearly is small when f (x(i)) ≈ f (i), it may not be exactly
the residual we care about. For example, we might care about the absolute error,
|f (x(i)) − f (i)|, or the relative error,

ri = |f (x(i)) − f (i)|
f (i)

.

The relative error is closely related to the logarithmic residual, but not exactly the
same. For f (x(i)) > f (i), we have

| logf (x(i)) − logf (i)| = log(1 + ri),

but for f (x(i)) < f (i), we have

| logf (x(i)) − logf (i)| = log

(
1 + |f (x(i)) − f (i)|

f (x(i))

)
> log(1 + ri).

Thus, the logarithmic residual | logf (x(i)) − logf (i)| puts more cost on an approxi-
mation that underestimates the data, compared to the relative error ri .

If we do care about the relative error (as opposed to the logarithmic residual im-
plicitly used in the regression method described above) we can choose the unknowns
to minimize

N∑

i=1

r2
i =

N∑

i=1

(
f (x(i)) − f (i)

f (i)

)2

.

This is a nonlinear least-squares problem, which can be solved (usually) using
methods such as the Gauss-Newton method (Bertsekas 1999; Luenberger 1984;
Nocedal and Wright 1999). Unlike linear least-squares methods, nonlinear least-
squares methods are not guaranteed to converge to the global minimizer. But these
methods work well in practice, if the initial guess is found using logarithmic regres-
sion (as described above).

One problem involving the relative error is readily solvable, without resorting to
nonlinear least-squares methods. Consider the problem of choosing c and a1, . . . , an

to minimize

max
i=1,...,N

|f (x(i)) − f (i)|
f (i)

,

the maximum relative fitting error. We can solve this problem exactly, as follows.
We select a target value t of maximum relative error, and will try to determine if it

108 S. Boyd et al.

can be achieved by some choice of c and a1, . . . , an. This is the same as determining
whether the inequalities

|f (x(i)) − f (i)|
f (i)

≤ t, i = 1, . . . ,N

are feasible (by choice of c and a1, . . . , an). (We can take 0 < t < 1.) We can write
these inequalities as

f (i)(1 − t) ≤ f (x(i)) ≤ f (i)(1 + t), i = 1, . . . ,N.

Now we use the (by now, standard) method of taking logarithms, and using y(i) =
logx(i), to express these as

log(f (i)(1 − t)) ≤ log c + a1y1 + · · · + anyn ≤ log(f (i)(1 + t)).

This is a set of linear inequalities in the unknowns log c and a1, . . . , an, and is easily
solved using linear programming. We can use a bisection method to find the smallest
value of t for which the set of inequalities is feasible. (See Boyd and Vandenberghe
2004.)

To illustrate these ideas, we consider the function

f (x) =
√

1 − (x − 1)2, (41)

over the interval [0.1,1]. The best local monomial approximation to f , at the point
x = 0.5, is

f̂loc(x) = 1.0911x0.3333.

This monomial agrees with f at x = 0.5, and gives a very good approximation near
x = 0.5.

To give a fit over the whole interval [0.1,1], we first generate 100 data points
(x(i), f (x(i))), with x(i) uniformly spaced over the interval [0.1,1]. The monomial
obtained by a least-squares fit of an affine function to the logarithmically transformed
data (logx(i), logf (x(i))) is

f̂ls(x) = 1.0695x0.3549.

The monomial that minimizes the maximum relative error (for the given data points)
is

f̂maxrel(x) = 1.0539x0.3606.

The three monomial approximations f̂loc, f̂ls, and f̂maxrel are plotted in Fig. 11,
along with the original function f . The associated fractional error distributions (for
the 100 data points used) are shown in Fig. 12. As expected, the local approximation
gives a very good fit near x = 0.5, with the end-points x = 0.1 and x = 1 giving rela-
tive errors around 16%. The least-squares logarithmic approximation gives better fit

A tutorial on geometric programming 109

Fig. 11 The solid curve is
f (x) =

√
1 − (x − 1)2. f̂loc(x):

best monomial approximation
near x = 0.5. f̂ls(x): monomial
approximation obtained via
least-squares fitting to
logarithmically transformed
data. f̂maxrel(x): monomial
approximation that minimizes
maximum relative error

Fig. 12 Relative error
distributions for the three
monomial approximations f̂loc,
f̂ls, and f̂maxrel

across the interval, with most errors under 3%, but maximum relative error exceed-
ing 8%. The minimax relative error approximation has a very tight error distribution,
with maximum relative error only 5.3%.

One useful extension of monomial fitting is to include a constant offset, i.e., to fit
the data (x(i), f (i)) to a model of the form

f (x) = b + cx
a1
1 · · ·xan

n ,

where b ≥ 0 is another model parameter. Here f is a posynomial, but with a very
special form: a monomial plus a constant. To find such a fit, we simply use monomial
modeling to fit the modified data points (x(i), f (i) − b), for various values of b, and
choose the one with the best fit.

The idea of using linear regression and fitting techniques on logarithmically trans-
formed data can be applied to several problems beyond monomial fitting. As an ex-

110 S. Boyd et al.

ample, suppose we have some positive vectors

x(1), . . . , x(N) ∈ Rn,

and wish to find (approximate) monomial relations that the vectors satisfy, i.e., we
wish to find monomials g1, . . . , gk for which

gj (x
(i)) ≈ 1, j = 1, . . . , k, i = 1, . . . ,N. (42)

This can be done using the singular value decomposition (SVD), or canonical corre-
lations, applied to logarithmically transformed data. We let y(i) = logx(i), and form
the matrix

Y = [y(1)y(2) · · ·y(N)] ∈ Rn×N.

The monomial relations (42) correspond to vectors a1, . . . , ak ∈ Rn+1 for which

[YT 1]aj ≈ 0, j = 1, . . . , k, (43)

where 1 denotes a vector with all components one. To find such vectors (and also
the number k), we compute the SVD of the matrix [YT 1]. The number of small
singular values gives us the number of monomial approximate relations in the data,
and the vectors aj are the left singular vectors associated with small singular val-
ues.

8.4 Max-monomial fitting

We consider the problem of fitting given data points (x(i), f (i)), i = 1, . . . ,N , with a
max-monomial function, i.e., one of the form

f (x) = max
k=1,...,K

fk(x),

where f1, . . . , fK are monomials. When the number of terms K is not specified, this
problem can be solved exactly by the usual logarithmic transform, which reduces
it to the problem of finding the best convex piecewise linear fit to some data. This
problem can be posed as a large quadratic program and therefore solved; see Boyd
and Vandenberghe (2004), Chap. 6.5.5. Unfortunately, this approach often leads to a
number of terms that is very large, and therefore not practical. On the other hand, it
can be very useful to know what the best max-monomial fit to the data is, when there
is no limit on the number of terms.

We now concentrate on the case when the number of terms K (or an upper bound
on it) is fixed, and presumably not too large. Unlike the monomial fitting problem
(which corresponds to the case K = 1), finding the best K-term max-monomial fit
to the data is not a simple one. But there is a relatively simple method, based on
monomial fitting and data point clustering, that works well in practice (Magnani and
Boyd 2006).

The algorithm is closely related to the K-means clustering algorithm (Hastie et
al. 2001), a well known method for clustering or partitioning a set of points into
K subsets, so as to minimize a sum-of-squares criterion. The general algorithm is
outlined below:

A tutorial on geometric programming 111

Simple max-monomial data fitting algorithm.

given initial monomials f1(x), . . . , fK(x)

repeat
for k = 1, . . . ,K

find all data points x(j) for which fk(x
(j)) = f (x(j))

(i.e., data points at which fk is the largest of the monomials)
update fk by carrying out a monomial fit to these data points

until no further improvement occurs

This algorithm first clusters the data points into groups, for which the different
monomials give the maximum value. Then, for each cluster of data points, the asso-
ciated monomial is updated with a monomial fit to the data points. This is repeated
until convergence. The algorithm is not guaranteed to converge, but with real data al-
most always does. The final max-monomial approximation can depend on the initial
max-monomial, so the algorithm can be run from several initial max-monomials, and
the best final fit taken. During the algorithm, it can happen that no points are assigned
to one of the monomials. In this case we can just eliminate this monomial, and pro-
ceed with K − 1 terms. For this reason, the final max-monomial approximation can
have fewer than K terms.

One simple method for generating an initial max-monomial from which to start
the algorithm is as follows. We first fit a single monomial to the data (using the
methods described above), and then form K versions of it by randomly perturbing
the exponents. We express the monomial fit as

fmon(x) = c(x1/x1)
a1 · · · (xn/xn)

an,

where

xi =
(

N∏

i=1

x
(1)
i

)1/N

is the geometric mean of the ith component of the data points (i.e., the average value
of the ith component on a logarithmic scale). We then form our monomials as

fi(x) = c(x1/x1)
a1+δi,1 · · · (xn/xn)

an+δi,n ,

where δi,j are independent random variables. This generates K monomials, all near
the original one, that are slightly different.

To illustrate this method for max-monomial fitting, we consider a numerical ex-
ample. The data are generated as samples of the function

f (x) = e(logx1)
2+(logx2)

2
,

with N = 500 data points drawn from a uniform distribution over the region 0.1 ≤
xi ≤ 1. The corresponding logarithmically transformed function is

F(y) = logf (ey) = y2
1 + y2

2 ,

112 S. Boyd et al.

Fig. 13 Relative error
distributions for max-monomial
approximations, with three
terms (̂h3), five terms (̂h5), and
seven terms (̂h7)

which is a convex quadratic function of y. According to the theory, then, f can be
approximated arbitrarily well by a max-monomial with sufficiently many terms. (But
we note that max-monomial fitting works when the data do not come from a function
that can be arbitrarily well approximated by a max-monomial; in this case, the fitting
error does not decrease to zero as the number of monomial terms increases.)

We use the algorithm above, with the simple least-squares logarithmic approxi-
mation method for monomial fitting, to find K-term max-monomial approximations,
ĥK(x), for K = 3, 5, and 7. For this example, the final max-monomial found is
(nearly) independent of the initial max-monomial, chosen randomly as described
above. The associated residual error distributions for the three max-monomial ap-
proximations are shown in Fig. 13.

8.5 Posynomial fitting

General nonlinear least-squares methods can be used to find the coefficients and ex-
ponents in a posynomial with K terms,

f̂ (x) =
K∑

k=1

ckx
a1k

1 x
a2k

2 · · ·xa3k

3 ,

that minimize, e.g., the sum of squares of the relative errors,

N∑

i=1

r2
i =

N∑

i=1

(
f (i) − f (x(i))

f (i)

)2

(along with the constraint ck ≥ 0). Methods for this type of problem, such as the
Gauss-Newton method, or sequential quadratic programming, are local, like the max-
monomial fitting method described above. This means that they cannot guarantee
convergence to the true minimum; indeed, the final posynomial approximation ob-
tained can depend on the initial one. But these methods often work well in practice,

A tutorial on geometric programming 113

when initialized with reasonable starting posynomials. Because the final posynomial
found depends on the starting posynomial, it is common to run the algorithm from
several different starting points, and to take the best final posynomial found.

We can find a starting posynomial using a variation on the method used to initialize
the max-monomial fitting algorithm. We first find a monomial fit of the data,

fmon(x) = c(x1/x1)
a1 · · · (xn/xn)

an .

We express this as a sum of K identical monomials,

fmon(x) =
K∑

k=1

(c/K)(x1/x1)
a1 · · · (xn/xn)

an .

Now we perturb the exponents in the monomial terms to give a posynomial with K

different terms:

f̂ (x) =
K∑

k=1

(c/K)(x1/x1)
a1+δi,1 · · · (xn/xn)

an+δi,n ,

where δi,j are independent random variables. We use this posynomial as the starting
point for a nonlinear least-squares method for fitting.

We illustrate posynomial fitting using the same data points as those used in the
max-monomial fitting example given in Sect. 8.4. We used a Gauss-Newton method
to find K-term posynomial approximations, ĥK(x), for K = 3, 5, 7, which (locally,
at least) minimize the sum of the squares of the relative errors. In this case, the final
posynomial obtained does depend substantially on the starting posynomial, so for
each K , we solved 20 nonlinear fitting problems with different initial exponents δi,n

drawn from normal distributions with zero mean and standard deviation 0.2|ai |, and
take as the final posynomial approximation the best among the 20. The associated
residual error distributions (for the 500 data points used) for the three posynomial
approximations ĥK(x), K = 3, 5, 7 are shown in Fig. 14.

Comparing these error distributions to the ones obtained from max-monomial fit-
ting, we see that posynomial fitting gives a much better fit for the same number of
monomial terms. This is often the case when the original data or function is smooth.
But the opposite can also occur: for some data, a max-monomial fit can be much
better than a posynomial fit with the same number of terms.

We mention one more method for posynomial (and generalized posynomial) fit-
ting. Suppose that we choose a set of r basis functions φ1, . . . , φr , which are them-
selves generalized posynomials. These could be monomials, for example, whose ex-
ponents are chosen on the basis of some prior knowledge of how the variables affect
the function value. Once we have fixed the basis functions, we can find the coeffi-
cients ck for the approximation

f̂ (x) = c1φ1(x) + · · · + crφr(x),

that minimizes the sum of squares of relative errors, subject to the constraint ck ≥ 0,
as a quadratic programming problem. (This we can solve exactly; we do not have to

114 S. Boyd et al.

Fig. 14 Relative error
distributions for the posynomial
approximations obtained via
nonlinear least-squares fitting.
ĥ3: 3-term posynomial fitting.
ĥ5: 5-term posynomial fitting.
ĥ7 : 7-term posynomial fitting

worry about convergence to a local minimum as in max-monomial or general posyn-
omial fitting.)

One interesting variant on this approach is to take a very large number of basis
functions, more than we would consider using in the final approximation. We then
add to the objective a regularization term of the form λ(c1 + · · · + cr), with λ > 0.
This tends to find solutions with many of the ck equal to zero. Thus, the quadratic
program effectively chooses a small subset of the basis functions. (See Boyd and
Vandenberghe 2004, Chap. 6.5.)

9 Extensions

In this section we describe some extensions of GP.

9.1 Signomial programming

A signomial is a function with the same form as a posynomial (i.e., (2)), where the
coefficients cj are allowed to be negative. A signomial program (SGP) is a general-
ization of a geometric program, which has the form of a GP, but the objective and
constraint functions can be signomials:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

(44)

where fi and gi are signomial functions. (As in GP, there is an implicit constraint
that the variables are positive, i.e., xi > 0.) Unfortunately some authors use the term
‘generalized geometric program’ to refer to a signomial program.

From a computational point of view, there is a huge difference between a GP (or a
GGP) and an SGP. While the globally optimal solution of a GP can always be found
efficiently, only a locally optimal solution of an SGP can be computed efficiently.

A tutorial on geometric programming 115

(It’s possible to compute the globally optimal solution of an SGP, but this can require
prohibitive computation, even for relatively small problems.)

We describe one general method for finding a local solution of an optimization
problem that has the same form as a GP, but the objective and inequality constraint
functions are not posynomials, and the equality constraint functions are not mono-
mials. (SGP is a special case of this.) At each step we have a current guess x(k). For
the objective and each constraint function, we find the best local monomial approx-
imation near the current guess x(k), using the formula (40). We replace the original
functions in the optimization problem with these monomial approximations, which
results in a GP (in fact, a linear program after the logarithmic transformation). Of
course, we cannot trust these approximations for points that are not close to the cur-
rent guess x(k), so we add some trust region constraints to the problem, which limit
how much the variables are allowed to differ from the current guess. We might, for
example, form the problem

minimize f̂0(x)

subject to f̂i (x) ≤ 1, i = 1, . . . ,m,

ĝi(x) = 1, i = 1, . . . , p,

(1/1.1)x
(k)
i ≤ xi ≤ 1.1x

(k)
i , i = 1, . . . , n,

(45)

where f̂i is the local monomial approximation of fi at x(k), and ĝi is the local mono-
mial approximation of gi at x(k). The problem (45) is a GP, and therefore can be
solved efficiently. Its solution is taken as the next iterate x(k+1). The algorithm con-
sists of repeating this step until convergence.

This method is local: It need not converge (but very often does), and can converge
to a point that is not the global solution. But if the problem is not too far from a GP,
and the starting guess x(0) is good, it can work well in practice.

There are many variations on this method. For example, we do not need to form a
monomial approximation of any constraint that is already in GP form in the original
problem; if fi is a posynomial in the original problem (44), then we can leave fi in the
problem (45) used to generate the next iterate. This idea can be taken a step further,
when the original problem is an SGP, by forming a monomial approximation only of
the offending terms in each constraint, i.e., those that have negative coefficients. A
general signomial inequality constraint can be expressed as

f (x) = p(x) − q(x) ≤ 1,

where p and q are both posynomials. (Here p consists of the terms in the signo-
mial f with positive coefficients, and −q consists of the terms in f with negative
coefficients.) We write the signomial inequality as

p(x) ≤ 1 + q(x),

and then form a monomial approximation of 1 + q(x), say, r(x), at the current point
x(k), and substitute the constraint

p(x) ≤ r(x)

(which is GP compatible) in the GP (45) used to form the next iterate.

116 S. Boyd et al.

9.2 Mixed-integer geometric programming

In a mixed-integer GP, we have a GP with the additional constraint that some of the
variables lie in some discrete set, such as the integers:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,

xi ∈ N, i = 1, . . . , k,

(46)

where N denotes the set of natural numbers, i.e., positive integers.
Mixed-integer GPs are in general very hard to solve, and all methods for solving

them make some compromise, compared to methods for GP.

• Heuristic methods attempt to find good approximate solutions quickly (say, tak-
ing about the same time a similar size GP would), but cannot guarantee that the
solution found is optimal.

• Global methods always find the global solution, but can take an extremely long
time to run.

The simplest heuristic method is to ignore the integer constraints in (46), and solve
the resulting GP (which can always be done fast). This problem is called the GP re-
laxation of the MIGP (46), since we have relaxed the integer constraints. The optimal
value of the relaxed GP is a lower bound on the optimal value of the MIGP, since
when we relax we expand the feasible set (and therefore reduce the optimal value).
To obtain an approximate solution of the MIGP, we simply round each of the vari-
ables x1, . . . , xk towards the nearest integer. Then, we fix the integer variables (i.e.,
treat them as constants) and solve the resulting GP. This second step allows the con-
tinuous variables to move around a bit to make up for the rounding. Although this
method can work well for some problems, it often works poorly. For example, it of-
ten yields a point that is infeasible. One way to deal with this is to first tighten all
constraints by some amount, such as 5%, prior to relaxing. This gives the relaxed
solution some margin, so the rounded approximate solution has a greater chance of
being feasible.

A more sophisticated method is to carry out the rounding in a sequence of steps.
First we solve the relaxed GP. Then for each discrete variable that is within, say, 0.1
of an integer, we round it, and fix its value. We then form a new MIGP, which consists
of the original MIGP, but with the integer variables that were fixed substituted with
their fixed values. We then repeat the process, until all integer variables have been
fixed. The idea here is that we only round the integer variables in cases where the
rounding does little harm (it is hoped).

The most common global methods are branch and bound algorithms (Lawler and
Wood 1966; Moore 1991). They are nonheuristic, in the sense that they maintain
a provable upper and lower bound on the (globally) optimal objective value, and
ultimately find the true global solution. Branch and bound algorithms can be (and
often are) slow, however. In the worst case they require effort that grows exponentially
with problem size, but in some cases we are lucky, and the methods converge with
much less effort.

A tutorial on geometric programming 117

A typical branch and bound methods works as follows. We solve the relaxed GP,
which gives us a lower bound on the optimal value of the MIGP, and we also use
some heuristic (such as rounding) to find a locally optimal approximate solution. If
it is feasible, and its objective value is close enough to the lower bound, we can take
it as a guaranteed nearly optimal solution, and quit. If this is not the case, we choose
an integer variable xi and branch. To do this we choose some integer e, and observe
that if x∗

i is the optimal value of xi (for the MIGP) then either x∗
i ≤ e or x∗

i ≥ e + 1.
We form two children MIGPs, from the original one, by adding these two constraints
to the original problem. We then repeat on each of these children. Eventually, the
constraints on the integer variables become equality constraints, at which point we
have GPs, and the relaxation yields the exact global solution. The hope is that this
happens within a reasonable number of steps. Branch and bound algorithms differ in
the heuristics used to choose a variable to branch on, and on which children MIGPs
to process at each step.

As an example of mixed integer geometric programming, we revisit the digital
circuit gate scaling problem considered in Sect. 6.2, with an additional twist: we
require that the scale factors must take integer values. The gate scaling problem is
then the MIGP

minimize D

subject to P ≤ P max, A ≤ Amax,

xi ∈ N, i = 1, . . . , n.

(47)

(The requirement that the gate scaling factors are integers is natural, since the indi-
vidual devices in the gates can be obtained by replicating an integer number of the
devices appearing in the minimum sized gate.)

Now we consider a numerical example, the small digital circuit shown in Fig. 4,
with the same parameters as those used in the numerical instance in Sect. 6.2, and
maximum area Amax = 100. This problem is small enough that we can easily find
the global optimum of the MIGP (47) using the branch and bound method. Figure 15
compares the optimal trade-off curve of the minimum delay versus maximum allowed
power for the design with discrete scale factors with that for the design with contin-

Fig. 15 Optimal trade-off
curves of minimum delay Dmin

versus maximum power P max,
for the maximum area
Amax = 100, with and without
the constraint that the gate scale
factors are integers

118 S. Boyd et al.

uous scale factors. Adding the integer constraints reduces the feasible set, and so can
only increase the minimum delay obtained. The plot shows that some values of P max

(such as 40) the penalty paid for integer scale factors isn’t large; for other values of
P max (such as 20) the penalty paid for integer scale factors is much larger. (In the
general case, of course, the penalty can be much larger, or even make the problem
infeasible.)

10 Notes and references

10.1 Origins of geometric programming

Geometric programming was introduced by Duffin, Peterson, and Zener in their
(1967) book. Two other early books on geometric programming are by Wilde and
Beightler (1967), and Zener (1971). These early books contain much material, such
as sensitivity analysis, monomial fitting, and many of the extensions described in this
tutorial (fractional powers and exponentials of posynomials, and posynomial equality
constraints).

Some of the ideas behind geometric programming can be traced back to earlier
work. Although not discussed in this paper, GPs are very closely related via dual-
ity to problems involving entropy and cross entropy (see, e.g., Boyd and Vanden-
berghe 2004, Chap. 5.7), which appeared earlier. For example, in the (1958) paper,
Dantzig, Johnson, and White consider a chemical equilibrium problem in what is
now recognized as geometric programming dual form. Dual form GPs were called
linear-logarithmic programs in the 1960s (see, e.g., Clasen 1963). A history of the
development of geometric programming can be found in Peterson’s survey (2001).

Sensitivity analysis for geometric programming is discussed in (Dembo 1982;
Dinkel et al. 1978; Kyparsis 1988, 1990; Rijckaert and Walraven 1985). Recent work
on robust geometric programming (a variation on GP in which the coefficients in
the posynomials are uncertain) can be found in (Federowicz and Rajgopal 1999;
Hsiung et al. 2006; Singh et al. 2005). Some recent work on mixed-integer geometric
programming and signomial programming can be found in the papers (Alejandre et
al. 2004; Choi and Bricker 1995, 1996b; Maranas and Floudas 1997; Sherali 1998;
Tsai et al. 2002; Yun and Xi 1997; Yang and Bricker 1997).

10.2 Algorithms and software

In the early work by Duffin, Peterson, Zener, and Wilde, GPs were solved analytically
via the dual problem (which is possible only for very small problems). Numerical
methods for (computer) solution of GPs were developed in the 1970s; see, e.g., Duffin
(1970), Avriel et al. (1975), and Rajpogal and Bricker (1990). These methods were
based on solving a sequence of linear programs.

The first interior-point method for GP was described by Nesterov and Nemirovsky
in 1994, who also established polynomial time complexity of the method (Nesterov
and Nemirovsky 1994). More recent work on interior-point methods for GP include
Kortanek et al. (1996) and Andersen and Ye (1998). For a general introduction to
interior-point methods for convex optimization (and GP in particular) see part III

A tutorial on geometric programming 119

of Boyd and Vandenberghe (2004). A high quality implementation of a primal-dual
interior-point method for GP is available in the MOSEK (2002) software package and
the TOMLAB software package (Edvall and Hellman 2005). Both packages include
a simple interface to the MathWorks’ MATLAB. A primal-dual interior-point solver
is also included in the GGPLAB distribution (Mutapcic et al. 2006).

The power of GGP can be utilized conveniently only with a parser that automat-
ically converts a GGP to a GP. A few simple computer programs that automate the
transformation from a text description of a GP or GGP into a form suitable for a
solver are already available. Examples are CVX (Grant et al. 2005), GGPLAB (Mu-
tapcic et al. 2006), and YALMIP (Löfberg 2003), which have a simple interface that
recognizes some GGPs, and automatically forms and solves the resulting GPs. Most
examples in this paper are included in the library of examples for GGPLAB and CVX.
While the current generation of GP and GGP software is for experts only, we can
expect in the next few years rapid progress in GP and GGP solution speed, as well as
user-friendly interfaces for specifying (and debugging) GPs and GGPs.

10.3 Applications

Since its inception, GP has been closely associated with applications in engineering.
Early applications of geometric programming include nonlinear network flow prob-
lems, optimal control, optimal location problems, and chemical equilibrium prob-
lems. These are described in the books (Avriel 1980; Beightler and Phillips 1976;
Duffin et al. 1967; Nijhamp 1972; Wilde 1978; Wilde and Beightler 1967; Zener
1971) and survey papers (Ecker 1980; Peterson 1976).

Geometric programming has been used in a variety of problems in digital circuit
design; see Boyd et al. (2005), Sapatnekar (2004) for more on GP-based digital circuit
sizing and optimization. In 1985 Fishburn and Dunlop used geometric programming
for transistor and wire sizing in digital integrated circuit design. Since then many
digital circuit design problems have been formulated as GPs or related problems:

• Gate sizing (Chu and Wong 2001b; Cong and He 1998; Coudert et al. 1996;
Kasamsetty et al. 2000; Marković et al. 2004; Matson and Glasser 1986; Pattanaik
et al. 2003; Sancheti and Sapatnekar 1996; Sapatnekar et al. 1993; Shyu et al. 1988;
Swahn and Hassoun 2006)

• Wire sizing (Chen and Wong 1999; Chen et al. 2004; Cong and He 1996; Cong
and Koh 1994; Cong and Leung 1995; Cong and Pan 2002; Gao and Wong 1999;
Kay and Pileggi 1998; Lee et al. 2002; Lin and Pileggi 2001; Sapatnekar 1996)

• Buffering and wire sizing (Chu and Wong 1999, 2001a)
• Simultaneous gate and wire sizing (Chen et al. 1999; Jiang et al. 2000)
• Sizing and placement (Chen et al. 2000; Lou et al. 1999)
• Routing (Borah et al. 1997)
• Design with multiple supply voltages (Krishnamurthy and Carley 1997)
• Yield maximization (Boyd et al. 2006; Kim et al. 2007; Patil et al. 2005)
• Power optimization (Bhardwaj et al. 2006; Bhardwaj and Vrudhula 2005; Horowitz

et al. 2005; Satish et al. 2005)
• Parasitic reduction (Qin and Cheng 2003)
• Clock skew optimization (Sathyamurthy et al. 1998)

120 S. Boyd et al.

These are all based on gate delay models that are compatible with geometric pro-
gramming; see Kasamsetty et al. (2000), Sakurai (1988), Sutherland et al. (1999),
Rubenstein et al. (1983), Abou-Seido et al. (2004) for more on such models. Some
of the papers listed above develop custom methods for solving the resulting GPs,
instead of using general purpose interior-point methods (see, e.g., Chu and Wong
2001a, 2001b; Ismail et al. 2000; Young et al. 2001). See (Boyd et al. 2005;
Sapatnekar 2004) for more on GP-based digital circuit sizing.

In 1997, Hershenson, Boyd, and Lee applied GP to analog integrated circuit de-
sign (Hershenson et al. 2001). GP is applied to RF circuit design in (Hershenson
et al. 1999; Mohan et al. 1999, 2000), operational amplifier design in (Dawson et
al. 2001; Hershenson 2003; Hershenson et al. 1998; Mandal and Visvanathan 2001;
Vanderhaegen and Brodersen 2004), mixed signal IC design in (Colleran et al. 2003;
Hassibi and Hershenson 2002; Hershenson 2002), switching regulator design in (Lee
et al. 2003), configurable analog/RF circuit design in (Li et al. 2004; Xu et al.
2004), and transformer design in (Jabr 2005). GP compatible models for analog
circuit design are discussed in (Aggarwal and O’Reilly 2006; Daems et al. 2003;
Kim et al. 2004; Kiely and Gielen 2004). Geometric programming has also been used
for floorplanning in the context of circuit design (Moh et al. 1996; Rosenberg 1989;
Young et al. 2001).

Applications of geometric programming in other fields include:

• Chemical engineering (Clasen 1984; Salomone and Iribarren 1993; Salomone et
al. 1994; Wall et al. 1986)

• Environment quality control (Greenberg 1995; Smeers and Tyteca 1984)
• Resource allocation in communication and network systems (Boche and Stańczak

2004; Chiang 2005a; Chiang and Boyd 2004; Chiang et al. 2002a, 2002b; Dutta
and Rama 1992; Greenberg 1995; Julian et al. 2002; Kandukuri and Boyd 2002;
Palomar et al. 2003)

• Information theory (Ben-Tal and Teboulle 1986; Ben-Tal et al. 1988; Chiang and
Boyd 2004; Karlof and Chang 1997; Klafszky et al. 1992; Muqattash et al. 2006)

• Probability and statistics (Bricker et al. 1997; El Barmi and Dykstra 1994; Feigin
and Passy 1981; Fuh and Hu 2000; Hu and Wei 1989; Mazumdar and Jefferson
1983; Stark and Machida 1993; Vardi 1985)

• Structural design (Adeli and Kamal 1986; Chan and Turlea 1978; Chen 1992;
Dhillon and Kuo 1991; Hajela 1986; Vanderplaats 1984)

• Computer system architecture design (Trivedi and Sigmon 1981)
• Inventory control (Abou-El-Ata and Kotb 1997; Abuo-El-Ata et al. 2003; Cheng

1991; Hariri and Abou-El-Ata 1997; Jung and Klein 2001; Lee and Kim 1993;
Scott et al. 2004)

• Production system optimization (Choi and Bricker 1996a)
• Mechanical engineering (Jha 1990; Sonmez et al. 1999)
• Transportation engineering (Wong 1981)
• Management science (Corstjens and Doyle 1979)
• Computational finance (Rajasekera and Yamada 2001)
• Geometric modeling (Cheng et al. 2002; Cheng et al. 2005a, 2005b)
• Systems and control theory (Chandra et al. 2004; Yazarel and Pappas 2004)

A tutorial on geometric programming 121

Some recent books (Boyd and Vandenberghe 2004; Floudas 1999; Hitomi 1996;
Papalambros and Wilde 1988; Rao 1996) include engineering applications of geo-
metric programming. We refer the reader to the tutorial paper (Chiang 2005b) for an
extensive discussion on applications of geometric programming in communications
and information theory.

Acknowledgements This material is supported in part by the National Science Foundation under grants
#0423905 and (through October 2005) #0140700, by the Air Force Office of Scientific Research under
grant #F49620-01-1-0365, by MARCO Focus center for Circuit & System Solutions contract #2003-CT-
888, and by MIT DARPA contract #N00014-05-1-0700. The authors thank Dennis Bricker, Mung Chiang,
Lungying Fong, Kan-Lin Hsiung, Siddharth Joshi, Kwangmoo Koh, Johan Löfberg, Tony Luk, Almir
Mutapcic, Sachin Sapatnekar, and Tamás Terlaky for helpful comments and suggestions.

References

Abou-El-Ata M, Kotb K (1997) Multi-item EOQ inventory model with varying holding cost under two
restrictions: a geometric programming approach. Prod Plan Control 8(6):608–611

Abou-Seido A, Nowak B, Chu C (2004) Fitted Elmore delay: a simple and accurate interconnect delay
model. IEEE Trans VLSI Syst 12(7):691–696

Abuo-El-Ata M, Fergany H, El-Wakeel M (2003) Probabilistic multi-item inventory model with varying
order cost under two restrictions: a geometric programming approach. Int J Prod Econ 83(3):223–231

Adeli H, Kamal O (1986) Efficient optimization of space trusses. Comput Struct 24:501–511
Aggarwal V, O’Reilly U-M (2006) Design of posynomial models for MOSFETs: symbolic regression

using genetic algorithms. In: Riolo R, Soule T, Worzel B (eds) Genetic programming theory and
practice. Genetic and evolutionary computation, vol 5. Springer, Ann Arbor, Chap 7

Alejandre J, Allueva A, Gonzalez J (2004) A general alternative procedure for solving negative degree of
difficulty problems in geometric programming. Comput Optim Appl 27(1):83–93

Andersen E, Ye Y (1998) A computational study of the homogeneous algorithm for large-scale convex
optimization. Comput Optim Appl 10(3):243–269

Avriel M (1980) Advances in geometric programming. Mathematical concept and methods in science and
engineering, vol 21. Plenum, New York

Avriel M, Dembo R, Passy U (1975) Solution of generalized geometric programs. Int J Numer Methods
Eng 9(1):149–168

Bazaraa M, Shetty C, Sherali H (1993) Non-linear programming: theory and algorithms. Wiley, New York
Beightler C, Phillips D (1976) Applied geometric programming. Wiley, New York
Ben-Tal A, Teboulle M (1986) Rate distortion theory with generalized information measures via convex

programming duality. IEEE Trans Inf Theory 32(5):630–641
Ben-Tal A, Teboulle M, Charnes A (1988) The role of duality in optimization problems involving entropy

functionals. J Optim Theory Appl 58(2):209–223
Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific
Bhardwaj S, Vrudhula S (2005) Leakage minimization of nano-scale circuits in the presence of systematic

and random variations. In: Proceedings of the 42nd IEEE/ACM design automation conference (DAC),
pp 535–540, 2005

Bhardwaj S, Cao Y, Vrudhula S (2006) Statistical leakage minimization through joint selection of gate
sizes, gate lengths and threshold. In: Proceedings of the 12th conference on Asia and South Pacific
design automation conference (ASP-DAC), pp 953–958, 2006

Boche H, Stańczak S (2004) Optimal QoS tradeoff and power control in CDMA systems. In: Proceedings
of the 23rd IEEE INFOCOM, pp 477–486, 2004

Borah M, Owens R, Irwin M (1997) A fast algorithm for minimizing the Elmore delay to identified critical
sinks. IEEE Trans Comput Aided Des Integr Circuits Syst 16(7):753–759

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Boyd S, Kim S-J, Patil D, Horowitz M (2005) Digital circuit optimization via geometric programming.

Oper Res 53(6):899–932
Boyd S, Kim S-J, Patil D, Horowitz M (2006) A heuristic method for statistical digital circuit sizing. In:

Proceedings of the 31st SPIE international symposium on microlithography, San Jose, 2006

122 S. Boyd et al.

Bricker D, Kortanek K, Xui L (1997) Maximum likelihood estimates with order restrictions on probabili-
ties and odds ratios: a geometric programming approach. J Appl Math Decis Sci 1(1):53–65

Chan A, Turlea E (1978) An approximate method for structural optimisation. Comput Struct 8(3–4):357–
363

Chandra D, Singh V, Kar H (2004) Improved Routh-Padé approximants: a computer-aided approach. IEEE
Trans Autom Control 49(2):292–296

Chen C-P, Wong D (1999) Greedy wire-sizing is linear time. IEEE Trans Comput Aided Des Integr Circuits
Syst 18(4):398–405

Chen C-P, Chu C, Wong D (1999) Fast and exact simultaneous gate and wire sizing by Lagrangian relax-
ation. IEEE Trans Comput Aided Des Integr Circuits Syst 18(7):1014–1025

Chen T-Y (1992) Structural optimization using single-term posynomial geometric programming. Comput
Struct 45(5–6):911–918

Chen T-C, Pan S-R, Chang Y-W (2004) Timing modeling and optimization under the transmission line
model. IEEE Trans Very Large Scale Integr Syst 12(1):28–41

Chen W, Hseih C-T, Pedram M (2000) Simultaneous gate sizing and placement. IEEE Trans Comput
Aided Des Integr Circuits Syst 19(2):206–214

Cheng T (1991) An economic order quantity model with demand-dependent unit production cost and
imperfect production processes. IIE Trans 23(1):23

Cheng H, Fang S-C, Lavery J (2002) Univariate cubic L1 splines—A geometric programming approach.
Math Methods Oper Res 56(2):197–229

Cheng H, Fang S-C, Lavery J (2005a) A geometric programming framework for univariate cubic L1
smoothing splines. Ann Oper Res 133(1–4):229–248

Cheng H, Fang S-C, Lavery J (2005b) A geometric programming framework for univariate cubic L1
smoothing splines. J Comput Appl Math 174(2):361–382

Chiang M (2005a) Balancing transport and physical layers in wireless multihop networks: jointly optimal
congestion control and power control. IEEE J Sel Areas Commun 23(1):104–116

Chiang M (2005b) Geometric programming for communication systems. Found Trends Commun Inf The-
ory 2(1–2):1–154

Chiang M, Boyd S (2004) Geometric programming duals of channel capacity and rate distortion. IEEE
Trans Inf Theory 50(2):245–258

Chiang M, Chan B, Boyd S (2002a) Convex optimization of output link scheduling and active queue man-
agement in QoS constrained packet sitches. In: Proceedings of the 2002 IEEE international conference
on communications (ICC), pp 2126–2130, 2002

Chiang M, Sutivong A, Boyd S (2002b) Efficient nonlinear optimization of queuing systems. In: Proceed-
ings of the 2002 IEEE global telecommunications conference (GLOBECOM), pp 2425–2429, 2002

Choi J-C, Bricker D (1995) Geometric programming with several discrete variables: algorithms employing
generalized benders. Eng Optim 3:201–212

Choi J, Bricker D (1996a) Effectiveness of a geometric programming algorithm for optimization of ma-
chining economics models. Comp Oper Res 23(10):957–961

Choi J-C, Bricker D (1996b) A heuristic procedure for rounding posynomial geometric programming
solutions to discrete value. Comput Ind Eng 30(4):623–629

Chu C, Wong D (1999) An efficient and optimal algorithm for simultaneous buffer and wire sizing. IEEE
Trans Comput Aided Des Integr Circuits Syst 18(9):1297–1304

Chu C, Wong D (2001a) Closed form solutions to simultaneous buffer insertion/sizing and wire sizing.
ACM Trans Des Autom Electron Syst 6(3):343–371

Chu C, Wong D (2001b) VLSI circuit performance optimization by geometric programming. Ann Oper
Res 105(1–4):37–60

Clasen R (1963) The linear logarithmic programming problem. Rand Corp. Memo. RM-37-7-PR, June
1963

Clasen R (1984) The solution of the chemical equilibrium programming problem with generalized benders
decomposition. Oper Res 32(1):70–79

Colleran D, Portmann C, Hassibi A, Crusius C, Mohan S, Boyd S, Lee T, Hershenson M (2003) Opti-
mization of phase-locked loop circuits via geometric programming. In: Proceedings of the 2003 IEEE
custom integrated circuits conference (CICC), pp 326–328, 2003

Cong J, He L (1996) Optimal wire sizing for interconnects with multiple sources. ACM Trans Des Autom
Electron Syst 1(4):478–511

Cong J, He L (1998) Theory and algorithm of local-refinement-based optimization with application to
device and interconnect sizing. IEEE Trans Comput Aided Des Integr Circuits Syst 18(4):406–420

Cong J, Koh C-K (1994) Simultaneous driver and wire sizing for performance and power optimization.
IEEE Trans Very Large Scale Integr Syst 2(4):408–423

A tutorial on geometric programming 123

Cong J, Leung K-S (1995) Optimal wiresizing under Elmore delay model. IEEE Trans Comput Aided Des
Integr Circuits Syst 14(3):321–336

Cong J, Pan Z (2002) Wire width planning for interconnect performance optimization. IEEE Trans Comput
Aided Des Integr Circuits Syst 21(3):319–329

Corstjens M, Doyle P (1979) Channel optimization in complex marketing systems. Manag Sci
25(10):1014–1025

Coudert O, Haddad R, Manne S (1996) New algorithms for gate sizing: a comparative study. In: Proceed-
ings of 33rd IEEE/ACM design automation conference (DAC), pp 734–739, 1996

Daems W, Gielen G, Sansen W (2003) Simulation-based generation of posynomial performance mod-
els for the sizing of analog integrated circuits. IEEE Trans Comput Aided Des Integr Circuits Syst
22(5):517–534

Dantzig G, Johnson S, White W (1958) Shape-preserving properties of univariate cubic L1 splines. Manag
Sci 5(1):38–43

Dawson J, Boyd S, Hershenson M, Lee T (2001) Optimal allocation of local feedback in multistage am-
plifiers via geometric programming. IEEE Trans Circuits Syst I Fundam Theory Appl 48(1):1–11

Dembo R (1982) Sensitivity analysis in geometric programming. J Optim Theory Appl 37(1):1–21
Dhillon B, Kuo C (1991) Optimum design of composite hybrid plate girders. J Struct Eng 117(7):2088–

2098
Dinkel J, Kochenberger M, Wong S (1978) Sensitivity analysis procedures for geometric programs: Com-

putational aspects. ACM Trans Math Softw 4(1):1–14
Duffin R (1970) Linearizing geometric programs. SIAM Rev 12(2):668–675
Duffin R, Peterson E, Zener C (1967) Geometric programming—theory and application. Wiley, New York
Dutta A, Rama D (1992) An optimization model of communications satellite planning. IEEE Trans Com-

mun 40(9):1463–1473
Ecker J (1980) Geometric programming: Methods, computations and applications. SIAM Rev 22(3):338–

362
Edvall M, Hellman F (2005) User’s Guide for TOMLAP/GP. Available from http://tomlab.biz/docs/

TOMLAB_GP.pdf
El Barmi H, Dykstra R (1994) Restricted multinomial maximum likelihood estimation based upon Fenchel

duality. Stat Probab Lett 21(2):121–130
Federowicz A, Rajgopal J (1999) Robustness of posynomial geometric programming optima. Math Pro-

gram 85(2):421–431
Feigin P, Passy U (1981) The geometric programming dual to the extinction probability problem in simple

branching processes. Ann Probab 9(3):498–503
Fishburn J, Dunlop A (1985) TILOS: a posynomial programming approach to transistor sizing. In: IEEE

international conference on computer-aided design: ICCAD-85. Digest of technical papers, pp 326–
328. IEEE Computer Society Press

Floudas C (1999) Deterministic global optimization: theory, algorithms and applications. Kluwer Acad-
emic, Dordrecht

Foschini G, Miljanic Z (1993) A simple distributed autonomous power control algorithm and its conver-
gence. IEEE Trans Veh Technol 42(4):641–646

Fuh C-D, Hu I (2000) Asymptotically efficient strategies for a stochastic scheduling problem with order
constraints. Ann Stat 28(6):1670–1695

Gao Y, Wong D (1999) Optimal shape function for a bidirectional wire under Elmore delay model. IEEE
Trans Comput Aided Des Integr Circuits Syst 18(7):994–999

Grant M, Boyd S, Ye Y (2005) CVX: matlab software for disciplined convex programming. Available from
www.stanford.edu/~boyd/cvx/

Greenberg H (1995) Mathematical programming models for environmental quality control. Oper Res
43(4):578–622

Hajela P (1986) Geometric programming strategies for large-scale structural synthesis. AIAA J
24(7):1173–1178

Hariri A, Abou-El-Ata M (1997) Multi-item production lot-size inventory model with varying order cost
under a restriction: a geometric programming approach. Prod Plan Control 8(2):179–182

Hassibi A, Hershenson M (2002) Automated optimal design of switched-capacitor filters. In: Proceedings
of the 2002 design, automation and test in Europe conference and exhibition (DATE), p 1111, 2002

Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, Berlin
Hershenson M (2002) Design of pipeline analog-to-digital converters via geometric programming. In:

Proceedings of the 2002 IEEE/ACM international conference on computer aided design (ICCAD), pp
317–324, San Jose, 2002

124 S. Boyd et al.

Hershenson M (2003) Analog design space exploration: efficient description of the design space of analog
circuits. In: Proceedings of the 40th design automation conference (DAC), pp 970–973, 2003

Hershenson M, Boyd S, Lee T (1998) GPCAD: A tool for CMOS op-amp synthesis. In: Proceedings of the
1998 IEEE/ACM international conference on computer aided design (ICCAD), pp 296–303, 1998

Hershenson M, Hajimiri A, Mohan S, Boyd S, Lee T (1999) Design and optimization of LC oscillators.
In: Proceedings of the 2000 IEEE/ACM international conference on computer-aided design (ICCAD),
pp 65–69, 1999

Hershenson M, Boyd S, Lee T (2001) Optimal design of a CMOS op-amp via geometric programming.
IEEE Trans Comput Aided Des Integr Circuits Syst 20(1):1–21

Hitomi K (1996) Manufacturing systems engineering: a unified approach to manufacturing technology,
production management, and industrial economics, 2nd edn. CRC Press, Boca Raton

Horowitz M, Alon E, Patil D, Naffziger S, Kumar R, Bernstein K (2005) Scaling, power, and the future of
CMOS. In: Proceedings of the 2005 IEEE international electron devices meeting (IEDM), pp 9–15,
2005

Hsiung K-L, Kim S-J, Boyd S (2006) Tractable approximate robust geometric programming. Manuscript.
Available from www.stanford,edu/~boyd/rgp.html

Hu I, Wei C (1989) Irreversible adaptive allocation rules. Ann Stat 17(2):801–823
Ismail Y, Friedman E, Neves J (2000) Equivalent Elmore delay for RLC trees. IEEE Trans Comput Aided

Des Integr Circuits Syst 19(7):83–97
Jabr R (2005) Applications of geometric programming to transformer design. IEEE Trans Magn

41(11):4261–4269
Jha N (1990) A discrete data base multiple objective optimization of milling operation through geometric

programming. ASME J Eng Ind 112(4):368–374
Jiang I, Chang Y, Jou J (2000) Crosstalk-driven interconnect optimization by simultaneous gate and wire

sizing. IEEE Trans Comput Aided Des Integr Circuits Syst 19(9):999–1010
Joshi S, Boyd S, Dutton R (2005) Optimal doping profiles via geometric programming. IEEE Trans Elec-

tron Devices 52(12):2660–2675
Julian D, Chiang M, O’Neill D, Boyd S (2002) QoS and fairness constrained convex optimization of

resource allocation for wireless cellular and ad hoc networks. In: Proceedings of the 21st IEEE INFO-
COM, pp 477–486, 2002

Jung H, Klein C (2001) Optimal inventory policies under decreasing cost functions via geometric pro-
gramming. Eur J Oper Res 132(3):628–642

Kandukuri S, Boyd S (2002) Optimal power control in interference-limited fading wireless channels with
outage-probability specifications. IEEE Trans Wirel Commun 1(1):46–55

Karlof J, Chang Y (1997) Optimal permutation codes for the Gaussian channel. IEEE Trans Inform Theory
43(1):356–358

Kasamsetty K, Ketkar M, Sapatnekar S (2000) A new class of convex functions for delay modeling and
its application to the transistor sizing problem. IEEE Trans Comput Aided Des Integr Circuits Syst
19(7):779–788

Kay R, Pileggi L (1998) EWA: Efficient wiring-sizing algorithm for signal nets and clock nets. IEEE Trans
Comput Aided Des Integr Circuits Syst 17(1):40–49

Kiely T, Gielen G (2004) Performance modeling of analog integrated circuits using least-squares support
vector machines. In: Proceedings of the 2004 design, automation and test in Europe conference and
exhibition (DATE), pp 16–20, 2004

Kim J, Lee J, Vandenberghe L, Yang K (2004) Techniques for improving the accuracy of geometric-
programming based analog circuit design optimization. In: Proceedings of the 2004 IEEE/ACM inter-
national conference on computer-aided design (ICCAD), pp 863–870, 2004

Kim S-J, Boyd S, Yun S, Patil D, Horowitz M (2007) A heuristic for optimizing stochastic activity net-
works with applications to statistical digital circuit sizing (to appear in Optim Eng). Available from
www.stanford.edu/~boyd/heur_san_opt.html

Klafszky E, Mayer J, Terlaky T (1992) A geometric programming approach to the channel capacity prob-
lem. Eng Optim 19:115–130

Kortanek K, Xu X, Ye Y (1996) An infeasible interior-point algorithm for solving primal and dual geo-
metric programs. Math Program 76(1):155–181

Krishnamurthy R, Carley L (1997) Exploring the design space of mixed swing quadrail for low-power
digital circuits. IEEE Trans Very Large Scale Integr Syst 5(4):389–400

Kyparsis J (1988) Sensitivity analysis in posynomial geometric programming. J Optim Theory Appl
57(1):85–121

Kyparsis J (1990) Sensitivity analysis in geometric programming: theory and computations. Ann Oper Res
27(1):39–64

A tutorial on geometric programming 125

Lawler E, Wood D (1966) Branch-and-bound methods: a survey. Oper Res 14(4):699–719
Lee J, Hatcher G, Vandenbergh L, Yang K (2003) Evaluation of fully-integrated switching regulators for

CMOS process technologies. In: Proceedings of the 2003 international symposium on system-on-chip,
pp 155–158, 2003

Lee W, Kim D (1993) Optimal and heuristic decision strategies for integrated production and marketing
planning. Decis Sci 24(6):1203–1213

Lee Y-M, Chen C, Wong D (2002) Optimal wire-sizing function under the Elmore delay model with
bounded wire sizes. IEEE Trans Circuits Syst I Fundam Theory Appl 49(11):1671–1677

Li X, Gopalakrishnan P, Xu Y, Pileggi T (2004) Robust analog/RF circuit design with projection-based
posynomial modeling. In: Proceedings of the IEEE/ACM international conference on computer aided
design (ICCAD), pp 855–862, 2004

Lin T, Pileggi L (2001) RC(L) interconnect sizing with second order considerations via posynomial pro-
gramming. In: Proceedings of the 2001 ACM/SIGDA international symposium on physical design
(ISPD), pp 16–21, 2001

Löfberg J (2003) YALMIP. Yet another LMI parser. Version 2.4. Available from http://control.ee.ethz.ch/
~joloef/yalmip.php

Lou J, Chen W, Pedram M (1999) Concurrent logic restructuring and placement for timing closure. In:
Proceedings of the 1999 IEEE/ACM international conference on computer-aided design (ICCAD), pp
31–35, 1999

Luenberger D (1984) Linear and nonlinear programming, 2nd edn. Addison–Wesley, Reading
Magnani A, Boyd S (2006) Convex piecewise-linear fitting (submitted to Optim Eng). Available from

www.stanford.edu/~boyd/cvx_pwl_fit.html
Mandal P, Visvanathan V (2001) CMOS op-amp sizing using a geometric programming formulation. IEEE

Trans Comput Aided Des Integr Circuits Syst 20(1):22–38
Maranas C, Floudas C (1997) Global optimization in generalized geometric programming. Comput Chem

Eng 21(4):351–369
Marković D, Stojanović V, Nikolić B, Horowitz M, Brodersen R (2004) Methods for true energy-

performance optimization. IEEE J Solid State Circuits 39(8):1282–1293
Matson M, Glasser L (1986) Macromodeling and optimization of digital MOS VLSI circuits. IEEE Trans

Comput Aided Des Integr Circuits Syst 5(4):659–678
Mazumdar M, Jefferson T (1983) Maximum likelihood estimates for multinomial probabilities via geo-

metric programming. Biometrika 70(1):257–261
Moh T-S, Chang T-S, Hakimi S (1996) Globally optimal floorplanning for a layout problem. IEEE Trans

Circuits Syst I Fundam Theory Appl 43(29):713–720
Mohan S, Hershenson M, Boyd S, Lee T (1999) Simple accurate expressions for planar spiral inductances.

IEEE J Solid State Circuit 34(10):1419–1424
Mohan S, Hershenson M, Boyd S, Lee T (2000) Bandwidth extension in CMOS with optimized on-chip

inductors. IEEE J Solid State Circuits 35(3):346–355
Moore R (1991) Global optimization to prescribed accuracy. Comput Math Appl 21(6-7):25–39
MOSEK ApS (2002) The MOSEK optimization tools version 2.5. User’s manual and reference. Available

from www.mosek.com
Muqattash A, Krunz M, Shu T (2006) Performance enhancement of adaptive orthogonal modulation in

wireless CDMA systems. IEEE J Sel Areas Commun 23(3):565–578
Mutapcic A, Koh K, Kim S-J, Boyd S (2006) GGPLAB: a matlab toolbox for geometric programming.

Available from www.stanford.edu/~boyd/ggplab/
Nesterov Y, Nemirovsky A (1994) Interior-point polynomial methods in convex programming. Studies in

applied mathematics, vol 13. SIAM, Philadelphia
Nijhamp P (1972) Planning of industrial complexes by means of geometric programming. Rotterdam Univ.

Press, Rotterdam
Nocedal J, Wright S (1999) Numerical optimization, Springer series in operations research. Springer, New

York
Palomar D, Cioffi J, Lagunas M (2003) Joint Tx-Rx beamforming design for multicarrier MIMO channels:

a unified framework for convex optimization. IEEE Trans Signal Process 51(9):2381–2401
Papalambros P, Wilde D (1988) Principles of optimal design. Cambridge University Press, Cambridge
Patil D, Yun Y, Kim S-J, Boyd S, Horowitz M (2005) A new method for robust design of digital circuits. In:

Proceedings of the 6th international symposium on quality electronic design (ISQED), pp 676–681,
2005

Pattanaik M, Banerjee S, Bahinipati B (2003) GP based transistor sizing for optimal design of nanoscale
CMOS inverter. In: Proceedings of the 3rd IEEE conference on nanotechnology, pp 524–527, 2003

126 S. Boyd et al.

Peterson E (1976) Geometric programming. SIAM Rev 18(1):1–51
Peterson E (2001) The origins of geometric programming. Ann Oper Res 105(1-4):15–19
Qin Z, Cheng C-K (2003) Realizable parasitic reduction using generalized Y-	 transformation. In: Pro-

ceedings of the 40th IEEE/ACM design automation conference (DAC), pp, 220–225, 2003
Rajasekera J, Yamada M (2001) Estimating the firm value distribution function by entropy optimization

and geometric programming. Ann Oper Res 105(1–4):61–75
Rajpogal J, Bricker D (1990) Posynomial geometric programming as a special case of semi-infinite linear

programming. J Optim Theory Appl 66(3):444–475
Rao S (1996) Engineering optimization: theory and practice, 3rd edn. Wiley–Interscience, New York
Rijckaert M, Walraven E (1985) Geometric programming: estimation of Lagrange multipliers. Oper Res

33(1):85–93
Rosenberg E (1989) Optimization module sizing in VLSI floorplanning by nonlinear programming. ZOR-

Methods Model Oper Res 33(2):131–143
Rubenstein J, Penfield P, Horowitz M (1983) Signal delay in RC tree networks. IEEE Trans Comput Aided

Des Integr Circuits Syst 2(3):202–211
Sakurai T (1988) Approximation of wiring delay in MOSFET LSI. IEEE J Solid State Circuits 18(4):418–

426
Salomone H, Iribarren O (1993) Posynomial modeling of batch plants: a procedure to include process

decision variables. Comput Chem Eng 16(3):173–184
Salomone H, Montagna J, Iribarren O (1994) Dynamic simulations in the design of batch processes. Com-

put Chem Eng 18(3):191–204
Sancheti P, Sapatnekar S (1996) Optimal design of macrocells for low power and high speed. IEEE Trans

Comput Aided Des Integr Circuits Syst 15(9):1160–1166
Sapatnekar S (1996) Wire sizing as a convex optimization problem: exploring the area-delay tradeoff.

IEEE Trans Comput Aided Des Integr Circuits Syst 15(8):1001–1011
Sapatnekar S (2004) Timing. Kluwer Academic, Dordrecht
Sapatnekar S, Rao V, Vaidya P, Kang S (1993) An exact solution to the transistor sizing problem for CMOS

circuits using convex optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 12(11):1621–
1634

Sathyamurthy H, Sapatnekar S, Fishburn J (1998) Speeding up pipelined circuits through a combina-
tion of gate sizing and clock skew optimization. IEEE Trans Comput Aided Des Integr Circuits Syst
17(2):173–182

Satish N, Ravindran K, Moskewicz M, Chinnery D, Keutzer K (2005) Evaluating the effectiveness of
statistical gate sizing for power optimization. Technical report ERL memorandum M05/28, University
of California at Berkeley, August 2005

Scott C, Jefferson T, Jorjani S (2004) Duals for classical inventory models via generalized geometric
programming. J Appl Math Decis Sci 8(3):191–200

Sherali H (1998) Global optimization of nonconvex polynomial programming problems having rational
exponents. J Global Optim 12(3):267–283

Sherwani N (1999) Algorithms for VLSI design automation, 3rd edn. Kluwer Academic, Dordrecht
Shyu J, Sangiovanni-Vincetelli A, Fishburn J, Dunlop A (1988) Optimization-based transistor sizing.

IIEEE J Solid State Circuits 23(2):400–409
Singh J, Nookala V, Luo Z-Q, Sapatnekar S (2005) Robust gate sizing by geometric programming. In:

Proceedings of the 42nd IEEE/ACM design automation conference (DAC), pp 315–320, 2005
Smeers Y, Tyteca D (1984) A geometric programming model for the optimal design of wastewater treat-

ment plants. Oper Res 32(2):314–342
Sonmez A, Baykasoglu A, Dereli T, Flz I (1999) Dynamic optimization of multipass milling operations

via geometric programming. Int J Mach Tools Manuf 39(2):297–320
Stark R, Machida M (1993) Chance design costs-A distributional limit. In: Proceedings of the 2nd inter-

national symposium on uncertainty modeling and analysis, pp 269–270, 1993
Sutherland I, Sproull B, Harris D (1999) Logical effort: designing fast CMOS circuits. Morgan Kaufmann,

San Francisco
Swahn B, Hassoun S (2006) Gate sizing: FinFETs vs 32nm bulk MOSFETs. In: Proceedings of the 43rd

IEEE/ACM design automation conference (DAC), pp 528–531, 2006
Trivedi K, Sigmon T (1981) Optimal design of linear storage hierarchies. J ACM 28(2):270–288
Tsai J-F, Li H-L, Hu N-Z (2002) Global optimization for signomial discrete programming problems in

engineering design. Eng Optim 34(6):613–622
Vanderhaegen J, Brodersen R (2004) Automated design of operational transconductance amplifiers using

reversed geometric programming. In: Proceedings of the 41st IEEE/ACM design automation confer-
ence (DAC), pp 133–138, 2004

A tutorial on geometric programming 127

Vanderplaats G (1984) Numerical optimization techniques for engineering design. McGraw–Hill, New
York

Vardi Y (1985) Empirical distributions in selection bias models. Ann Stat 13(1):178–203
Wall T, Greening D, Woolsey R (1986) Solving complex chemical equilibria using a geometric-

programming based technique. Oper Res 34(3):345–355
Wilde D (1978) Globally optimal design. Wiley, New York
Wilde D, Beightler C (1967) Foundations of optimization. Prentice Hall, Englewood Cliffs
Wong D (1981) Maximum likelihood, entropy maximization, and the geometric programming approaches

to the calibration of trip distribution models. Transp Res Part B Methodol 15(5):329–343
Xu Y, Pileggi L, Boyd S (2004) ORACLE: optimization with recourse of analog circuits including layout

extraction. In: Proceedings of the 41st IEEE/ACM design automation conference (DAC), pp 151–154,
2004

Yang H-H, Bricker D (1997) Investigation of path-following algorithms for signomial geometric program-
ming problems. Eur J Oper Res 103(1):230–241

Yazarel H, Pappas G (2004) Geometric programming relaxations for linear system reachability. In: Pro-
ceedings of the 2004 American control conference (ACC), pp 553–559, 2004

Young F, Chu C, Luk W, Wong Y (2001) Handling soft modules in general nonslicing floorplan using
Lagrangian relaxation. IEEE Trans Comput Aided Des Integr Circuits Syst 20(5):687–629

Yun K, Xi C (1997) Second-order method of generalized geometric programming for spatial frame opti-
mization. Comput Methods Appl Mech Eng 141(1-2):117–123

Zener C (1971) Eng design by geometric programming. Wiley, New York

	A tutorial on geometric programming
	Abstract
	The GP modeling approach
	Basic geometric programming
	Monomial and posynomial functions
	Standard form geometric program
	Simple extensions of GP
	Example
	How GPs are solved

	Feasibility, trade-off, and sensitivity analysis
	Feasibility analysis
	Trade-off analysis
	Sensitivity analysis

	GP examples
	Power control
	Optimal doping profile

	Generalized geometric programming
	Fractional powers of posynomials
	Maximum of posynomials
	Generalized posynomials
	Generalized geometric program

	GGP examples
	Floor planning
	Digital circuit gate sizing
	Truss design
	Wire sizing

	More transformations
	Function composition
	Additive log terms
	Mixed linear geometric programming
	Generalized posynomial equality constraints

	Approximation and fitting
	Theory
	Local monomial approximation
	Monomial fitting
	Max-monomial fitting
	Posynomial fitting

	Extensions
	Signomial programming
	Mixed-integer geometric programming

	Notes and references
	Origins of geometric programming
	Algorithms and software
	Applications
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

