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ABSTRACT

We propose a convex optimization method for max-
imum likelihood estimation of autoregressive mod-
els, subject to conditional independence constraints.
This problem is an extension to times series of the
classical covariance selection problem in graphi-
cal modeling. The conditional independence con-
straints impose quadratic equalities on the autore-
gressive model parameters, which makes the maxi-
mum likelihood estimation problem nonconvex and
difficult to solve. We formulate a convex relax-
ation and prove that it is exact when the sample
covariance matrix is block-Toeplitz. We also ob-
serve experimentally that in practice the relaxation
is exact under much weaker conditions.

We discuss applications to topology selection
in graphical models of time series, by enumerat-
ing all possible topologies, and ranking them using
information-theoretic model selection criteria. The
method is illustrated by an example of air pollution
data.

Index Terms— graphical models, conditional
independence, semidefinite programming relax-
ation, model selection

1. INTRODUCTION

Let X be an n-dimensional Gaussian random vari-
able with covariance matrix Σ. Two components
Xi and Xj are conditionally independent, given the
other components, if and only if (Σ−1)ij = 0 [6].
In a graph representation of X , the nodes repre-
sent the components Xi; two nodes are connected
by an undirected edge if the corresponding variables
are not conditionally independent. The problem of
computing the maximum likelihood (ML) estimate
of Σ subject to conditional independence constraints
is known as covariance selection problem [6].

∗Research supported in part by NSF grants ECCS-0524663
and ECCS-0824003.

The notion of conditional independence can be
extended to time series. Let x(t), t ∈ Z, be a mul-
tivariate stationary Gaussian process with spectral
density matrix S(ω). The components xi and xj

are conditionally independent given the remaining
variables if and only if (S(ω)−1)ij = 0 for all ω
[3, 5]. This condition allows us to consider es-
timation problems with conditional independence
constraints by placing restrictions on the inverse of
spectral density matrix.

In this paper, we consider ML estimation of au-
toregressive (AR) models of vector time series, sub-
ject to conditional independence constraints. The
difficulty of this problem arises from the quadratic
equalities on the AR parameters imposed by the
zero pattern in S(ω)−1. This leads to a difficult
nonconvex optimization problem. The main con-
tribution of this paper is to show that under certain
conditions the constrained ML estimation problem
can be solved efficiently via a convex relaxation.

Related problems have been studied in [1, 7].
Bach and Jordan [1] consider the problem of learn-
ing the structure of the graphical model of a time
series from sample estimates of the joint spectral
density matrix. Eichler [7] uses Whittle’s approx-
imation of the exact likelihood function, and im-
poses conditional independence constraints via al-
gorithms extended from covariance selection. In
these two methods, a non-parametric estimate of the
spectrum is first computed, taking into account the
conditional independence constraints. In a second
step, an AR model is obtained via the Yule-Walker
equations. The method presented in this paper pro-
vides a more direct approach, and computes the AR
coefficients directly from a convex reformulation of
the maximum likelihood problem.

Notation. Sn denotes the set of symmetric matrices
of order n. The sparsity pattern of a sparse matrix
X ∈ Sn will be characterized by specifying the set
of indices V ⊆ {1, . . . , n} × {1, . . . , n} of its zero
entries. We assume V is symmetric, i.e., if (i, j) ∈



V then (j, i) ∈ V , and that it does not contain any
diagonal entries, i.e., (i, i) 6∈ V for i = 1, . . . , n.
P (X) denotes the projection of a square symmetric
or non-symmetric matrix X on V:

P (X)ij =
{

Xij (i, j) ∈ V
0 otherwise. (1)

If X is a p×p block-matrix with i, j block Xij , then
we define P (X) as the p × p block matrix with i, j
block P (X)ij = P (Xij).

2. CONDITIONAL INDEPENDENCE

Let x(t), t ∈ Z, be an n-dimensional Gaussian time
series with positive spectral density matrix S(ω).
As mentioned in the introduction, the components
xi and xj are conditionally independent given all
other variables if and only if

(S−1(ω))ij = 0 ∀ω (2)

(see [3, 5]). We now apply this characterization to
autoregressive models. Consider an autoregressive
model of order p,

B0x(t) = −
p∑

k=1

Bkx(t− k) + v(t),

where v(t) ∼ N (0, I), and B0 is nonsingular.
(Without loss of generality we can assume that B0

is symmetric positive definite.) It is easily shown
that (2) reduces to

(Yk)ij = (Yk)ji = 0,

where Yk =
∑p−k

l=0 BT
l Bl+k for k = 0, . . . , p.

3. MAXIMUM-LIKELIHOOD ESTIMATION

We are interested in ML estimation based on N + p
observations, x(1),. . . , x(N + p). The exact ML
problem is difficult, even without sparsity con-
straints. A standard approach is to condition on the
first p observations x(1), . . . , x(p) and to use the
conditional density function of the last N observa-
tions [9]. If we define B =

[
B0 B1 · · · Bp

]
,

then it can be verified that the log-likelihood func-
tion is

log L(B) = N log det B0 −
N

2
tr
(
RBT B

)
,

where R = (1/N)HHT and

H =


x(p + 1) x(p + 2) . . . x(N + p)

x(p) x(p + 1) . . . x(N + p− 1)
...

...
...

x(1) x(2) . . . x(N)

 .

(3)
The conditional ML estimation problem with con-
ditional independence constraints can therefore be
expressed as

minimize − log det B0 + 1
2 tr(RBT B)

subject to Yk =
p−k∑
i=0

BT
i Bi+k, k = 0, . . . , p

(Yk)ij = (Yk)ji = 0, (i, j) ∈ V.

The variables are Y0, B0 ∈ Sn and Yk, Bk ∈ Rn×n,
k = 1, . . . , p. By using the projection notation de-
fined in (1), the ML problem can be written more
clearly as

min. − log det B0 + 1
2 tr(RBT B)

s.t. P
(∑p−k

i=0 BT
i Bi+k

)
= 0, k = 0, . . . p.

(4)
This problem includes quadratic equality con-
straints and is therefore nonconvex.

4. CONVEX RELAXATION

A change of variables X = BT B transforms (4) in
the equivalent problem

min. − log det X00 + tr(RX)
s.t. P

(∑p−k
i=0 Xi,i+k

)
= 0, k = 0, . . . , p

X � 0, rank(X) = n,

with variable X ∈ Sn(p+1), a symmetric block ma-
trix with block entries Xij of size n × n. Deleting
the rank constraint results in a convex relaxation:

min. − log det X00 + tr(RX)
s.t. P

(∑p−k
i=0 Xi,i+k

)
= 0, k = 0, . . . , p

X � 0.
(5)

The convex optimization problem (5) is equivalent
to (4) if it can be guaranteed that the optimal solu-
tion X has rank n. This is the case under certain
assumptions, as we now show. We assume that R is
block-Toeplitz and positive definite, and partitioned
as

R =


R0 R1 · · · Rp

RT
1 R0 · · · Rp−1

...
...

. . .
...

RT
p RT

p−1 · · · R0

 (6)

with R0 ∈ Sn, R1, . . . , Rp ∈ Rn×n.



4.1. The dual problem

The dual problem of (5) can be expressed as

maximize log det W + n

subject to
[

W 0
0 0

]
� R + P (Z), (7)

with variables W ∈ Sn and Z ∈ Sn(p+1). The
matrix Z is block-Toeplitz and partitioned as in (6).
It follows from standard results in convex duality
that the optimal values of (5) and (7) are equal, and
that the optimal solutions X , W , Z are related by

X−1
00 = W,

X

(
R + P (Z)−

[
W 0
0 0

])
= 0. (8)

(See [2, chapter 5].)

4.2. Exactness of the relaxation

Assume X?, W ?, Z? are optimal. We will use the
following result to show that X? has rank n.

Let R be a symmetric block-Toeplitz matrix
with block-dimensions as in (6). If R satisfies

R �
[
W 0
0 0

]
,

for some positive definite W ∈ Sn, then R � 0.
This is easily proved by induction on p, and the
proof is omitted here.

Using this result we see that the constraints
in (7) imply that R + P (Z?) � 0 if Z? is dual
optimal. Thus the rank of the matrix

R + P (Z?)−
[

W ? 0
0 0

]
is at least np, and its nullspace has dimension at
most n. It follows from (8) that rank(X∗) ≤ n,
and since X∗

00 � 0, we have rank(X∗) = n.
This result shows that if R is block-Toeplitz and

positive definite, the optimal solution X? of the con-
vex problem (5) can be factorized as X = BT B,
with B0 = X

1/2
00 , and that B is the globally optimal

solution of (4).
The matrix R in the ML problem (3) approaches

a block-Toeplitz matrix as N increases. We conjec-
ture that the convex relaxation remains exact if R is
almost Toeplitz. This is confirmed by experimental
results in the next section.
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Fig. 1: Percentage of rank-n solutions versus the
number of samples.
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Fig. 2: KL divergence from the true model versus
the number of samples.

5. EXAMPLES

5.1. Randomly generated data

We generated 50 sets of time series from four AR
models with sparse spectral densities. We solved (5)
with different numbers of samples (N ) and show the
percentage of rank-n solutions in Figure 1. The fig-
ure illustrates that the relaxation is exact for mod-
erate values of N , even though the matrix R is not
block-Toeplitz.

Figure 2 shows the convergence rate of the ML
estimates (with and without sparsity constraints) to
the true model, as a function of the number of sam-
ples. We use a model has dimension n = p = 6.
The Kullback-Leibler (KL) divergence [1] is used
to measure the difference between the estimated and
the true spectrum. The figure illustrates that the
ML estimate without the sparsity constraint gives
the model with substantially larger values of KL di-
vergence when N is small.
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Fig. 3: Partial coherence spectrum S(ω)−1 (up-
per triangular part) and coherence spectrum S(ω)
(lower triangular part) for the air pollution data.
Nonparametric estimates are in solid blue lines and
ML estimates are in dashed red lines.

5.2. Real data set

We illustrate the proposed method by a time se-
ries of dimension n = 5. The components are
four air pollutants, CO, NO, NO2, O3 and the
solar radiation intensity R. The data were ob-
served from Jan 1, 2006 to Dec 31, 2006 in Azusa,
California, and were obtained from Air Quality
and Meteorological Information System (AQMIS)
(www.arb.ca.gov/aqd/aqdcd/aqdcd.htm).
This application was discussed previously in [5] by
using a nonparametric approach (and with a differ-
ent data set).

In order to learn the conditional independence
graph, we enumerate the AR models of orders p = 1
to p = 8 with all possible sparsity constraints. For
each sparsity pattern and each p, we constructed R
from (3) and solved (5) using CVX [8], and then
decomposed the optimal rank-n X to obtain AR
parameters Ak. For each fitted model, we com-
puted the BIC (Bayesian information criterion)
score BIC = k log N − 2L, where L is the max-
imized log-likelihood, N is the sample size, and
k is the effective number of parameters [4]. The
best BIC score is a model of lag p = 4, and a
conditional independence pattern in which only the
pair (NO, R) is conditionally independent. (Several
other topologies gave BIC scores that were only
slightly worse.) Figure 3 shows the estimates of the
partial coherence spectrum (normalized S(ω)−1)
and coherence spectrum (normalized S(ω)), ob-
tained from a nonparametric estimation, and for the
ML model with the best BIC score. These results
are consistent with the discussion in Dahlhaus [5].

6. CONCLUSIONS

We have considered a parametric approach for
maximum-likelihood estimation of autoregressive
models with conditional independence constraints.
The zero constraints on the inverse of spectral den-
sity matrix result in nonconvex constraints in the
maximum likelihood estimation problem. We have
formulated a relaxation which can be solved effi-
ciently by convex optimization, and derived condi-
tions that guarantee that the relaxation is exact. This
allows us to solve a graphical inference problem by
fitting autoregressive models to different topologies,
and comparing the topologies with information-
theoretic model selection criteria. The approach
was illustrated with randomly generated and real
data.
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