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ABSTRACT A wide variety of applications can be found in signal pro-
A wide variety of optimization problems involving nonnega- cessing, control, combinatorial and global optimizatitnd,
Y P P 9 9 3, 4, 5]. At the moment, however, these applications arenofte

tive polynomials or t.rig.ono.metric polynomials can b.e formu limited by the large size of the SDPs that result from the SOS
Iatgd as convex op.t|m|zat'|on problems by expressing (or Mormulation. This is due to the need to introduce large matri
laxing) the constraints using sum-of-squares representat

The semidefinite programming problems that result from thisvarlables with dimensions that grow rapidly with the number

. - of variables in the multivariate polynomials. Hence thara i
formulation are often difficult to solve due to the presente o - : .
- . ; . need for specialized SDP algorithms that exploit structare
large auxiliary matrix variables. In this paper we extend a_ .. . o
recent technique for exploiting structure in semidefinite- multivariate SOS optimization problems.
rams deriveg from sunr])-of-s guares expressions to mu'ltir\)/ ar Most research on exploiting structure in SDP has focused
gte trigonometric pol nomialcs] The tepchni ue is based orc1)n sparsity of the coefficient matrices [6]. Another apploac
9 poiyr o que based on exploiting (dense) rank-one structure was studied
an equivalent formulation using discrete Fourier transfor

. . . in [7, 8, 9] and found to be very well-suited for SOS opti-
and leads to a very substantial reduction in the computaltion .- . . .
complexity. Numerical results are presented and a com anrp|zat|on. In this paper we extend the techniques proposed
piexiy. P part, [9] to multivariate trigonometric polynomials. Our fogu

z?gnolr?”:nn?:eAv;n;z %zgﬁ::a;tigfﬁisfsr?égfmizﬁ.ﬂiLnr:ng.” trigonometric polynomials is motivated py applicatiams
ilt d. ) bl ' signal processing [2, 3], and by the theoretical advantafies
FIR filter design problem. trigonometric basis functions in SOS optimization [10].
I ndex Terms— Optimization methods, Multidimensional

digital filters, Discrete transforms 2. SOS RELAXATION OF POSITIVE POLYNOMIALS

1. INTRODUCTION For the sake of simplicity, we will limit the discussion to bi
variate trigonometric polynomials. (However, all the fésu

Recently, there has been a great deal of interest in senitéefin €xtend to multivariate trigonometric polynomials.)
programming (SDP) for optimization problems over polyno- L€t R be a bivariate trigonometric polynomial of degree
mials or pseudo-polynomial&.., trigonometric polynomi- 1 = (n1,n2) € Z?, with real symmetric coefficientsy, =
als). The basic idea is to replace the constraint that a poly:—k:
nomial is nonnegative on (a subset of) its domain by the con- R(w) = zn: xke_jkTw
straint that it is a sum-of-squares (SOS). The nonneggtiVit '
the polynomial and the SOS condition are equivalent for uni- ) o )
variate polynomials. In the multivariate case useful sigfic  |f We collect the independent coefficientg (in some order)
conditions for nonnegativity are obtained. An optimizatio I" & Vectorz, this can be expressed Atw) = ! f(w) where
problem with SOS constraints is equivalent to an SDP, a cont is a vector of. t_>aS|s funqtlons. A fundamental result states
vex problem which can be solved efficiently (in polynomial that if i is positive, then it can be expressed as an SOS of
time) using interior-point solvers. trigonometric polynomials,

@)

k=—n

T
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can be expressed as can be exploited, leading to a substantial reduction in com-
. T T putational complexity. For typical problems with bivadat
z' f(w) =v(w)” Xv(w) + ww) Yw(w), (3)  trigonometric polynomials and = max{n;,n,}, we will

for someX = Y, azal = 0andY = 3, bb? = 0. The obtain a complexity of roughly) (n°).
dimensions of andw can be arbitrarily high, but to obtain a
sufficient condition for the positivity aR, they can be limited 3. APPLICATIONS
to a finite value given, for example, by the degreéoin that
case, the dimensions ofandw are roughlyN/2, whereN =
(n1 + 1)(ng + 1). The “parity” of the degreen determines
the exact dimensions [3].

Equation (3) is a set of linear equations in the coefficient
x and the matriceX andY. By equating coefficients of the
same terms on both sides, it can be written in the form

In the previous section, we reviewed how nonnegativity con-
straints on polynomials can be reformulated or relaxedmas li
ear matrix inequalities (LMI), via SOS expressions. As acon
Sequence, we can formulate a wide variety of optimization
problems involving nonnegative polynomials as SDPs. As an
illustration, we discuss a two-dimensional FIR filter desig
problem [2].

7 = tr(Ti X) + tr(HyY), 4) To represent the spectral mask constraints involved in the

filter design we refer to the following observation. We are in

whereTy and Hy are sparse symmetric matrices (see [3] forterested in sufficient conditions that guarantee that artiig
details). This observation allows us to formulate the (lit®¢h  metric polynomialR is positive on a set of the form
degree) SOS constraint (2), which is a sufficient condition
for positivity of R, as a semidefinite programming constraint D={we[-ma]? | Di(w) >0, i=1,...,1}, (6)
[2, 33 10]. Similar techniques are used in recent SDP "CwhereD; is a trigonometric polynomial. An obvious suffi-
laxations of_mu_lt|var_|at_e nonnegz_atlve polynomlals [4, 3].1 é:lent condition is that it can be expressed as
A parametrization similar to (4) is used in these works, an
general-purpose SDP software such as SeDuMi [12] is used !

to solve the resulting SDPs. Unfortunately, although th@SD R(w) = So(w) + Y Di(w)Si(w), )
data matrices associated with (4) are very sparse, this spar i=1
sity is only exploited to a limited extent by current solvers whereS;, i = 0,...,, are sums of squares of trigonometric

Forn = max{ni,n»}, the complexity of solving an SDP polynomials. The condition is also necessary, but the dsgre

with constraints (4) using existing general-purpose safév  of the SOS may be arbitrarily high. By expressing the coeffi-

is typically close taO(n®). cients ofS; in the form (5), we can write (7) as a linear equa-
An alternative formulation based on discrete transformsjon in the coefficients of? and2(l + 1) positive semidefinite

was recently proposed in [9, 8], and shown to be very efmatrices.

fective for Single'Variable SOS Optimization prOblemS.eTh As a Specific examp|e we consider the pr0b|em of design_

technique also applies to multivariate SOS expressions. W@g a 2-D zero-phase FIR filter

first note that (3) can be replaced by a finite set of linear equa N

tions, by sampling both sides on an appropriately defined and _ _ikTw

sufficiently dense grid of/ points, Hw)= ) hie™

k=—n
2" f(wi) = v(wi)" Xo(wi) + w(w) " Yw(w) with maximum attenuatiofi, in the stopband;, and subject
. . o . to a maximum allowable ripplé, in the passban®,. The
fori=1,..., M. Inmatrix form, this is equivalent to passband and stopband are both parameterized using expres-
Fa = diag(VXVT + wyw7T). sions of the form (6). The optimization problem is
. . minimize
The matriced”, V, andW represent discrete transforms that subjectto |1 — H(w)| <3, w €D, ®)

map the coefficients of (pseudo-)polynomials to their sampl
values. (In our application, they are two-dimensional DFT,
DCT, and DST matrices, respectively.) From the sample valwhered, and the filter coefficients off are the optimization
uesy = Fz, the coefficient vector can be obtained via the variables. To solve the problem (8), we expand the conssrain
corresponding inverse discrete transfarme: Gy. This leads  as

to the following alternative to (4):

|H(w)| <65, weDs,

(w)=Hw)—-1+6,>20, weD,
r=Gdiag(VXVT + WYw7"), XY =0. (5 Ro(w)=1—-H(w)+3,>0, weD,

The formulation (5) involves dense matrices. However, as we R3(w) =H(w)+6s >0, weDs
will see in section 4, simple properties of tHéag operator Ry(w)=H(Ww)—9s>0, weD,.



Each positive polynomiak; can now be represented in terms n | SeDuMi+ [3] | DT SDP
of SOS polynomials as in (7). Using the LMI characteriza- 5 0.07 0.10
tion (5), we arrive at an SDP of the form 7 0.21 0.37
o . 9 1.03 1.15
minimize  ¢-y 11 3.15 2.97
subjectto Adiag(CXCT)+ By =10 (9) 13 9.16 6.78
X =0, 15 24.4 14.1
with a matrix variableX and a vector variablg. The prob- 1 49.1 26.2
. 19 47.2
lem parameters!, B, C, as well as the variabl& are block o1 80.6

matrices with a small numbes({+1) or4(/+1)) of diagonal y

5 23 132
blocks of ordeiO(n?), wheren = max{ni,ns}. o5 512

We refer to [2] for an overview of other applications, such
as nonlinear-phase magnitude filter design.

Table 1. Solve time per iteration (in seconds) for problem (8).
4. SDP ALGORITHM

The most well-known class of SDP algorithms is called the
primal-dualinterior-point method (PD-IPM). Typically, PD- 0
IPMs take roughly 10 to 50 iterations to reach a solution with

a high accuracy. Their key feature is a set of nonlinear equa-,
tions known agentral path equations. At each iteration of the §
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algorithm the central path equations are linearized to farm E’ >0 'm "O’W“ H‘\W Dy
large system of linear equations referred td\&es/ton equa- ) ' " """‘"" j
tions. The computation time spent to construct and solve the Vil )I’ M} l “ ‘ “““\“\
Newton equations dominates the overall computing time. ~100 ! ’ "’ " \m‘: i

i
"A’\\'t 'i'“

The algorithm used in this paper is the extension of the "“ bl Il
Wil L

method proposed in [9], which is based on the interior-point
algorithm described in [13]. We restrict the discussionie t
solution of the Newton equations.

The Newton equations for (9) are

Fig. 1. Solution of the 2D filter design problem (8).

~T'AXT! 4+ 0T diag(ATAz)C = R, (10)
Adi AXCT)+BAy = 11 . . , —
fag(CAXCT) + - 4 . (A1) the matrix-matrix products in the definition éf correspond
B Az = 12, (12) (g two-dimensional discrete transforms. Exploiting ttastf
where thescaling matrix T is positive definite. The values we can reduce the complexity of computifgeven further

of T and the righthand sides change at each iteration. 89y employing fast transforms such as FFT.

eliminating the variable\ X from the first equation and ap-

plying the identitydiag(P diag(u)QT) = (P o Q)u, the set 5. RESULTS
of equations (10) through (12) is reduced to
We revisit the filter problem (8) with the design parameters
H B Az r —
[BT oHAy}:[rﬂ’ ag) 0%
D, = {w € [-7,7|* | Dy = cosw; + cosws — ¢, > 0}

where

Dy = {w € [-m, 7| | Ds = ¢s — coswy — coswy > 0}.

H=A((CTCT)o(CTCT)) A”.
In this equationé’ denotes Hadamard (component-wise) prodThe specification produces a lowpass filter, and the choice fo
uct, so the cost of constructing grows cubically with the the values:, andc, determines the “steepness” of the transi-
matrix dimensions. Itis therefore of the same order as the cotion band. With values, = 1, ¢; = 0.3, andn; = n, = 11,
of solving the system. This is an improvement by an order ofve obtain the filter shown in figure 1. Its optimal attenuation
magnitude over general-purpose implementations, which dis approximately 69 dB.
not exploit the specific structure in the equality constsin For the same problem, but with varying filter lengths=
of (9), and for which computindg? is more expensive than n; = ny), we compare the computational complexity per iter-
solving the reduced Newton system (13). We also note thaition of the discrete-transform-based SDP formulatiohb t
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Fig. 2. Plot of the results in table 1.

of the general-purpose SDP solver (SeDuMi) with the SDP
formulation discussed in [3]. There are 16 matrix varialoes

size roughly(n/2)?.

The CPU times per iteration for the two methods are sum-

3]

[4]

(5]

[6]

[7]

marized in table 1 and figure 5. Both solvers reached the solu-

tions in 16 to 26 iterations for all problem instances. It ban
verified that the complexity of SeDuMi is betweén”) and

frequency domains and applications to 2-D FIR filter de-
sign,” IEEE Trans. Sgnal Proc., vol. 54, no. 11, pp.
4282-4292, Nov. 2006.

B. Dumitrescu, “Gram pair parameterization of multi-
variate sum-of-squares trigonometric polynomials,”
EUSPCO, Florence, Italy, Sept. 2006.

J. B. Lasserre, “Global optimization with polynomials
and the problem of moments3AM Journal on Opti-
mization, vol. 11, no. 3, pp. 796-817, 2001.

P. A. Parrilo, “Semidefinite programming relaxations
for semialgebraic problems,Mathematical Program-
ming Series B, vol. 96, pp. 293-320, 2003.

H. Waki, S. Kim, M. Kojima, and M. Muramatsu,
“Sums of squares and semidefinite program relaxations
for polynomial optimization problems with structured
sparsity,” SAM J. on Optimization, vol. 17, no. 1, pp.
218-242, 2006.

S. J. Benson, Y. Ye, and X. Zhang, “Solving large-
scale sparse semidefinite programs for combinatorial
optimization,” SSAM J. on Optimization, vol. 10, no.

2, pp. 443-461, 2000.

O(n®), while the discrete-transform-based SDP algorithm is [8] J. Lofberg and P. A. Parrilo, “From coefficients to sam-

betweenO(n®) andO(n%). For problems withn > 19 the

computing times by SeDuMi could not be recorded due to
“out-of-memory” error by Matlab under the computing envi-

ronment.

The experiments were conducted in Matlab 7.1 on a 3.0-

Ghz Pentium-4 PC with 3 GB of memory.

6. CONCLUSION

[9] T. Roh and L. Vandenberghe,

(10]

We have derived a discrete-transform-based SDP formula-

tion of a convex optimization problem over positive multi-
variate trigopnometric polynomials. The SDP formulatiors ha
the advantage of leading to a customized interior-point al
gorithm implementation that reduces the computational-com
plexity significantly compared to general-purpose SDPexslv

We applied the results to a two-dimensional lowpass filter de
sign problem and benchmarked an interior-point implementey1 2]

[11]

tion based on the new formulation against a popular general-

purpose SDP solver.
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