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Abstract—Trade-off curves for the exact and the relaxed QoS
routing problem are presented and discussed. In addition, an
efficient parametric linear programming algorithm to compute
the trade-off curve of the relaxed problem is given. Trade-off
curves enable a network operator to choose the set of constraints
according to its QoS portfolio and are useful in the design of
the network. In particular, the trade-off curves represent for
the operator’s network the possible basic feasible solutions that
can be computed rapidly. In some sense, we reverse the QoS
routing problem by giving the network operator the means to
advertise an appropriate set of QoS constraints for its network.
Instead of offering the user the freedom to require desirable end-
to-end QoS levels from the operator, the user now can choose
from the advertised QoS constraints portfolio those that best fit
his application. The trade-off curve of the approximate, relaxed
problem also gives insight in the computational complexity of
QoS routing.

I. INTRODUCTION

Consider a graph with N nodes and L links where each
link l is specified by a link weight vector with m components
wi(l) for 1 ≤ i ≤ m. Assuming only additive1 link weights,
QoS routing determines the “best” path P from a source to a
destination that satisfies

wi(P ) =
X
l∈P

wi(l) ≤ Ci (1)

where Ci (with 1 ≤ i ≤ m) are the end-to-end QoS constraints
requested by the user. Before detailing what is meant by
a “best” path, we write the QoS routing problem as an
integer programming problem (see e.g. [1]). For clarity of the
presentation, we confine the discussion to m = 2 link weights.
We first introduce an integer flow vector x with L components
and require that xl = 1 if link l belongs to the path P ,
otherwise xl = 0. Then, the QoS constraints (1) are compactly
written as w1(P ) = cTx ≤ C1 and w2(P ) = dTx ≤ C2,
where c and d are the vectors of all the first, respectively
second, link weights in the graph. The QoS routing problem
with m = 2 link weights is

find x
subject to Bx = b and xl ∈ {0, 1} for all 1 ≤ l ≤ L

cTx ≤ C1, d
Tx ≤ C2

(2)
1The other type of links such as, for example, available capacity, are

min(max) link weights as explained in [10] which are accommodated by
topology filtering, i.e. all links that do not satisfy the min(max) QoS
constraints are erased.

where B is the N×L node-link incidence matrix of the graph
and b is the demand or supply vector. If bi = 1, bj = −1 and
bk = 0 for k 6= i, j, then the solution of (2) is a feasible QoS
path P from node i to node j. If more feasible paths exist, an
additional criterion can distinguish the “best” path.

Problem (2) with two or more additive link weights (m ≥ 2)
is proved to be NP-complete by Wang and Crowcroft [12].
However, already in 1979, Hansen [4] has proved this fact.
Moreover, Hansen’s arguments show that, although in QoS
routing the constraints C1 and C2 play a crucial role as
opposed to multiple criteria path problems, the same essential
difficulties leading to NP-completeness appear in both types
of problems.

II. THE TRADE-OFF CURVE

Instead of (2), we consider the multi-objective integer
programming problem

minimize
¡
cTx, dTx

¢
subject to Bx = b and xl ∈ {0, 1} for all 1 ≤ l ≤ L (3)

where the QoS constraints (1) are omitted. We will return later
to the QoS constraints C1 and C2.

A feasible solution x of (3) satisfies Bx = b and xl ∈ {0, 1}
for all 1 ≤ l ≤ L and optimal solutions are those that
in addition minimize the vector objective function whose
meaning we now explain. Figure 1 shows in dark shaded
circles the w1 = cTx and w2 = dTx values of the feasible
set of solutions of (3) in the w2, w1-plane. The light shaded
circles are Pareto optimal values of the Pareto optimal flow
vectors or the non-dominated achievable QoS specifications2:
each of these Pareto optimal values minimizes (w1, w2) and
none of them is dominated by another feasible value. The
staircase curve that connects these Pareto optimal points is
called the trade-off curve. The achievable QoS specifications
can lie on the trade-off curve: if they lie on a line segment,
they are dominated by one Pareto optimal value, while on
a corner (as in Figure 1), they are dominated by precisely
two (consecutive) Pareto optimal values. The area above the
trade-off curve is the region of achievable QoS specifications
and a point below the trade-off curve would represent an
unachievable QoS specification.

2A vector y = (y1, . . . , ym) is dominated by a vector x = (x1, . . . , xm)
if xj ≤ yj for all 1 ≤ j ≤ m and where there is at least one strict inequality.
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Fig. 1. The mapping of the Pareto optimal flow vectors x into the w2, w1-
plane (light shaded circle). The staircase line connecting these Pareto optimal
values is the trade-off curve. The achievable QoS specifications (dark shaded
circles) lie in the region above the trade-off curve.

In order to find Pareto optimal points, scalarization (see
e.g. [3, Sec. 4.7.4]) is commonly used. Problem (3) minimizes
a vector. Scalarization maps the vector to a real number by
introducing a minimization criterion. In m = 2 dimensions,
the map is R2 → R :

¡
cTx, dTx

¢ → f
¡
cTx, dTx

¢
where f

obeys certain monotonicity properties [3, Sec. 4.7]. The scalar
optimization problem

minimize f
¡
cTx, dTx

¢
subject to Bx = b and xl ∈ {0, 1} for all 1 ≤ l ≤ L (4)

returns an optimal solution x∗ (f). In the design of the exact
QoS routing algorithm SAMCRA [10], the scalarization f was
the weighted Hölder q-norm, written in m = 2 dimensions as

f
¡¡
cTx, dTx

¢
, q
¢
=

µµ
cTx

Ci

¶q
+

µ
dTx

C2

¶q¶1/q
(5)

Figure 1 shows schematically for a few values of the free
parameter q (and some values of C1 and C2 in (5)) which
Pareto optimal values correspond to optimal solutions of (4)
specified by (5). Scalarization thus allows us to incorporate
the QoS constraints as in SAMCRA. Instead of considering
all possible values of q, in SAMCRA, only the case q → ∞
is computed as motivated in [10].

III. BOUNDS

A. Relaxation
An obvious scalarization function f is a linear function in

the vector components f = λ1cTx + λ2dTx where λ1 and
λ2 are positive real numbers that will be specified below. A
fundamental result in network optimization (see e.g. [1]) states
that the relaxation of xl ∈ {0, 1} to 0 ≤ xl ≤ 1 in the problem

(4) still leads to exact results. By omitting the requirement
that the flow vector should have integer components (needed
to represent a path), the relaxed vector is still exact. Hence,
the problem (4) is reduced to

minimize λ1c
Tx+ λ2d

Tx

subject to Bx = b and 0 ≤ xl ≤ 1 for all 1 ≤ l ≤ L (6)

which will be simplified to the single parameter objective
function cTx+ λdTx because minimizing λ1cTx+ λ2dTx =

λ1
³
cTx+ λ2

λ1
dTx

´
is identical to minimizing cTx + λdTx

where λ = λ2
λ1

since both λ1,2 > 0. Problem (6) has an
efficient solution as shown in the Appendix.

By varying λ ≥ 0, we thus find Pareto optimal values of
the original problem (3). However, even by varying λ over
all possible non-zero numbers, not all Pareto optimal values
of (3) are guaranteed to be found. Since here lies a possible
approximation, we explain this point in more detail. The
feasible set of vectors x that satisfy3 Bx = b and 0 ¹ x ¹ 1
in (6) forms a polyhedron P. The linear map f = cTx+λdTx
projects the edge vectors x of the polyhedron P onto the vector
c + λd and the minimum of those projections for each λ is
maintained. We can plot the minimum of the objective function
cTx+λdTx in a w1 = cTx and w2 = dTx plane as a function
of λ.

0 w1

w2

0 w1

w2

(a) (b)

Fig. 2. The trade-off curve of the exact problem (a) and of the relaxed
problem (b). In (b), the convex hull of the achievable QoS specification is
found.

In summary, the trade-off curve of the relaxed problem (6)
is a piecewise-linear curve g (λ) because it is the lower part
of the boundary of the image of the polyhedron P under the
linear mapping

¡
cTx, dTx

¢
. Figure 2 exemplifies a situation

where only three of the in total four Pareto optimal values are
found, due to the non-convex nature of the original integer
programming problem.

B. The trade-off curve of the relaxed problem
In general for any m > 1, the objective function is λTw

where λ is an m-dimensional vector as well as w. If λTw = a

3Following the notation in [3], recall that x º 0 means that each vector
element in x is nonnegative.
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where a is a constant, it shows that the vector λ is orthogonal
to the vector w. A schematic of the piecewise linear trade-
off curve is shown in Figure 3. If λ1 = 0 (or λ → ∞), we
find the shortest path in a graph with a single link weight
given by the second component of the link weight vector �w.
Hence, in Figure 3, the line parallel to the w1-axis gives the
weight of that shortest path and, similarly, the line parallel to
the w2-axis corresponds to the weight of the shortest path in
the first component of the link weight vector w only (λ = 0).
These values (min w1, min w2) are the absolute minimum for
(w 1, w2) and readily obtained by e.g. Dijkstra’s shortest path
algorithm.

0 min w1

min w2

w1

w2

λ(K) = 

λ(k)

λ(0) =0

C1

C2

C2
*

interior 
point

8

C1
*

Fig. 3. The feasible region lies above the trade-off curve (bold line) for the
Problem 6. If only one vertex is enclosed by the constraint C1 and C2, it is
the only solution with those QoS constraints. If the constraints C∗1 and C∗2
do not enclose an extreme point, the remaining triangular area needs to be
scanned for a possible integer solution (i.e. a path). If there is only one interior
extreme point between two consecutive extreme points on the trade-off curve,
the ellipsoidal insert shows the resulting exact trade-off curve between these
extreme points.

Since g (λ) = minx c
Tx+λdTx is the optimal value of the

relaxation, the QoS routing problem that additionally imposes
a QoS constraints vector C is lower bounded by the trade-off
curve g (λ) for λ ≥ 0 of the relaxed problem.

A different formulation of (6) is

minimize dTx

subject to Bx = b and 0 ¹ x ¹ 1 and cTx ≤ γ (7)

where the optimum x∗ (γ) will be a function of the QoS con-
straint γ rather than the parameter λ that does not have an im-
mediate interpretation. The representation of w2 = dTx∗ (γ)
versus γ will be exactly the same as the piece-wise linear
curve shown in Figure 3 but with a different parametrization
(γ instead of λ). Thus, γ → ∞ corresponds to minw2 and
γ = minw1 corresponds to the point (minw1, w2). Values of
γ < minw1 will lead to infeasible solutions.

C. Upper and lower bounds

The piece-wise linear nature of g (λ) means that a basic
feasible solution x∗j remains the minimum in the λ-interval
[λj , λj+1). Applied to the shortest path problem, a certain
path Pj (represented via the flow x∗j ) is the shortest one
during a change of the link weight vector from (c+ λjd)
to (c+ λj+1d) with λj+1 > λj for all 1 ≤ j ≤ K,
where K is the number of extreme points (or basic feasible
solutions). From a practical viewpoint, the range [λj , λj+1)
reflects the stability regime in which the path Pj is the
shortest and the increasing term λdTx can be considered
as an external influence on the link weights due to, e.g.
changing traffic conditions that enlarge the delay, loss etc.,
or due to the changing of a pricing scheme. If all K extreme
points are known with their corresponding active λ-region,
topology update rules for recomputing the shortest path may be
triggered to start flooding when a minimum change ∆λmin =
minj (λj+1 − λj) is exceeded. However, as will be shown
below, there are cases in which ∆λmin = 0, and, in general, as
N grows large,∆λmin → 0. This means that in large networks
shortest paths are intrinsically unstable.

Given a topology via the incidence matrix B, it is, in
general, as explained in [8], a difficult problem to estimate
analytically the number K of extreme points. If the number
of extreme points is large, the piecewise-linear trade-off curve
g (λ) tends to a smooth differentiable (and convex) curve
which can be fitted to provide a compact analytical form for
the lower bound of the QoS routing problem (2). If only a
few extreme points are known, the piecewise-linear nature of
the trade-off curve of the relaxed problem allows us to bound
the region of feasible solutions by linear segments from the
λ = 0 and λ → ∞ extreme points as illustrated in Figure 4.
Moreover, since the left and right derivative of g (λ) at a basic
feasible solution x∗j are λj and λj+1 > λj , respectively, the
tangent at x∗j computed as the mean of the left and the right
derivative bounds the feasible regions of the relaxed problem
from below, whereas the linear segment through the λ = 0
and λ→∞ extreme points bounds that feasible region from
above.

Figure 4 also shows that there are two extreme types of
trade-off curves. The first one consists of a right angle corner
connecting the λ = 0 and λ → ∞ extreme points. The
intersection of the horizontal line and vertical line through
these two extreme points is the extreme point with coordinates
(minw1,minw2). In this extreme case, that latter point is
precisely the only optimal point and in fact there is nothing
to trade-off. The second extreme case consists of the line
connecting the λ = 0 and λ→∞ extreme points: all extreme
points on that line are Pareto-optimal: if the w1 value of
an extreme point is decreased, the w2 value is necessarily
increased. Clearly, all other trade-off curves of the relaxed
problem lie in between these extremes.

The trade-off curve of the relaxed problem also contains
information to upper bound the exact trade-off curve of the
original problem. The dark shaded triangles above the bold
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w2

w1
0

Fig. 4. The continuous, convex function w2 = gc (w1) passing through the
λ = 0 and λ→∞ point. The tangent to an arbitrary point on gc reduces the
search space in the (w1, w2) plane of feasible solutions to all points above
the tangent.

trade-off curve in Figure 3 represent the largest possible
regions in which an optimal interior point of problem (3)
can lie. Any other interior point is not optimal because it is
dominated by an extreme point on the trade-off curve. The
upper bound curve to the optimal solution is a staircase curve
(Figure 1) obtained by connecting the extreme points via the
right angle edges of each triangle instead of by the triangle’s
hypothenusa (which gives the trade-off curve of the relaxed
problem). Hence, the area of the triangle and related to this,
the distance between two consecutive extreme points on the
trade-off curve, characterize the maximum degree by which w1
and w2 of a possible optimal interior solution can deviate from
that of neighboring extreme points. If the area is small, the
extreme points on the trade-off curve of the relaxed problem
are very close to the optimal solution of (3). If we know an
interior optimal point as illustrated in Figure 3, all possible
other solutions in the rectangular area of the triangle above and
to the right of the interior optimal point are dominated by that
interior point. Hence, the staircase curve should be reduced by
a rectangular inlet at interior optimal points. If there is only
one interior point between two extreme points on the trade-
off curve, the optimal curve is shown in the ellipsoidal insert
in Figure 3. Compared to the exact trade-off curve shown in
Figure 1, the line connecting both extreme points on the trade-
off curve of the relaxed problem is thus clearly a lower bound
(and can be erased).

D. The trade-off curve of the relaxed problem and QoS
constraints

As an interesting application of the relatively easily com-
puted trade-off curve of the relaxed problem, a network
provider may offer to customers in his QoS portfolio only
those constraints for which one extreme point lies within the
QoS (C1, C2) constraints.

When given the freedom to choose (C1, C2), there are
constraints for example (C∗1 , C∗2 ) in Figure 3 that do not

enclose an extreme point. This means that, for such constraints,
the trade-off curve does not provide a solution for a path or
spanning tree and the optimal path/tree is an interior point
solution of (3) inside the polyhedron P of the relaxed problem.
In general there are no efficient search methods to find such
an optimal interior point. This observation also explains why
there are possible cases in which the QoS routing problem
is difficult, i.e. NP-complete. The points on the line between
two extreme points which lie within the (C∗1 , C∗2 ) are feasible
flows, but not paths. Assuming that we have a train of packets
to send from a source to a destination, we may interpret such
solution as a flow over several paths and the xj component
gives the fraction of packets that travel over link j. If a
packet train can be efficiently routed over several paths in
the network, this solution is optimal.

IV. COMPUTATION OF THE TRADE-OFF CURVE OF THE
RELAXED PROBLEM

A general parametric linear programming algorithm (PLPA)
to compute the trade-off curve of the relaxed problem is
presented and explained in the Appendix A. In the sequel, only
the trade-off curve of the relaxed problem (6) is considered
further. Here we limit ourselves to explaining the PLPA by an
example in Section IV-A.

In order to avoid degenerate extreme point solutions (ex-
plained in the Appendix A), we first compute the shortest
path tree rooted at the source node (with label 1) to all
other nodes in the network for which the demand vector is
bT = (N − 1,−1,−1, . . . ,−1). From this shortest path tree,
all possible shortest paths from that source to any other node
in the network are readily obtained.

A. Example
In this section, we illustrate the PLPA by a simple network

example. We use the convention that a flow at a node j
is positive when unit traffic is injected at node j into the
network and negative if unit traffic leaves the network at node
j. Information about the direction of the links is specified by
the incidence matrix B, a N × L matrix with elements

bij =

 1 if link ej = i −→ j
−1 if link ej = i←− j

0 otherwise
The potential y, defined in the Appendix A, is negative in each
point, except for the source in which current is injected in the
network. This convention is similar as in electrical networks.

A simple network is shown in Figure 5.
The numbering of the links is given in Figure 6. The

corresponding incidence matrix B5×10 is

B =


−1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 −1 1 0 0 0
0 −1 0 0 0 0 0 1 −1 1
0 0 −1 0 −1 1 0 −1 1 0
0 0 0 −1 0 0 −1 0 0 −1


and both link weight vectors c and d are
cT =

£
3.1 2.3 1.2 12.3 2.5 9.6 2.1 6.8 2.1 2.2

¤
dT =

£
4.2 7.4 14.7 9.7 1.0 3.1 5.1 2.2 5.9 6.7

¤
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Fig. 5. Example network.
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Fig. 6. The numbering of the links in the example network.

The initial case for λ(0) = 0 is shown in Figure 7. The
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Fig. 7. Network weights with λ(0) = 0.

corresponding potential vector is³
y(0)

´T
=
£
0 −10.8 −2.3 −1.2 −4.5 ¤

and the corresponding flow vector is³
x(0)

´T
=
£
0 2 2 0 0 1 0 0 0 1

¤
If each node in the network is once a source, then summing
all flow vectors results in an aggregate flow vector of which
each non-zero flow component gives the betweenness of that
link, defined as the number of shortest paths each with unit
traffic that traverse a link
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Fig. 8. Network weights with λ(K) →∞.

The final case for λ(K) is shown in Figure 8. The corre-
sponding potential vector is³

y(K)
´T
=
£
0 −12.7 −7.4 −9.6 −9.7 ¤

and the corresponding flow vector is³
x(K)

´T
=
£
0 3 0 1 0 1 0 2 0 0

¤
Starting from x(0), the set I which consists of rows of the

non-zero elements in x(0) equals I = {2, 3, 6, 10}. We find
λ+ = λ(1) = 1.549 and the corresponding flow vector is³

x(1)
´T
=
£
0 4 0 0 0 1 0 2 0 1

¤
This network situation is shown in Figure 9. The corre-
sponding potential vector is found as a solution of y (λ) =
B−TI (cI + λdI), which is explicitly,³
y(1)

´T
=
£
0 −38.3725 −13.7627 −23.9706 −26.3412 ¤

A

B
C

D
E

10

12.5783

27.3253

23.9703
9.6058

10.2078
4.049

14.4019 11.2391

13.7626

Fig. 9. The network weights if λ = λ(1) = 1.459.

In the next step k = 2, we find λ+ = λ(2) = 1.7727
with corresponding flow vector x(2) = x(K). Hence, in this
example, there are only three extreme points in the dTx versus
cTx plot as illustrated in Figure 10. The difference between
the slopes λ(2) − λ(1) ≈ 0.23 is too small to be visible in
Figure 10.

The algorithm gives the total flow information from the
source to each node. By separating the source tree into
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the individual shortest paths from source to each node, the
trade-off curve for each shortest path from a same node is
determined and shown in Figure 10. In this example, we see
that the constraints C1 = 20 and C2 = 20 are sufficient to
allow that each extreme point lies within these constraints.
Hence, for a multicast session with the source at node 1,
the constraints (20, 20) and, even (12, 20) for λ = 0 only,
can be guaranteed. From the flow vector, we can compute

60

50

40

30

20

10

0

w
2

50403020100

w1

 λ = 0
 λ = 1.459
 λ = 1.773
 aggregate
 node 2
 node 3
 node 4
 node 5

source: node 1

Fig. 10. The trade-off curves for the example network. The aggregate is the
sum of the trade-off curves of the individual nodes.

the betweenness. The betweenness gives indications about the
importance or centrality of a link. Load balancing would strive
to equalize the betweenness over the links in the network as
much as possible. Hence, instead of choosing the shortest path
tree specified by λ that satisfies certain QoS constraints, we
may choose that λ = λ(k) with the most uniform flow vector
x(k) which corresponds to λ = 0 in the example network.

B. The number K of basic feasible solutions

The PLPA does not guarantee that all possible basic feasible
solutions x(k) belonging to λ = λ(k) are found. We have al-
ready explained that the trade-off curve of the relaxed problem
is the image of a linear mapping of the feasible polyhedron P
on the w1,w2-plane. If that polyhedron P has facets parallel
to c+ λd, all basic feasible solutions (vertices of the feasible
polyhedron P) are projected onto a same line segment in the
w1,w2-plane. At a vertex in such a facet, there are necessarily
at least two edges connecting that vertex to others in that
facet, but more are possible. In the latter case, the PLPA
algorithm chooses only one of the possible bifurcational arcs
and continues determining all vertices (extreme points) on that
arc, but it neglects all possible others on the second (or other)
arc(s). Therefore, the PLPA may be used as an approximate
and indicative tool, not to solve non-linear problems exactly.
For example, the PLPA does not necessarily enumerate all
possible shortest hop trees rooted at some node.

V. ANALYSIS OF TWO NETWORK TYPES

Recently, Kuipers and Van Mieghem [6] have determined
conditions on the graph G and the link weight structure that
make the QoS routing problem (2) hard. From a practical point
of view, if we can find the set of all networks for which the
QoS routing problem is hard, we can propose guidelines to
choose the link weight structure (or the graph if possible)
such that QoS routing is tractable. The latter means that a
QoS multi-constrained path PA→B can be computed exactly,
e.g. with SAMCRA [10], with a complexity that increases
polynomially with the size of the graph (i.e. with N and/or
L). In fact, as shown in [5], many instances of the QoS
routing problem only require a computational complexity that
is slightly larger than Dijkstra’s shortest path algorithm. In this
section, we present observations deduced from the trade-off
curve analysis for two different classes of graphs: the small-
world Erdös and Rényi random graph Gp(N) [2] which was
found to be “easy” and the lattice which is a large diameter
graph and was found to be “difficult”.

If we create a random matrix AN×L (which is not nec-
essarily equal to an incidence matrix B that represents a
network) and uniformly distributed link weight vectors c and
d, then we find for sufficiently large N , that the trade-off
curve tends to a smooth differentiable curve. This means that
λmin = min1≤k≤K λ(k) tends to zero. In particular, for the
random graph Gp(N), we find that the values λ(k) are roughly
exponentially increasing in k and that the total number of
extreme points K is increasing in the number of nodes N
approximately as a power law. For the lattice, we also found
that K ≈ cNa (where a, c > 0). Figure 11 shows a typical
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w1

w
2

Fig. 11. A typical trade-off curve for G0.3 (64) where both link weight
vectors c and d are not correlated and uniformly distributed on [0,1].

trade-off curve for the total shortest path tree rooted at the
source in the random graph Gp (N) where p = 0.3 and
N = 64. Figure 12 shows the related trade-off curve of the
shortest path from the source to an arbitrary node (here node
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64) in the same random graph as that in Figure 11. The main
difference is the large number K of extreme points in the
total shortest path tree (which results in an almost everywhere
differentiable curve) as opposed to the relatively small number
of extreme points for the case of a single path.
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Fig. 12. The trade-off curve of the shortest path from the source node to
node 64 in the same graph as Figure 11.

Instead of uncorrelated link weight vectors c and d, in the
sequel, we consider perfectly negatively correlated uniformly
distributed link weight vectors such that d = 1 − c because
negative correlation was found in [6] as a condition that makes
the QoS problem hard.

A. Lattices
If we create a lattice with size z1 and z2 containing N =

(z1 + 1) (z2 + 1) nodes where c is uniformly distributed on
[0,1] and d = 1−c, we observe an almost “three-lines” piece-
wise plot as illustrated in Figure 13 for the shortest path tree
and in Figure 14 which shows the corresponding path from
the source to an arbitrary node.

The diagonal line is characterized by a single λ, which
means that (c+ λ (1− c))

T
x(k) is constant for all these

points, but that w2 = dTx(k) and w1 = cTx(k) are different.
This single λ equals 1, such that (c+ λd)T x(k) = 1Tx(k) =°°x(k)°°

1
and the optimization criterion is independent of the

link weights c and, thus a fundamental property of a lattice.
If we fix the underlying topology – N is fixed in the case
of a lattice –, all Mt different, optimal flow vectors from a
source node to all other nodes that minimize the sum of the
components 1Tx(k), correspond to all Mt possible minimum
hop trees rooted at the source. Since all components of x(k) are
integers, 1Tx(k) is the same integer for all these flow vectors.
In case we confine to paths (instead of trees), the number of
minimum hop paths between corner points on a diagonal in
the lattice is Mp =

¡
z1+z2
z1

¢
and 1Tx = z1 + z2 (see e.g. [9]).

In any lattice with N nodes and perfectly negatively correlated
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Fig. 13. A typical trade-off curve for a lattice with size z1 = z2 = 7 (or
N = 64) and where the link weights are uniformly distributed but perfectly
negatively correlated.
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Fig. 14. The trade-off curve of a path in the same lattice as that of Figure
13

link weights (d = 1 − c), the exact trade-off curves consists
of precisely Mp points on the λ = 1 line. This constant
number Mp is not returned in the trade-off curves computed
by PLPA due to the choice of PLPA at bifurcational arcs as
explained earlier. If it were, the line segment corresponding to
λ = 1 would be a uniform weighted x(k) of precisely a same
set of Mp flow vectors. Hence the spacing should be almost
exponential with mean 1

Mp
by a same argument as used in

[11, Section II.c]. The number Mp of these flow vectors is
not constant in each instance and the spacing distribution is
not entirely exponential as observed in Figure 15 and 16.

Figure 13 (and 14) clearly shows the grey triangles that
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Fig. 15. The histogram of the spacing between two consecutive extreme
points on the line segment of the trade-off curve corresponding to λ = 1 for
the shortest path tree in the lattice with N = 64. The mean is 3.23 and the
standard deviation is 6.18. The number of instances simulated is 100.

characterize potential regions with interior point solutions of
the original problem (3). If the QoS constraints are placed
in such a segment, interior points need to be found which is
generally computational intensive and which may explain NP-
hard features. “Difficult” constraints (C∗1 , C∗2 ) as illustrated in
Figure 3 are lying between extreme points, i.e. w1,j+1 ≤ C∗1
≤ w1j and w2,j ≤ C∗2 ≤ w2,j+1 where w1,j = cTx∗j and
w1,j = dTx∗j . In fact, a solution of problem (3) requires that
we find integer solutions (that represent a path) of the flow
vector x of which both cTx and dTx lie within that triangle.
Intuitively, one would argue that the larger the triangle, the
larger the expected search space and the larger the computation
time. While probably correct in many network instances,
unfortunately, the projective nature of the trade-off curve does
not allow us to state this argument as a truth. We cannot
exclude that extreme points of some polyhedron along some
direction are all projected into a small triangle of the (w1, w2)-
plane.

The exact trade-off curve corresponding to that in Figure
14 has been computed with SAMCRA. On the λ = 1 line,
precisely Mp =

¡
14
7

¢
= 3432 extreme points appear (in

contrast to K − 1 = 12 in Figure 14 computed by PLPA).
The large number in extreme points (Pareto optimal points),
Mp =

¡
z1+z2
z1

¢
, illustrates the NP-hardness. On the λ = 1

segment, no interior points (in a triangle) are found. For
perfectly negatively correlated link weights, an interior point
must possess a hopcount larger than the minimum possible
that is h = z1+z2. For example, the second shortest hop path
Ph+2 between opposite corner nodes (consisting of h+2 hops)
lies on the line w2 (Ph+2) = h+2−w1 (Ph+2) parallel to the
λ = 1 line that obeys w2 (Ph) = h−w1 (Ph). The probability
that a point (w1 (Ph+2) , w2 (Ph+2)) is not dominated by a
point (w1 (Ph) , w2 (Ph)) on the λ = 1 line seems very small
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Fig. 16. The histogram of the spacing between two consecutive extreme
points on the line segment of the trade-off curve corresponding to λ = 1 for
a single path in the lattice with N = 64. The mean is 0.79 and the standard
deviation is 0.69. The number of lattice instances simulated is 100.

for uniform link weights.

B. Erdös and Rényi random graph
A typical trade-off curve for G0.3 (64) is shown in Figure 17

for the shortest path tree and in Figure 18 for the corresponding
shortest path. In contrast to the lattice with the same number
of nodes N = 64, for the random graph (which has about 5
times more links), the trade-off curve is almost differentiable
and extreme points are more or less homogeneously distributed
over the trade-off curve. The upper (staircase) and lower
bound (trade-off curve) approach each other which means
that the exact solution of the original QoS routing is very
well approximated. However, also here, there is a diagonal
line segment corresponding to λ = 1 which contains many
extreme points, but this line segment is much less dominant
compared to the lattice. An explanation is that, in Gp (N), the
minimum hop path does not have a fixed length as opposed
to z1 + z2 in a lattice. The shorter hop path (between two
nodes) dominates all other on the λ = 1 segment. Hence, the
dominance principle efficiently reduces the possible number of
feasible solutions. This may explain that, for all constraints,
SAMCRA readily finds a solution and that NP-hard behavior is
not observed in Gp (N). The corresponding trade-off curve for
a path has a quite high curvature, which classifies the trade-off
curve close to the extreme single corner trade-off curve with a
single optimum. Again this points to computational easy cases
of the QoS routing problem. In contrast, the trade-off curves in
Figure 13 and 14 for the lattice are near to the other extreme
type of a trade-off curve.

VI. SUMMARY

We have shown that the trade-off curve of the relaxed
problem is useful to both upper and lower bound the exact
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Fig. 17. A typcial trade-off curve for G0.3 (64) with uniform link weights,
but perfectly negatively correlated.
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Fig. 18. A typcial trade-off curve of a path in the same graph G0.3 (64) as
that of Figure 17

solution of the QoS routing problem. In addition, the trade-
off curve of the relaxed problem is efficiently computed by a
parametric linear programming algorithm (PLPA). The Pareto
values returned by the PLPA are also exact Pareto values of
the original QoS routing problem. Beside choosing the set
of QoS constraints, a network operator may also determine
the operational point (specific λ) that leads to the most load-
balanced situation. Finally, the amount of large triangles above
and the overall curvature of the trade-off curve of the relaxed
problem give indications about the possible computational
difficulty of the QoS routing problem.
Acknowledgements. This work performed at UCLA was

supported by the Dutch National Foundation for Applied

Sciences, STW project DTC.6758. We would like to thank
F. Kuipers for computing the exact trade-off curves with
SAMCRA.

REFERENCES

[1] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, Belmont, MA, 1997.

[2] B. Bollobas. Random Graphs. Cambridge University Press, Cambridge,
UK, 2nd edition, 2001.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, 2004.

[4] P. Hansen. Bicriterion path problems. Multiple Criteria Decision
Making, Theory and Application, ed. G. Fandel and T. Gal, Lecture
Notes in Economics and Mathematical Systems 177, Springer-Verlag,
Berlin, pages 109–127, 1980.

[5] F. A. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem. Performance
evaluation of constraint-based path selection algorithms. IEEE Network,
18(5):16–22, September/October 2004.

[6] F. A. Kuipers and P. Van Mieghem. Conditions that impact the
Complexity of QoS Routing. IEEE/ACM Transaction on Networking,
13(4):717–730, August 2005.

[7] C. Roos, T. Terlaky, and J. P. Vial. Theory and Algorithms for Linear
Optimization: An Interior Point Approach. John Wiley & Sons, 1997.

[8] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New
York, 1986.

[9] P. Van Mieghem. Performance Analysis of Communications Systems and
Networks. Cambridge University Press, 2006.

[10] P. Van Mieghem and F. A. Kuipers. Concepts of exact quality of
service algorithms. IEEE/ACM Transaction on Networking, 12(5):851–
864, October 2004.

[11] P. Van Mieghem and S. van Langen. Influence of the link weight
structure on the shortest path. Physical Review E, 71:056113, May
2005.

[12] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting
multimedia applications. IEEE JSAC, 14(7):1228–1234, Sept. 1996.

APPENDIX

We consider the problem of computing the trade-off curve
of a bicriterion linear program

minimize (w.r.t. R2+) (cTx, dTx)
subject to Ax = b, x º 0

where A ∈ Rm×n with rank(A) = m. We assume that all the
extreme points of the feasible set are nondegenerate and we
refer to the book [7] of Roos et al. for a careful treatment of
parametric linear programming in the presence of degeneracy.
A feasible x is an extreme point if the submatrix AI of A
formed by the columns indexed by I = {j | xj > 0} has full
rank (rank(AI) = #I). An extreme point is nondegenerate
if it has exactly m positive components, i.e., AI is square and
nonsingular. It follows that a nondegenerate extreme point x
is uniquely determined by its basis I: we have

xI = A−1I b, xj = 0, j 6∈ I.

We will also assume that the two objectives cTx and dTx are
bounded below on the feasible set. This is true, for example,
if c and d have nonnegative coefficients.

The trade-off curve is a convex piecewise-linear function
obtained by plotting dTx(λ) versus cTx(λ) for λ ≥ 0, where
x(λ) is an optimal solution of the linear program (LP)

minimize cTx+ λdTx
subject to Ax = b, x º 0. (8)
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The dual of the LP (8) is

maximize bTy
subject to ATy ¹ c+ λd.

(9)

A. The trade-off curve of the relaxed problem
The following parametric linear programming algorithm

(PLPA) generates a sequence λ(k) with

0 = λ(0) ≤ λ(1) ≤ · · · ≤ λ(K)

and a sequence of extreme points x(k) such that x(k) is optimal
for (8) with λ = λ(k). The trade-off curve is then obtained by
connecting (cTx(k), dTx(k)) for k = 0, . . . ,K.

Compute x(0), an extreme optimal solution of LP (8)
with λ = 0.
Repeat the following steps for k = 0, 1, . . ..

1) Compute λ(k+1). Define

λ+ = sup{λ | aTj A−TI (cI + λdI) ≤ cj + λdj , j /∈ I}
(10)

where I = {i | x(k)i > 0} and aj is the jth column of
A. If λ+ =∞ we terminate the algorithm with K = k.
Otherwise, we take λ(k+1) = λ+.

2) Compute x(k+1). Choose an index j 6∈ I for which
aTj A

−T
I (cI + λdI) > cj + λdj for λ > λ(k+1). Define

x(k+1) as

x
(k+1)
I = x

(k)
I − t̂A−1I aj ,

x
(k+1)
j = t̂,

x
(k+1)
l = 0, l 6∈ I ∪ {j},

where t̂ = sup{t | x(k)I − tA−1I aj º 0}.

B. Discussion
We first note that x(0) exists since we assumed that the

objective function cTx is bounded below over the feasible set.
Step 1 is based on the fact that x(k) is an optimal point

of (8) for λ(k) ≤ λ < λ+ (or λ(k) ≤ λ ≤ λ+ if λ+ is finite).
This can be seen as follows. The optimality conditions for the
pair of LPs (8) and (9) are:

Ax = b, x º 0,
ATy ¹ c+ λd,

xi(ci + λdi − aTi y) = 0, i = 1, . . . , n.

Given that x(k) is optimal for λ = λ(k) and that x(k)I Â 0, the
optimality conditions at λ = λ(k) reduce to

AT
I y = cI + λ(k)dI , aTj y ≤ cj + λ(k)dj , j 6∈ I.

AI is square and nonsingular because x(k) is nondegenerate, so
from the first condition we can uniquely determine the optimal
y:

y = A−TI (cI + λ(k)dI).

Since y must be dual feasible, we also have

aTj A
−T
I (cI + λ(k)dI) ≤ cj + λ(k)dj , j 6∈ I.

Next we note that for λ ≥ λ(k),

y(λ) = A−TI (cI + λdI)

satisfies the dual inequalities indexed by I with equality, so
y(λ) is feasible for all λ that satisfy

aTj y(λ) ≤ cj + λdj , j 6∈ I.

This condition defines an interval for λ that includes λ(k). It
holds for λ ∈ [λ(k),∞) if λ+ = ∞ and for λ ∈ [λ(k), λ+]
otherwise. The end point λ(+) is determined via a minimum
ratio test:

λ+ = min
j∈J

cj − aTj A
−T
I cI

aTj A
−T
I dI − dj

, J = {j 6∈ I | aTj A−TI dI > dj}.
(11)

So we know that y(λ) is dual feasible for all λ ∈
[λ(k), λ(k+1)]. Since x(k) satisfies the complementary slack-
ness conditions with y(λ), we can conclude that x(k) and y(λ)
are primal and dual optimal for λ(k) ≤ λ ≤ λ(k+1).

In step 2 we start by selecting an index j 6∈ I such that
aTj y(λ) > cj + λdj for λ > λ(k+1), i.e., j is an index at
which the minimum in (11) is achieved. We then determine

t̂ = sup{t | x(k)I − tA−1I aj º 0}.
This value can be determined by another minimum ratio test.
Define v ∈ Rn as

vI = −A−TI aj , vj = 1, vl = 0, l 6∈ I ∪ {j}.
Then

t̂ = sup{t | x(k) + tv º 0} = min
i∈I,vi<0

−x(k)i

vi
. (12)

We first show that t̂ is finite. t̂ = ∞ means that v =
A−1I aj º 0, and therefore that x = x(k)+tv is primal feasible
for all t ≥ 0. However

(c+ λd)T (x(k) + tv) = (c+ λd)Tx(k) + t(cj + λdj−
t(cI + λdI)

TA−1I aj)

= (c+ λd)Tx(k) + t(cj + λdj − aTj y(λ))
(13)

and since the coefficient of t is negative for λ > λ(k), this
means that for λ > λ(k), the cost function (x + λd)Tx is
unbounded below along the ray {x(k) + tv | t ≥ 0}. This
contradicts our assumption that the cost functions are bounded
on the feasible set.

We also must have t̂ > 0: t̂ = 0 would mean that some
of the coefficients of x

(k)
I are zero, which contradicts the

assumption that x(k) is a nondegenerate extreme point.
Next we show that x(k+1) is an extreme point. Select an

index i ∈ I for which x
(k+1)
i = 0, i.e., i is one of the indices

at which the minimum in (12) is attained. We have vi < 0
and, since

AIvI = −aj ,
the columns of A indexed by (I ∪ {j}) \ {i} are linearly
independent. Therefore x(k+1) is an extreme point. Since, by
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assumption, all extreme points are nondegenerate, we know
there is exactly one i ∈ I for which x

(k+1)
i = 0.

Finally, we note from (13) that

(c+ λd)Tx(k+1) < (c+ λd)Tx(k) (14)

for λ > λ̂(k). This guarantees that the algorithm does not
cycle, i.e., the points x(k) are all distinct.
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