
Interior-point algorithms for semidefinite
programming problems derived from the KYP
lemma?

Lieven Vandenberghe??, V. Ragu Balakrishnan???, Ragnar Wallin†, Anders
Hansson†, and Tae Roh??

Summary. We discuss fast implementations of primal-dual interior-point methods
for semidefinite programs derived from the Kalman-Yakubovich-Popov lemma, a
class of problems that are widely encountered in control and signal processing appli-
cations. By exploiting problem structure we achieve a reduction of the complexity by
several orders of magnitude compared to general-purpose semidefinite programming
solvers.

1 Introduction

We discuss efficient implementations of interior-point methods for semidefinite
programming problems (SDPs) of the form

minimize qTx+
∑L

k=1Tr(QkPk)

subject to

[
AT
k Pk + PkAk PkBk

BT
k Pk 0

]
+

p∑

i=1

xiMki º Nk, k = 1, . . . , L.
(1)

The optimization variables are x ∈ Rp and L matrices Pk ∈ Snk , where Sn

denotes the space of symmetric matrices of dimension n × n. The problem
data are q ∈ Rp, Qk ∈ Snk , Ak ∈ Rnk×nk , Bk ∈ Rnk×mk , Mki ∈ Snk+mk ,
and Nk ∈ Snk+mk . If nk = 0, the kth constraint is interpreted as the linear
matrix inequality (LMI)

∑p
i=1 xiMki º Nk. The SDPs we study can therefore

?This material is based upon work supported by the National Science Foundation
under Grant No. ECS-0200320 and the Swedish Research Council under Grant No.
271-2000-770.

??Department of Electrical Engineering, University of California, Los Angeles.
vandenbe@ee.ucla.edu, roh@ee.ucla.edu.

???School of Electrical and Computer Engineering, Purdue University.
ragu@ecn.purdue.edu.

†Division of Automatic Control, Department of Electrical Engineering,
Linköping University. ragnarw@isy.liu.se, hansson@isy.liu.se.



2 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

include arbitrary LMI constraints. At the end of this section we will list several
assumptions made about the problem data. The most important of these
assumptions is that (Ak, Bk) is controllable for k = 1, . . . , L.

We refer to SDPs of the form (1) as KYP-SDPs, and to the constraints in
the problem as KYP-LMIs, for the following reason. The Kalman-Yakubovich-
Popov (KYP) lemma states that the semi-infinite frequency domain inequality

[
(jωI −A)−1B

I

]∗
M

[
(jωI −A)−1B

I

]
Â 0, ω ∈ R, (2)

where A ∈ Rn×n does not have imaginary eigenvalues, holds if and only if the
strict LMI [

ATP + PA PB
BTP 0

]
+M Â 0

with variable P ∈ Sn is feasible. Moreover, if (A,B) is controllable, then the
nonstrict frequency domain inequality

[
(jωI −A)−1B

I

]∗
M

[
(jωI −A)−1B

I

]
º 0, ω ∈ R, (3)

holds if and only if the nonstrict LMI

[
ATP + PA PB

BTP 0

]
+M º 0 (4)

is feasible (for a discussion of these results from a semidefinite programming
duality perspective, see [BV03]). The KYP lemma forms the basis of some
of the most important applications of SDPs in control; see, for example,
[BEFB94, Ran96, HB99, OB99, MR97, Jön96, BW99, HV01].

The constraints in the KYP-SDP (1) have the same general form as (4),
with M replaced with an affine function of the optimization variable x. If
Qk = 0, the KYP-SDP is therefore equivalent to the semi-infinite SDP

min. qTx

s.t.

[
(jωI −Ak)

−1Bk

I

]∗
(Mk(x)−Nk)

[
(jωI −Ak)

−1Bk

I

]
º 0,

k = 1, . . . , L,

(5)

with variable x, where Mk(x) =
∑p

i=1 xiMki. More details and examples,
including some applications in which Qk 6= 0, are given in §2.

KYP-SDPs are difficult to solve using general-purpose SDP software
packages [Stu01, TTT02, AHN+97, FKN98, Bor02, BY02, GN95, WB96].
The difficulty stems from the very high number of optimization variables
(p+

∑
k nk(nk + 1)/2). Even moderate values of nk (say, a few hundred) re-

sult in very large scale SDPs, with several 10,000 or 100,000 variables. This
is unfortunate, because in many applications the variables Pk are of little



Interior-point algorithms for SDPs derived from the KYP lemma 3

intrinsic interest. They are introduced as auxiliary variables, in order to con-
vert the semi-infinite frequency-domain constraint (3) into a finite-dimensional
LMI (4).

For this reason, several researchers have proposed alternatives to standard
interior-point methods for solving KYP-SDPs. These methods include cutting-
plane methods (such as the analytic center cutting-plane method) [Par00,
KM01, KMJ01, KMJ03, Hac03], interior-point methods based on alternative
barrier functions for the frequency-domain constraint [KM01], and interior-
point methods combined with conjugate gradients [HV00, HV01, WHV03,
GH03].

In this paper we examine the possibility of exploiting KYP-SDP prob-
lem structure to speed up standard primal-dual interior-point methods of the
type used in state-of-the-art solvers like SeDuMi [Stu01, Stu02] and SDPT3
[TTT02]. Straightforward linear algebra techniques will allow us to imple-
ment the same interior-point methods at a cost that is orders of magnitude
less than the cost of general-purpose implementations. More specifically, if
nk = n, mk = 1 for k = 1, . . . , L, and p = O(n), then the cost per iteration
of a general-purpose solver grows at least as n6 as a function of n. Exploiting
structure will allow us to reduce the complexity per iteration to n3. Similar
results have previously been obtained for dual barrier methods applied to spe-
cial classes of KYP-SDPs, for example, KYP-SDPs derived for discrete-time
FIR systems [AV02, GHNV03, Hac03]. The results in this paper can be viewed
as an extension of these techniques to general KYP-SDPs, and to primal-dual
interior-point methods.

Outline of the paper

The paper is organized as follows. In §2 we give an overview of applications, il-
lustrating that KYP-SDPs are widely encountered in control. In §3 we present
some basic facts about SDPs, SDP duality, and primal-dual interior-point
methods for solving them. In §4 we explain in more detail the computations
involved in solving KYP-SDPs using general-purpose software, and justify our
estimate of an order n6 complexity per iteration. We also describe a dual refor-
mulation of the KYP-SDP which can be solved at a cost of roughly O(n4) per
iteration, using general-purpose software. In §5 we describe techniques that
exploit additional problem structure and result in a complexity of roughly
O(n3) per iteration, for either the primal or dual formulation. The relation
between the methods discussed in §4 and §5 is illustrated in Table 1. The
results of some numerical experiments are described in §6. In §7 we discuss
extensions of the techniques in §4 and §5, to problems with multiple con-
straints (L > 1), KYP-LMIs for multi-input systems (mk > 1). Conclusions
and some suggestions for future research are presented in §8.

The paper also includes several appendices. Appendix A provides addi-
tional background on semidefinite programming, and a detailed summary



4 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

Primal formulation Dual formulation

General-purpose O(n6) (§4.1) O(n4) (§4.2)
Special-purpose O(n3) (§5) O(n3) (§5)

Table 1. Relation between the methods in §4 and §5, and estimates of their com-
plexity per iteration (for KYP-SDPs with L = 1, n1 = n, m1 = 1, p = O(n)).

of the primal-dual interior-point of [TTT98]. The other appendices contain
proofs of results in the paper, and discussion of relaxed assumptions.

Assumptions

We will assume that the pairs (Ak, Bk), k = 1, . . . , L, are controllable. Con-
trollability implies that the linear mappings Kk : Snk → Snk+mk , defined
by

Kk(P ) =

[
AT
k P + PAk PBk

BTP 0

]
,

have full rank (see §4.2). In addition, we assume that the matrices Mki are
such that the mapping

(P1, P2, . . . , PL, x) 7→ diag(K1(P1)+M1(x), . . . ,KL(PL)+ML(x)) (6)

has full rank, whereMk(x) =
∑p

i=1 xiMki. In other words, the lefthand sides
of the constraints in (1) are zero if and only if Pk = 0, k = 1, . . . , L, and
x = 0.

In fact these two assumptions can be relaxed. Controllability of (Ak, Bk)
can be replaced with stabilizability, provided the range of Qk is in the control-
lable subspace of (Ak, Bk); see Appendix D. Moreover, a problem for which (6)
does not have full rank, can always be converted to an equivalent reduced or-
der problem for which the full rank assumption holds; see Appendix E.

Throughout the paper we assume that the problem data and parameters
are real. The generalization to complex data should be straightforward.

Notation

The space of symmetric l × l matrices is denoted Sl. For X ∈ Sl, svec(X)
denotes the l(l + 1)/2 vector containing the lower triangular elements of X:

svec(X) = (x11, x21, . . . , xl1, x22, . . . , xl2, . . . , xl−1,l−1, xl,l−1, xll).

The space of symmetric block-diagonal matrices with block dimensions l1,
. . . , lL is denoted Sl1 × Sl2 × · · · × SlL . If X1 ∈ Sl1 , . . . , XL ∈ SlL , then
diag(X1, . . . , XL) denotes the block-diagonal matrix with X1, . . . , XL as its
diagonal blocks.



Interior-point algorithms for SDPs derived from the KYP lemma 5

The space of Hermitian l× l matrices is denoted Hl. For A ∈ Sl (A ∈ Hl),
A º 0 means A is positive semidefinite, and the set of positive semidefinite
symmetric (Hermitian) matrices of dimension l is denoted Sl

+ (Hl
+). Similarly,

A Â 0 means A is positive definite; Sl
++ and Hl

++ are the sets of positive
definite symmetric, resp. Hermitian, matrices.

The Hadamard (componentwise) product A ◦ B of two matrices A, B of
equal dimensions is defined by (A ◦ B)ij = aijbij . The ith unit vector is
denoted ei.

2 Applications of KYP-SDPs

While the form of the KYP-SDP (1) and the KYP-LMIs (2) and (3) may ap-
pear very special, they are widely encountered in control and signal processing.
We give a representative list of applications along with a brief description.

2.1 Optimization problems with frequency-domain inequalities

As we already noted, a KYP-SDP (1) with an objective that does not depend
on the variables Pk (i.e., Qk = 0), is equivalent to an optimization problem of
the form (5), in which we minimize a linear cost function subject to frequency-
domain inequalities (FDIs) of the form

Hk(ω, x) º 0 ω ∈ R. (7)

Here Hk : R×Rp → Hm is defined as

Hk(ω, x) =

[
(jωI −Ak)

−1Bk

I

]∗
(Mk(x)−Nk)

[
(jωI −Ak)

−1Bk

I

]
.

Below we list a number of applications of problems with FDI constraints. It is
important to note that in these applications, x is usually the design variable
that we are interested in; the matrix P in the SDP formulation is an auxiliary
variable, introduced to represent an infinite family of inequalities (7) as a
single matrix inequality.

Linear system analysis and design

A well-known convex reformulation of the problem of linear time-invariant
(LTI) controller design for LTI systems is via the Youla parametrization; see
for example [BB91]. The underlying optimization problem here is to find x
such that

T (s, x) = T1(s) + T2(s)

(
p∑

i=1

xiQi(s)

)
T3(s),

satisfies a number of affine inequalities for s = jR, where Ti and Qi are
given stable rational transfer function matrices [BB91, HB99, OB99]. These
inequalities are readily expressed as FDIs of the form (7).



6 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

Digital filter design

This application involves the discrete-time version of the FDI (7). The stan-
dard digital filter design problem consists of designing

T (z, x) =

p∑

i=1

xiTi(z),

where Ti : C → C are given transfer functions, and x is to be determined so
that G(z, x) satisfies certain constraints. When Ti(z) = z−i, we have a finite-
impulse response (FIR) design problem. The constraints can be magnitude
constraints of the form

|T (ejθ, x)| ≤ U(ejθ), θ ∈ [0, 2π), (8)

or phase constraints

6 T (ejθ, x) ≤ R(ejθ), θ ∈ [0, 2π), (9)

Extensions where Ti are more general filter banks, and when Ti are matrix-
valued transfer functions are immediate [BV98]. Other variations include op-
timal array pattern synthesis [WBZ+03].

When U(ejθ) and tan(R(ejθ)) are given (or can be approximated) as ra-
tional functions of ejθ, it is straightforward to express constraints (8) as the
unit-circle counterparts of inequalities (7).

Other types of filter design problems include two-sided magnitude con-
straints

L(ejθ) ≤ |T (ejθ, x)| ≤ U(ejθ), θ ∈ [0, 2π),

and no phase constraints. These constraints can be expressed as linear FDIs
via a change of variables; see [WBV98, AV01, AV02, DLS02, GHNV00].

Robust control analysis using integral quadratic constraints

Robust control [ZDG96, GL95] deals with the analysis of and design for control
system models that incorporate uncertainties explicitly in them. A sufficient
condition for robust stability (i.e., stability of the model irrespective of the
uncertainties) can be unified in the framework of integral quadratic constraints
(IQCs). The numerical problem underlying the IQC-based robust stability
conditions is the following [MR97, Jön96, BW99]: Find x ∈ Rm such that for
ε > 0 and for all ω ∈ R,

[
T (jω)
I

]∗
Π(jω, x)

[
T (jω)
I

]
¹ −2εI, (10)

where T : C → Cm×m is a given real-rational function, and Π : C ×Rp →
C2m×2m is a linear function of x for fixed ω, and is a real-rational function of
ω for fixed x. Clearly, (10) corresponds to a special instance of (3).



Interior-point algorithms for SDPs derived from the KYP lemma 7

Multiple FDIs of the form (10) result with more sophisticated (and bet-
ter) sufficient conditions for robust stability with the IQC framework; see for
example [FB97, IH98].

2.2 Linear-quadratic regulators

Consider the continuous-time dynamical system model

ẋ = Ax+Bu (11)

with initial value x(0) = x0, A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn, and u(t) ∈
Rm. Assume that (A,B) is controllable.

Riccati equations

Define the cost index

J =

∫ ∞

0

[
x
u

]T
M

[
x
u

]
dt (12)

where

M =

[
Q S
ST R

]
∈ Sn+m

with R Â 0. It is well-known (see, e.g, [Wil71]), that the infimal value of J with
respect to u(·) subject to (11) and such that limt→∞ x(t) = 0 is, whenever it
exists, given by xT0 Px0, where P ∈ S

n solves the KYP-SDP

maximize xT0 Px0

subject to

[
ATP + PA PB

BTP 0

]
+M º 0.

(13)

The optimal u(·) is given as a state feedback u(t) = −R−1(PB + S)Tx(t).
Here we see an application where the variable P is of intrinsic interest and
appears in the objective. For this special case, of course, the optimal P can
be found by solving an algebraic Riccati equation

ATP + PA+Q− (PB + S)TR−1(PB + S) = 0,

and very efficient methods based on the real ordered Schur form of an associ-
ated matrix pencil are available. The computational complexity of these meth-
ods is in the order of n3. However, numerical experience have shown that for
certain ill-conditioned algebraic Riccati equations the KYP-SDP-formulation
is not ill-conditioned. In some cases it can therefore be beneficial to solve
algebraic Riccati equations via the SDP formulation. Moreover, slight gen-
eralizations of the above problem formulation require the solution of general
KYP-SDPs. An example is given next.



8 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

Quadratic constraints

Define the cost indices

Ji =

∫ ∞

0

[
x
u

]T
Mi

[
x
u

]
dt, i = 0, . . . , p (14)

where Mi ∈ S
n+m. Consider the constrained optimization problem

minimize J0

subject to Ji ≤ ci, i = 1, . . . , p

(11) and limt→∞ x(t) = 0

(15)

with respect to u(·). The optimal value to this problem, whenever it exists, is
given by xT0 Px0, where P solves the KYP-SDP

maximize xT0 Px0 − c
Tx

subject to

[
ATP + PA PB

BTP 0

]
+M0 +

∑p
i=1 xiMi º 0

xi ≥ 0, i = 1, . . . , p

(16)

(see [BEFB94, page 151]). The optimal u(·) is given as a state feedback u(t) =
−R†(PB + S)Tx(t), where

[
Q S
ST R

]
=M0 +

p∑

i=1

xiMi.

Here we see an application where both the variables P and x are of intrinsic
interest. Moreover, we have multiple constraints, some of which only involve
x.

2.3 Quadratic Lyapunov function search

Consider the continuous-time dynamical system model

ẋ = f(x, u, w, t), z = g(x, u, w, t), y = h(x, u, w, t) (17)

where x : R+ → Rn, u : R+ → Rnu , w : R+ → Rnw , z : R+ → Rnz ,
and y : R+ → Rny . x is referred to as the state, u is the control input,
w is the exogenous input, z is the output of interest and y is the measured
output. Models such as (17) are ubiquitous in engineering. (We have presented
a continuous-time model only for convenience; the statements we make are
equally applicable to discrete-time models.)

A powerful tool for the analysis of and design for model (17) proceeds via
the use of quadratic Lyapunov functions. Suppose that for some P ∈ Sn

++,

the function V (ψ)
∆
= ψTPψ satisfies



Interior-point algorithms for SDPs derived from the KYP lemma 9

d

dt
V (x, t) < 0 along the trajectories of (17), (18)

then all trajectories of model (17) go to zero. For a number of special in-
stances of system (17), the numerical search for Lyapunov functions results in
feasibility problems with KYP-LMI constraints; see, for example, [BEFB94].
As an example, consider the system

ẋ = Ax+Bpp, q = Cqx+Dqpp, p = ∆(t)q, ‖∆(t)‖ ≤ 1, (19)

where ∆ : R+ → Rm×m. The existence of a quadratic Lyapunov function
such that dV (x, t)/dt < 0 holds along the trajectories of (19) is equivalent to
the following KYP-LMI:

P Â 0,

[
ATP + PA+ CT

q Cq PBp + CT
q Dqp

(PBp + CT
q Dqp)

T −(I −DT
qpDqp)

]
≺ 0. (20)

If (A,Cq) is observable, the inequality P Â 0 is implied by the second LMI,
which is a (strict) KYP-LMI.

Variations of this basic idea underlie a very long list of recent results in
systems and control theory that lead to KYP LMIs; the following list is by no
means comprehensive:

• Robust stability of norm-bound systems with structured perturbations
[Doy82, Saf82, BEFB94].

• Robust stability of parameter-dependent systems [FTD91, BEFB94].
• H∞ controller synthesis [AG95].
• Gain-scheduled controller synthesis [Pac94, AA98, WB02].

3 Interior-point algorithms for semidefinite
programming

3.1 Semidefinite programming

Let V be a finite-dimensional real vector space, with inner product 〈u, v〉. Let

A : V → Sl1 × Sl2 × · · · × SlL , B : V → Rr

be linear mappings, and suppose c ∈ V, D = diag(D1, D2, . . . , DL) ∈ Sl1 ×
· · · × SlL , and d ∈ Rr are given. The optimization problem

minimize 〈c, y〉

subject to A(y) +D ¹ 0

B(y) + d = 0

(21)

with variable y ∈ V is called a semidefinite programming problem (SDP). The
dual SDP associated with (21) is defined as



10 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

maximize Tr(DZ) + dT z

subject to Aadj(Z) + Badj(z) + c = 0

Z º 0,

(22)

where
Aadj : Sl1 × · · · × SlL → V, Badj : Rr → V

denote the adjoints of A and B. The variables in the dual problem are Z ∈
Sl1 × · · · ×SlL , and z ∈ Rr. We refer to Z as the dual variable (or multiplier)
associated with the LMI constraint A(y) +D ¹ 0, and to z as the multiplier
associated with the equality constraint B(y) + d = 0.

3.2 Interior-point algorithms

Primal-dual interior-point methods solve the pair of SDPs (21) and (22) si-
multaneously. At each iteration they solve a set of linear equations of the
form

−W∆ZW +A(∆y) = R (23)

Aadj(∆Z) + Badj(∆z) = rdu (24)

B(∆y) = rpri, (25)

to compute primal and dual search directions ∆y ∈ V, ∆Z ∈ Sl1 × · · · × SlL ,
∆z ∈ Rr. The scaling matrix W and the righthand side R in these equations
are block-diagonal and symmetric (W,R ∈ Sl1 × · · · ×SlL), and W is positive
definite. The value of W , as well as the values of the righthand sides R, rdu,
and rpri, change at each iteration, and also depend on the particular algorithm
used. We will call these equations Newton equations because they can be
interpreted as a linearization of modified optimality conditions. We refer to
appendix A, which gives a complete description of one particular primal-dual
method, for more details. Primal or dual interior-point methods give rise to
equations that have the same form as (23)–(25), with different definitions of
W and the righthand sides. In this paper we make no assumptions about
W , other than positive definiteness, so our results apply to primal and dual
methods as well..

Since in practice the number of iterations is roughly independent of prob-
lem size (and of the order of 10–50), the overall cost of solving the SDP is
roughly proportional to the cost of solving a given set of equations of the
form (23)–(25).

3.3 General-purpose solvers

In a general-purpose implementation of an interior-point method it is assumed
that V is the Euclidean vector space Rs of dimension s = dimV, and that A
and B are given in the canonical form



Interior-point algorithms for SDPs derived from the KYP lemma 11

A(y) =

s∑

i=1

yiFi, B(y) = By.

The matrices Fi ∈ S
l1 × Sl2 × · · · × SlL and B ∈ Rr×s are stored in a sparse

matrix format.
The equations (23)–(25) are solved by eliminating ∆Z from the first equa-

tion, and substituting ∆Z = W−1(A(∆y) − R)W−1 in the second equation.
This yields a symmetric indefinite set of linear equations in ∆y, ∆z:

Aadj(W−1A(∆y)W−1) + Badj(∆z) = rdu +Aadj(W−1RW−1) (26)

B(∆y) = rpri. (27)

Using the canonical representation of A and B, these equations can be written
as [

H BT

B 0

] [
∆y
∆z

]
=

[
rdu + g
rpri

]
,

where

Hij = Tr(FiW
−1FjW

−1), i, j = 1, . . . , s

gi = Tr(FiW
−1RW−1), i = 1, . . . , s.

If the SDP has no equality constraints, the equations reduce to

Aadj(W−1A(∆y)W−1) = rdu +Aadj(W−1RW−1). (28)

i.e.,
H∆y = rdu + g.

The matrix H in this system is positive definite and almost always dense, so
the cost of solving the equations is (1/3)s3. This is only a lower bound on
the actual cost per iteration, which also includes the cost of forming H. Even
though sparsity in the matrices Fi helps, the cost of constructing H is often
substantially higher than the cost of solving the equations.

4 General-purpose SDP solvers and KYP-SDPs

In this section we use the observations made in §3 to estimate the cost of solv-
ing KYP-SDPs with general-purpose interior-point software. For simplicity we
assume that L = 1, n1 = n, m1 = 1, and consider the problem

minimize qTx+Tr(QP )

subject to

[
ATP + PA PB

BTP 0

]
+
∑p

i=1 xiMi º N,
(29)

where A ∈ Rn×n, B ∈ Rn, with (A,B) controllable. The extension to prob-
lems with multiple inputs (m > 1) and multiple constraints (L > 1) is dis-
cussed in §7.



12 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

In §4.1 we first make precise our earlier claim that the cost of a general-
purpose solver applied to (1) grows at least as n6, if p = O(n). In §4.2 we
then describe a straightforward technique, based on semidefinite programming
duality, that reduces the cost to order n4.

4.1 Primal formulation

We can express the KYP-SDP (29) as

minimize qTx+Tr(QP )

subject to K(P ) +M(x) º N

(30)

where

K(P ) =

[
ATP + PA PB

BTP 0

]
, M(x) =

p∑

i=1

xiMi. (31)

This is in the general form (21), with V = Sn ×Rp, and

y = (P, x), c = (Q, q), D = N, A(P, x) = −K(P )−M(x).

The adjoint of A is Aadj(Z) = −
(
Kadj(Z),Madj(Z)

)
, where

Kadj(Z) =
[
A B

]
Z

[
I
0

]
+
[
I 0
]
Z

[
AT

BT

]
, Madj(Z) =



Tr(M1Z)

...
Tr(MpZ)


 .

The dual problem of (32) is therefore

maximize Tr(NZ)

subject to Kadj(Z) = Q, Madj(Z) = q

Z º 0,

(32)

with variable Z ∈ Sn+1.
A general-purpose primal-dual method applied to (30) generates iterates x,

P , Z. At each iteration it solves a set of linear equations of the form (23)–(25)
with variables ∆x, ∆P , ∆Z:

W∆ZW +K(∆P ) +M(∆x) = R1 (33)

Kadj(∆Z) = R2 (34)

Madj(∆Z) = r, (35)

for some positive definite W and righthand sides R1, R2, r. These equations
are solved by eliminating ∆Z, reducing them to a smaller positive definite
system (28). The reduced equations can be written in matrix-vector form as

[
H11 H12

HT
12 H22

] [
svec(∆P )

∆x

]
=

[
r1
r2

]
. (36)



Interior-point algorithms for SDPs derived from the KYP lemma 13

The blocks of the coefficient matrix are defined by the identities

H11 svec(∆P ) = svec
(
Kadj(W−1K(∆P )W−1)

)

H12∆x = svec
(
Kadj(W−1M(∆x)W−1)

)

H22∆x =Madj(W−1M(∆x)W−1).

The exact expressions for the righthand sides r1, r2, and the positive definite
scaling matrixW are not important for our present purposes and are omitted;
see Appendix A for details.

The coefficient matrix in (36) is dense, so the cost of solving these equations
is (1/3)(n(n + 1)/2 + p)3 = O(n6) operations if we assume that p = O(n).
This gives a lower bound for the cost of one iteration of a general-purpose
interior-point solver applied to (29). The actual cost is higher since it includes
the cost of assembling the matrices H11, H12, and H22.

4.2 Dual formulation

A reformulation based on SDP duality allows us to solve KYP-SDPs more
efficiently, at a cost of roughly O(n4) per iteration. The technique is well
known for discrete-time KYP-SDPs with FIR matrices [GHNV03, DTS01,
AV00, AV02], and was applied to general KYP-SDPs in [WHV03].

The reformulated dual

The assumption that (A,B) is controllable implies that that the mapping K
defined in (31) has full rank, i.e., K(P ) = 0 only if P = 0. To see this, we can
take any stabilizing state feedback matrix K, and note that K(P ) = 0 implies

[
I
K

]T [
ATP + PA PB

BTP 0

] [
I
K

]
= (A+BK)TP + P (A+BK) = 0,

and hence P = 0. It follows that the nullspace of Kadj (a linear mapping from
Sn+1 to Sn) has dimension n+ 1. Hence there exists a mapping L : Rn+1 →
Sn+1 that spans the nullspace of Kadj:

Kadj(Z) = 0⇐⇒ Z = L(u) for some u ∈ Rn+1

S = K(P ) for some P ∈ Sn ⇐⇒ Ladj(S) = 0.

Some practical choices for L will be discussed later, but first we use this
observation to derive an equivalent pair of primal and dual SDPs, with a
smaller number of primal and dual variables.

The first equality in the dual SDP (32) is equivalent to saying that Z =
L(u)− Ẑ for some u, where Ẑ is any symmetric matrix that satisfies

Kadj(Ẑ) +Q = 0.



14 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

Substituting in the dual SDP (32), and dropping the constant term Tr(NẐ)
from the objective, we obtain an equivalent problem

maximize Ladj(N)Tu

subject to L(u) º Ẑ

Madj(L(u)) = q +Madj(Ẑ)

(37)

with variable u ∈ Rn+1. This SDP has the form (21) with V = Rn+1, y = u,

A(u) = −L(u), B(u) =Madj(L(u)),

and c = −Ladj(N), D = Ẑ, d = −q −Madj(Ẑ).
The dual of problem (37) is

minimize (q +Madj(Ẑ))T v −Tr(ẐS)

subject to Ladj(S)− Ladj(M(v)) + Ladj(N) = 0

S º 0,

(38)

with variables v ∈ Rp and S ∈ Sn+1. Not surprisingly, the SDP (38) can be
interpreted as a reformulation of the original primal problem (30). The first
constraint in (38) is equivalent to

S −M(v) +N = K(P ) (39)

for some P . Combined with S º 0, this is equivalent to K(P ) +M(v) º N .
Using (39) we can also express the objective function as

(q +Madj(Ẑ))T v −Tr(ẐS) = qT v +Tr((M(v)− S)Ẑ)

= qT v +Tr(NẐ)−Tr(PKadj(Ẑ))

= qT v +Tr(NẐ) +Tr(PQ).

Comparing this with (30), we see that the optimal v in (38) is equal the
optimal x in (30). The relation (39) also allows us to recover the optimal P
for (30) from the optimal solution (v, S) of (38).

In summary, the pair of primal and dual SDPs (37) and (38) is equivalent
to the original SDPs (30) and (32); the optimal solutions for one pair of SDPs
are easily obtained from the solutions of the other pair.

Newton equations for reformulated dual

A primal-dual method applied to (37) generates iterates u, v, S. At each
iteration a set of linear equations of the form (26)–(27) is solved, which in
this case reduce to

Ladj(W−1L(∆u)W−1) + Ladj(M(∆v)) = R (40)

Madj(L(∆v)) = r (41)



Interior-point algorithms for SDPs derived from the KYP lemma 15

with variables ∆u ∈ Rn+1, ∆v ∈ Rp. (Again, we omit the expressions for W ,
R, r. In particular, note that W is not the same matrix as in §4.1.) In matrix
form, [

H G
GT 0

] [
∆u
∆v

]
=

[
R
r

]
, (42)

where H and G are defined by the identities

H∆u = Ladj(W−1L(∆u)W−1), G∆v = Ladj(M(∆v)).

The number of variables in (42) is p+ n+ 1.

Computational cost

We now estimate the cost of assembling the coefficient matrix in (42), for a
specific choice of L. To simplify the notation, we assume that the Lyapunov
operator AX + XAT is invertible. This assumption can be made without
loss of generality: Since (A,B) is controllable by assumption, there exists
a state feedback matrix K such that A + BK is stable (or, more generally,
λi(A+BK)+λj(A+BK)∗ 6= 0, for i, j = 1, . . . , n). By applying a congruence
to both sides of the LMI constraint in (29) and noting that

[
I KT

0 I

] [
ATP + PA PB

BTP 0

] [
I 0
K I

]
=

[
(A+BK)TP + P (A+BK) PB

BTP 0

]
,

we can transform the SDP (29) to an equivalent KYP-SDP

minimize qTx+Tr(QP )

subject to

[
(A+BK)TP + P (A+BK)A PB

BTP 0

]
+
∑p

i=1 xiM̃i º Ñ ,

where

M̃i =

[
I KT

0 I

]
Mi

[
I 0
K I

]
, Ñ =

[
I KT

0 I

]
N

[
I 0
K I

]
.

We will therefore assume that the matrix A in (29) is stable.
It is then easily verified that Kadj(Z) = 0 if and only if Z = L(u) for some

u, with L defined as

L(u) =
n+1∑

i=1

uiFi,

where

Fi =

[
Xi ei
eTi 0

]
, i = 1, . . . , n, Fn+1 =

[
0 0
0 2

]
. (43)

and Xi, i = 1, . . . , n, are the solutions of the Lyapunov equations

AXi +XiA
T +BeTi + eiB

T = 0. (44)



16 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

With this choice of L, the coefficient matrices H and G in (42) can be ex-
pressed as

Hij = Tr(FiW
−1FjW

−1)), i, j = 1, . . . , n+ 1, (45)

Gij = Tr(FiMj), i = 1, . . . , n+ 1, j = 1, . . . , p. (46)

To estimate the cost of this approach we assume that p = O(n). The
method requires a significant amount of preprocessing. In particular we have
to compute the solutions Xi of n+ 1 Lyapunov equations, which has a total
cost of O(n4). The matrix G does not change during the algorithm so it can
be pre-computed, at a cost of order pn3 if the matrices Mi and Xj are dense
(i.e., O(n4) if we assume p = O(n)). In practice, as we have seen in §2, the
matricesMi are often sparse or low-rank, so the cost of computing G is usually
much lower than O(n4).

At each iteration, we have to construct H and solve the equations (42).
The cost of constructingH is O(n4). The cost of solving the equations is O(n3)
if we assume p = O(n). The total cost is therefore O(n4), and is dominated
by the cost of pre-computing the basis matrices Xi, and the cost of forming
H at each iteration.

5 Special-purpose implementation

We now turn to the question of exploiting additional problem structure in a
special-purpose implementation. As should be clear from the previous section,
the key to a fast implementation is to solve the linear equations that arise
in each iteration fast. This can be done for either the primal or the dual
formulation described in §4. We will see that these two approaches lead to
methods that are almost identical, and have the same complexity.

5.1 Reduced Newton equations

In §4 we noted a large difference in complexity between solving the original
KYP-SDP (29) and solving the reformulated dual problem (37). The differ-
ence is due to the different dimension and structure of the Newton equations
in each iteration, and the way in which special-purpose codes handle those
equations. In a custom implementation, the distinction between the two for-
mulations disappears: the equations (33)–(35) that arise when solving the
primal formulation can be solved as efficiently as the equations (40)–(41) that
arise when solving the dual formulation.

Solving Newton equations via dual elimination

To show this, we describe an alternative method for solving (33)–(35). As
in §4.2, let L : Rn+1 → Sn+1 be a linear mapping that spans the nullspace of



Interior-point algorithms for SDPs derived from the KYP lemma 17

Kadj. Let Z0 be any symmetric matrix that satisfies Kadj(Z0) + R2 = 0. The
equation (34) is equivalent to saying that

∆Z = L(∆u)− Z0

for some ∆u ∈ Rn+1. Substituting this expression in (33) and (35), we obtain

WL(∆u)W +K(∆P ) +M(∆x) = R1 +WZ0W

Madj(L(∆u)) = r +Madj(Z0).

Next we eliminate the variable ∆P , by applying Ladj to both sides of the first
equation, and using the fact that Ladj(K(∆P )) = 0 for all ∆P :

Ladj(WL(∆u)W ) + Ladj(M(∆x)) = Ladj(R1 +WZ0W ) (47)

Madj(L(∆u)) = r +Madj(Z0). (48)

This is a set of n + p + 1 linear equations in n + p + 1 variables ∆u, ∆x. In
matrix form, [

H G
GT 0

] [
∆u
∆x

]
=

[
Ladj(R1 +WZ0W )
r +Madj(Z0)

]
, (49)

where H and G are defined by the identities

H∆u = Ladj(WL(∆u)W ), G∆x = Ladj(M(∆x)).

Since L has full rank, the matrix H is nonsingular, so the equations (49) can
be solved by first solving

GTH−1G∆x = GTH−1Ladj(R1 +WZ0W )− r −Madj(Z0)

to obtain ∆x, and then computing ∆u from

H∆u = Ladj(R1 +WZ0W )−G∆x.

After solving (49), we can compute ∆Z as ∆Z = L(∆u). Given ∆Z and ∆x,
we find ∆P by solving

K(∆P ) = R1 −W∆ZW −M(∆x),

which is an overdetermined, but solvable set of linear equations.
We will refer to (49) as the reduced Newton equations.

Computational cost

We now estimate the complexity of solving the reduced Newton equations.
Note that (47)–(48) have exactly the same form as (40)–(41), with different
values of W and the righthand sides. In particular, our discussion of the
complexity of solving (40)–(41) also applies here.



18 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

We work out the details assuming the Lyapunov operator AX +XAT is
invertible. If this is not the case, the equations (33)–(35) can be transformed
into an equivalent set

TWTT (T−T∆ZT−1)TWTT + TK(∆P )T T + TM(∆x)T T = TR1T
T

Kadj(TTT−T∆ZT−1T ) = R2

Madj(TTT−T∆ZT−1T ) = r,

where

T =

[
I KT

0 I

]
, T−1 =

[
I −KT

0 I

]

andK is a stabilizing state feedback matrix. Replacing∆Z with a new variable

∆S = T−T∆ZT−1,

gives

W̃∆SW̃ +

[
(A+BK)T∆P +∆P (A+BK) ∆PB

BT∆P 0

]
+

p∑

i=1

∆xiM̃i = R̃1

[
A+BK

B

]T
∆S

[
I
0

]
+

[
I
0

]T
∆S

[
A+BK

B

]
= R2

Tr(M̃i∆S) = ri, i = 1, . . . , p,

where W̃ = TWTT , M̃i = TMiT
T , R̃1 = TR1T

T . These equations have
the same structure as the original equations (33)–(35), with A replaced by
A+BK.

If we assume that AX + XAT is invertible, we can choose L as in §4.2:
L(u) =

∑n+1
i=1 uiFi with the matrices Fi defined as in (43). If the matrices Xi

are pre-computed (at a total cost of O(n4)), then the cost of constructing the
coefficient matrix H in (49) is O(n4). The cost of computing G is O(pn3) if
we assume the matrices Xi are known, and we do not exploit any particular
structure in Mj . The cost of solving the equations (49), given H and G, is
O(n3) if we assume p = O(n).

Comparison with dual method

The above analysis demonstrates that a custom implementation of a primal-
dual method for solving the original KYP-SDP (29) can be as efficient as a
primal-dual method applied to the reformulated dual (37). Both methods are
based on eliminating dual variables, either in the original dual SDP, or in the
Newton equations. In fact, if we use the same mapping L in both methods,
the reduced linear equations are identical. However, a custom implementation
offers three important advantages over a general-purpose primal-dual method
applied to the reformulated dual.



Interior-point algorithms for SDPs derived from the KYP lemma 19

• In a custom implementation we can avoid the need to compute and store
the basis matrices Fi (or Xi), which are required in the dual formulation
(see §5.2 for details). These matrices Xi are the solution of n Lyapunov
equations of order n. For large n, they are expensive to compute and store.

• Additional problem structure can be exploited in a custom implementa-
tion. Two methods that achieve an O(n3) complexity per iteration are
described in §5.2.

• In a custom implementation, we can make a different choice for the map-
ping L, which is used to eliminate dual variables, in each iteration.
For example, in §4.2 we pointed out that state feedback transformations
preserve the KYP structure in the SDP, while in §5.1 we made a similar
observation about the Newton equations. Of course, these two viewpoints
are just different interpretations of the same property. We can first use
state feedback to transform the SDP and then derive the Newton equa-
tions, or we can write down Newton equations for the original SDP and
then apply a state feedback transformation. Both transformations result
in the same equations. However the second viewpoint opens the possibility
of selecting a different state-feedback matrix K in each iteration, in order
to improve the numerical stability of the elimination step.

5.2 Fast construction of reduced Newton equations

We now examine two methods that allow us to construct the matrices H and
G in (49) fast, in roughly O(n3) operations.

Diagonalizable A

Suppose A is stable (or equivalently, a state feedback transformation has been
applied as described in §5.1, to obtain equivalent equations with a stable A).

We make the same choice of L as in §5.1, i.e., L(u) =
∑n+1

i=1 uiFi, with Fi

defined in (43).
In appendix B we derive the following expression for the matrix H in (49):

H =

[
H1 0
0 0

]
+ 2

[
W11

W21

] [
H2 0

]
+ 2

[
HT

2

0

] [
W11 W12

]

+ 2W22W + 2

[
W12

W22

] [
W21 W22

]
(50)

where

(H1)ij = Tr(XiW11XjW11), H2 =
[
X1W12 X2W12 · · · XnW12

]
(51)

and

W =

[
W11 W12

W21 W22

]



20 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

with W11 ∈ S
n×n. Similarly,

G = 2

[
G1

0

]
+ 2

[
M1,12 M2,12 · · · Mp,12

M1,22 M2,22 · · · Mp,22

]
, (52)

where
G1 =

[
Y1B Y2B · · · YpB

]
,

Yj is the solution of
AYj + YjA

T +Mj,11 = 0,

andMj,11 ∈ S
n,Mj,12 ∈ R

n are the 1, 1- and 1, 2-blocks ofMj . Formulas (50)
and (52) show that the key to constructing H and G fast (i.e., faster than in
O(n4) and O(pn3) operations, respectively), is to compute the matrices H1,
H2, and G1 fast.

A simple approach is based on the eigenvalue decomposition of A. Our
assumption that (A,B) is controllable implies that is possible to find a linear
state feedback matrixK so that A+BK is stable and diagonalizable [KND85].
As mentioned in §5.1, we can transform the Newton equations into an equiv-
alent set of equations in which the matrix A is replaced by A+BK. We can
therefore assume without loss of generality that A is diagonalizable.

Let A = V diag(λ)V −1 be the eigenvalue decomposition of A, with V ∈
Cn×n and λ ∈ Cn. It can be shown that the matrices H1 and H2 defined
in (51) can be expressed as

H1 = 2<
((
V −T ((Σ̃W̃11) ◦ (Σ̃W̃11)

T ) + V −∗(W̃11 ◦ (Σ̃W̃11Σ̃
∗)T )

)
V −1

)

(53)

H2 = −V (Σ̃∗ diag(W̃12))V̄
−1 − V diag(Σ̃W̃12)V

−1 (54)

where ◦ denotes Hadamard product, Σ ∈ Cn×n is defined as

Σij =
1

λi + λ∗j
, i, j = 1, . . . , n,

Σ̃ = Σ diag(V −1B)∗, W̃11 = V ∗W11V , W̃12 = V ∗W12, and V̄ is the complex
conjugate of V . The above formulas for H1 and H2 can be evaluated in O(n3)
operations, and do not require pre-computing the basis matrices Xi. We refer
to appendix C for a proof of the expressions (53) and (54).

There is a similar expression for G1:

G1 = V
[
(M̃1 ◦Σ)V ∗B (M̃2 ◦Σ)V ∗B · · · (M̃p ◦Σ)V ∗B

]
.

where M̃j = V −1Mj,11V
−∗. The cost of computing M̃j can be reduced by

exploiting low-rank structure in Mj,11. Given the matrices M̃j , G1 can be
computed in O(n2p) operations.



Interior-point algorithms for SDPs derived from the KYP lemma 21

A in companion form

In this section we present an O(n3) method for solving the Newton equations
when A is an n× n ‘shift matrix’ and B = en:

A =




0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0



, B =




0
0
...
0
1



. (55)

KYP-SDPs of this form arise in a wide variety of LMI problems in robust con-
trol [Hen03]. The method is also useful for handling matrices A in companion
form: in order to solve the Newton equations for a KYP-SDP with

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an



, B =




0
0
...
0
1



,

we can first apply a state feedback transformation with

K =
[
a1 a2 · · · an

]
,

as explained in §5.1, and then solve an equivalent set of equations in which A
is replaced with the shift matrix A+BK.

With A and B defined as in (55), the equations (33)–(35) reduce to

W∆ZW +

[
0 0
∆P 0

]
+

[
0 ∆P
0 0

]
+

p∑

i=1

∆xiMi = R1 (56)

[
0 I
]
∆Z

[
I
0

]
+
[
I 0
]
∆Z

[
0
I

]
= R2 (57)

Tr(Mi∆Z) = ri, i = 1, . . . , p. (58)

We can follow the method of §5.1, with L : Rn+1 → Sn+1 defined as

L(u) =




u1 0 u2 0 u3 · · · 0 uk+1

0 −u2 0 −u3 0 · · · −uk+1 0
u2 0 u3 0 u4 · · · 0 uk+2

0 −u3 0 −u4 0 · · · −uk+2 0
...

...
...

...
...

...
...

uk 0 uk+1 0 uk+2 · · · 0 u2k

0 −uk+1 0 −uk+2 0 · · · −u2k 0
uk+1 0 uk+2 0 uk+1 · · · 0 u2k+1




, n = 2k



22 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

L(u) =




u1 0 u2 0 u3 · · · uk+1 0
0 −u2 0 −u3 0 · · · 0 −uk+2

u2 0 u3 0 u4 · · · uk+2 0
0 −u3 0 u4 0 · · · 0 −uk+3

...
...

...
...

...
...

...
0 −uk+1 0 −uk+2 0 · · · 0 −u2k+1

uk+1 0 uk+2 0 uk+3 · · · u2k+1 0
0 −uk+2 0 −uk+3 0 · · · 0 −u2k+2




, n = 2k + 1.

In other words, the even anti-diagonals of L(u) are zero. The elements on
the odd anti-diagonals have equal absolute values and alternating signs. The
nonzero elements in the first row and column are given by u.

To obtain efficient formulas for the matrix H in (49), we represent L as

L(u) =
∑n+1

i=1 uiFi, where

(Fi)jk =

{
(−1)j+1 j + k = 2i
0 otherwise.

We also factor W as W =
∑n+1

k=1 vkv
T
k (for example, using the Cholesky fac-

torization or the eigenvalue decomposition). The i, j-element of H is

Hij = Tr(FiWFjW ) =
n+1∑

k=1

n+1∑

l=1

(vTl Fivk)(v
T
k Fjvl).

Next we note that for v, w ∈ Rn+1,

vTFiw =
∑

j+k=2i

(−1)j+1vjwk

=

min{n+1,2i−1}∑

k=max{1,2i−n−1}

(−1)k+1wkv2i−k

= (v ∗ (Dw))2i−1,

where D = diag(1,−1, 1, . . .), and v ∗ (Dw) denotes the convolution of the
vectors v and Dw. Therefore,

(vTl F1vk, v
T
l F2vk, . . . , v

T
l Fn+1vk) = E(vl ∗ (Dvk))

where

E =




1 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...
...
...
...

...
...

0 0 0 0 · · · 0 1


 ∈ R

(n+1)×(2n+1).

Using this notation we can express H as



Interior-point algorithms for SDPs derived from the KYP lemma 23

H = E

(
n+1∑

k=1

n+1∑

l=1

(vl ∗ (Dvk))(vk ∗ (Dvl))
T

)
ET .

This expression can be evaluated in O(n3) operations using the discrete

Fourier transform (DFT). Let WDFT ∈ C(2n+1)×(n+1) be the first n + 1
columns of the DFT matrix of length 2n+ 1, i.e., WDFTv is the zero padded
(2n+ 1)-point DFT of a vector v ∈ Rn+1. Let

Vk =WDFTvk, Ṽk =WDFTDvk, k = 1, . . . , n+ 1,

be the DFTs of the vectors vk and Dvk. Then

H =
1

(2n+ 1)2
EW ∗

DFT

(
n+1∑

k=1

n+1∑

l=1

(Vl ◦ Ṽk)(Vk ◦ Ṽl)
∗

)
WDFTE

T

=
1

(2n+ 1)2
EW ∗

DFT

((
n+1∑

l=1

VlṼ
∗
l

)
◦

(
n+1∑

k=1

ṼkV
∗
k

))
WDFTE

T .

The matrix in the middle is the Hadamard product of the (2n+1)× (2n+1)
matrix

∑
k VkṼ

∗
k with its conjugate transpose, so the cost of evaluating this

expression is O(n3).
The matrix G in (49) has elements

Gij = Tr(FiMj), i = 1, . . . , n+ 1, j = 1, . . . , p,

and is easily computed in O(n2p) operations, since only O(n) elements of Fi

are nonzero. For sparse or low-rank Mj the cost is even lower.

6 Numerical examples

In Table 2 we compare four algorithms, applied to randomly generated KYP-
SDPs of the form (29), with dimensions n = 25, 50, 100, 200, and p = n. Each
problem was constructed so it is strictly primal and dual feasible. (However
the algorithms were started at infeasible starting points.) The execution times
listed are the CPU times in seconds on a 2GHz Pentium IV PC with 1GB of
memory. All times are averages over five randomly generated instances.

The first method, SeDuMi (primal), solves the SDP (29) using the general-
purpose solver SeDuMi (version 1.05R5) [Stu01]. The second method, SDPT3
(primal), solves the same problem using the general-purpose solver SDPT3
(version 3.02) [TTT02]. Both solvers were called via the YALMIP inter-
face [Löf02]. We skip the last problem (n = 200), due to excessive compu-
tation time and memory requirements. The numbers Ts are the CPU times
needed to solve each problem, divided by the number of iterations.

The other methods, SeDuMi (dual) and SDPT3 (dual), solve the reformu-
lated dual problem (37), for the choice of basis matrices described in §5.1. In



24 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

SeDuMi (primal) SDPT3 (primal) SeDuMi (dual) SDPT3 (dual)
n #itrs Ts #itrs Ts Tp #itrs Ts Tp #itrs Ts

25 10 0.3 8 0.8 0.1 12 0.04 0.1 9 0.06
50 11 8.1 9 4.9 1.1 11 0.3 1.1 9 0.26
100 11 307.1 8 107.2 21.4 14 3.3 21.4 10 1.4
200 390.7 12 30.9 390.7 10 15.3

Table 2. Computational results for the general-purpose SDP solvers SeDuMi and
SDPT3 applied to KYP-SDPs with dimensions n = p = 25, . . . , 200, applied to
the original problem (‘Primal’), and to the reformulated dual SDP (‘Dual’). Tp is
the time in seconds required for preprocessing, and consists mainly of the cost of
computing an explicit basis for the solution set of the dual equality constraints. Ts

is the solution time per iteration, excluding preprocessing time.

addition to the number of iterations and the time per iteration Ts, we also
give Tp, the preprocessing time required to compute the parameters in the
reformulated dual problem (37). This preprocessing step is dominated by the
cost of of solving the n+ 1 Lyapunov equations (44).

The results confirm that the cost per iteration of a general-purpose method
applied to the primal SDP (29) grows much more rapidly than the same
method applied to the reformulated dual problem (37).

Table 3 shows the results for a second experiment with randomly generated
KYP-SDPs of dimensions n = 100, . . . , 500, and p = 50. Again, all values are
averages over five problem instances. The data in the column KYP-IPM are for

KYP-IPM SeDuMi (dual) SDPT3 (dual)
n Tp #itrs Ts Tp #itrs Ts Tp #itrs Ts

100 1.0 9 0.6 0.5 12 1.5 3.6 12 1.3
200 8.3 9 4.7 3.5 13 24.4 44.4 13 13.8
300 28.1 10 16.7 11.7 12 155.3 194.2 14 77.7
400 62.3 10 36.2 26.7 12 403.7
500 122.0 10 70.3 51.9 12 1068.4

Table 3. Results for KYP-SDPs of dimension n = 100,. . . , n = 500, and p = 50.
The first method is a customized Matlab implementation of a primal-dual method
as described in §5, using the formulas (53) and (54). The second method is Se-
DuMi applied to the reformulated dual SDP (37), after first diagonalizing A. The
third method solves the same reformulated dual SDP using SDPT3, without the
diagonalization of A (except in the preprocessing).

a customized Matlab implementation of the primal-dual interior-point method
of Tütüncü, Toh, and Todd [TTT98, TTT02], applied to the dual problem,
and using the expressions (53) and (54) to compute the coefficient matrix
of the reduced Newton equations. The preprocessing time for this method



Interior-point algorithms for SDPs derived from the KYP lemma 25

includes the eigenvalue decomposition of A and the computation of the matrix
G in the reduced system (42). The table shows that the preprocessing time
and execution time per iteration grow almost exactly as n3.

For the same set of problems, we also show the results for SeDuMi applied
to the reformulated dual problem. To speed up the calculation in SeDuMi, we
first transform the dual problem (37), by diagonalizing A. This corresponds
to a simple change of variables, replacing Z with V −1ZV −∗ and z̃ with V −1z̃.
We then eliminate the (1,1)-block in the dual variable as in the SeDuMi (dual)
method of Table 2, which gives a problem of form (37), with complex data
and variables. Since A is diagonal, the basis matrices Xi are quite sparse and
easier to compute (at a cost of O(n3) total). Despite the resulting savings, it
is clear from the table that the execution time per iteration grows roughly as
n4.

The third column (SDTP3 (dual)) gives the results for SDPT3 applied to
the reformulated dual problem. Since the version of SDPT3 we used does not
accept complex data, we only used diagonalization of A in the preprocessing
step, to accelerate the solution of the Lyapunov equations (44). Results are
reported for the first three problems only, due to insufficient memory. As for
SeDuMi, the results show an O(n4)-growth for the solution time per iteration.

7 Extensions

In this section we discuss some extensions of the techniques of §4 and §5 to
the general problem (1).

7.1 Multiple constraints

Consider a KYP-SDP with multiple constraints,

minimize qTx+
∑L

k=1(QkPk)

subject to Kk(Pk) +Mk(x) º Nk, k = 1, . . . , L,

where Kk : Snk → Snk+1 and Mk : Rp → Snk+1 are defined as

Kk(Pk) =

[
AT
k Pk + PkAk PkBk

BT
k Pk 0

]
, Mk(x) =

p∑

i=1

xiMki.

We assume (Ak, Bk) is controllable for k = 1, . . . , L. The Newton equations
that need to be solved at each iteration take the form

Wk∆ZkWk +Kk(∆Pk) +Mk(∆x) = Rpri,k, k = 1, . . . , L

Kadj
k (∆Zk) = Rdu,k, k = 1, . . . , L

L∑

k=1

Madj
k (∆Zk) = r,



26 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

with variables ∆Pk ∈ S
nk , ∆x ∈ Rp, ∆Zk ∈ S

nk+1. The values of the positive
definite matrixWk and the righthand sides change at each iteration. As in the
single-constraint case, we solve the Newton equations by eliminating some of
the dual variables, and expressing ∆Zk as

∆Zk = Lk(∆uk)− Ẑk,

where Lk : Rnk+1 → Snk+1 parametrizes the nullspace of Kadj
k , and Ẑk satis-

fies
Kadj
k (Ẑk) +Rdu,k = 0.

We then apply Ladj
k to both sides of the first group of equations and obtain

Ladj
k (WLk(∆uk)W ) + Ladj

k (Mk(∆x)) = L
adj
k (Rpri,k +WkẐkWk),

for k = 1, . . . , L, and

L∑

k=1

Madj
k (Lk(∆uk)) = r +

L∑

k=1

Madj
k (Ẑk).

In matrix form,




H1 0 · · · 0 G1

0 H2 · · · 0 G2

...
...

. . .
...

...
0 0 · · · HL GL

GT
1 GT

2 · · · G
T
L 0







∆u1

∆u2

...
∆uL
∆x



=




Ladj
1 (Rpri,1 +W1Ẑ1W1)

Ladj
2 (Rpri,2 +W2Ẑ2W2)

...

Ladj
L (Rpri,L +WLẐLWL)

r +
∑L

k=1M
adj
k (Ẑk)



. (59)

To solve these equations we first solve

L∑

k=1

GT
kH

−1
k Gk∆x = −r −

L∑

k=1

(
Madj

k (Ẑk)−G
T
kH

−1
k Ladj

k (Rk +WkẐkWk)
)

(60)
for ∆x, and then solve

Hk∆uk = Ladj
k (Rpri,k +WkẐkWk)−Gk∆x, k = 1, . . . , L,

to determine ∆uk. As in the single-constraint case, the cost of this method
is dominated by the cost of forming the coefficient matrices Hk and Gk, the
coefficient matrix of (60), and the cost of solving this system. The matrices
Gk can be pre-computed. Assuming nk = O(n) for k = 1, . . . , L, the cost of
forming Hk is O(n4), or O(n3) if we use one of the methods of §5. Assuming
p = O(n), the cost of forming and solving the equations (60) is O(Ln3).
Overall, the cost increases linearly with L.



Interior-point algorithms for SDPs derived from the KYP lemma 27

7.2 Multivariable systems

The extension to systems with multiple inputs (mk > 1) is also quite straight-
forward, although the formulas get more involved. The Newton equations in-
clude constraints

Kadj
k (∆Zk) =

[
Ak

Bk

]T
∆Zk

[
I
0

]
+

[
I
0

]T
∆Zk

[
A
B

]
= Rpri,k, k = 1, . . . , L.

By representing ∆Zk as

∆Zk = Lk(∆uk)− Ẑk

where L : Rnkmk+mk(mk+1)/2 → Smk+nk , we can obtain reduced Newton
equations of the form (59). If mk ¿ nk this offers a practical and efficient
alternative to standard general-purpose methods.

8 Conclusion

We have described techniques for exploiting problem structure in interior-
point methods for KYP-SDPs, a class of large-scale SDPs that are common
in control applications. The method is very effective if the SDP includes one or
more inequalities with large state space dimension, and a relatively small num-
ber of inputs. Preliminary numerical results illustrate that a special-purpose
interior-point implementation based on these techniques can achieve a dra-
matic gain in efficiency compared with the best general-purpose solvers.

Several open questions remain.

• There is considerable freedom in choosing the mapping L, used to eliminate
a subset of the dual variables. The representation used in §5.1, for example,
is parametrized by a state feedback matrixK. It is not clear how this choice
affects the numerical stability of the method.

• The main idea in our approach is to use direct linear algebra techniques to
solve the Newton equations in an interior-point method fast. This allows
us to speed up the computation, without compromising the reliability and
speed of convergence of a primal-dual interior-point method. It seems likely
that other common classes of SDPs in control can benefit from similar
techniques.

Acknowledgments

We thank Didier Henrion, Dimitri Paucelle, Denis Arzelier, Anders Rantzer,
Alexandre Megretski, Chung-Yao Kao, and Ulf Jönsson for interesting discus-
sions on applications of KYP-SDPs and algorithms for solving them.



28 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

A Primal-dual interior-point method for semidefinite
programming

In this appendix we review the definition and key properties of the semidefinite
programming problem (SDP). We also describe a primal-dual method for
solving SDPs.

A.1 Optimality conditions

We first state a few basic properties of the pair of primal and dual SDPs (21)
and (22). We will express the (primal) SDP (21) as

minimize 〈c, y〉

subject to A(y) + S +D = 0

B(y) + d = 0

S º 0,

(61)

where S ∈ Sl1 × · · · × SlL is an additional variable.
The duality gap associated with primal feasible points y, S and a dual

feasible Z is defined as
Tr(SZ).

It is easily verified that

Tr(SZ) = 〈c, y〉 −Tr(DZ)− dT z

if y, S, Z, z are primal and dual feasible. In other words the duality gap is
equal to the difference between the objective values.

If strong duality holds, then y, S, Z, z are optimal if and only if they are
feasible, i.e.,

S º 0, A(y) + S +D = 0, B(y) + d = 0, (62)

and
Z º 0, Aadj(Z) + Badj(z) + c = 0, (63)

and the duality gap is zero:
SZ = 0. (64)

The last condition is referred to as complementary slackness.

A.2 Algorithm

We briefly describe an infeasible primal-dual interior-point method for solving
the pair of SDPs (61) and (22). Except for a few details, the method is the
algorithm of [TTT98, TTT02], which has been implemented in the state-of-
the-art SDP solver SDPT3.

We assume that the mapping (A,B) has full rank, i.e., A(y) = 0 and
B(y) = 0 imply y = 0. We define m = l1 + l2 + · · ·+ lL.



Interior-point algorithms for SDPs derived from the KYP lemma 29

Outline

The algorithm starts at initial y, z, S, Z satisfying S Â 0, Z Â 0 (for example,
y = 0, z = 0, S = I, Z = I). We repeat the following five steps.

1. Evaluate stopping criteria. Terminate if the following three conditions are
satisfied:

‖A(y) + S +D‖ ≤ εfeas max{1, ‖B‖}

‖B(y) + d‖ ≤ εfeas max{1, ‖d‖}

‖Aadj(Z) + Badj(z) + c‖ ≤ εfeas max{1, ‖c‖}

Tr(SZ) ≤ max{εabs,−εrel〈c, y〉, εrel(Tr(DZ) + dT z)},

where εfeas, εabs, εrel are given positive tolerances, or if a specified maxi-
mum allowable number of iterations is reached. Otherwise go to step 2.

2. Compute the scaling matrix R. The scaling matrix is a block-diagonal
matrix, and defines a congruence that jointly diagonalizes S−1 and Z:

RTS−1R = diag(λ)−1, RTZR = diag(λ) (65)

where λ ∈ Rm
++.

3. Compute the affine scaling directions ∆ya, ∆Sa, ∆Za, ∆za, by solving
the set of linear equations

H(∆ZaS + Z∆Sa) = −diag(λ)2 (66)

∆Sa +A(∆ya) = −(A(y) + S +D) (67)

Aadj(∆Za) + Badj(∆za) = −(Aadj(Z) + Badj(z) + d) (68)

B(∆ya) = −(B(y) + d), (69)

where H is defined as

H(X) =
1

2
(RTXR−T +R−1XTR).

4. Compute the centering-corrector steps ∆yc, ∆Zc, ∆Sc, by solving the set
of linear equations

H(∆ZcS + Z∆Sc) = µI −H(∆Za∆Sa) (70)

∆Sc +A(∆yc) = 0 (71)

Aadj(∆Zc) + Badj(∆zc) = 0 (72)

B(∆yc) = 0. (73)

The coefficient µ is given by

µ =
Tr(SZ)

m

(
Tr((S + α∆Sa)(Z + β∆Za))

Tr(SZ)

)δ

,



30 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

where

α = min{1, sup{α | S + α∆Sa º 0}}

β = min{1, sup{β | Z + β∆Za º 0}}

and δ is an algorithm parameter. Typical values of δ are δ = 1, 2, 3.
5. Update the primal and dual variables as

y := y+α∆y, S := S+α∆S, Z := Z+β∆Z, z := z+β∆z,

where ∆y = ∆ya + ∆yc, ∆S = ∆Sa + ∆Sc, ∆Z = ∆Za + ∆Zc, ∆z =
∆za +∆zc, and

α = min{1, 0.99 sup{α | S + α∆S º 0}}

β = min{1, 0.99 sup{β | Z + β∆Z º 0}}.

Go to step 1.

Discussion

Starting point

The method is called infeasible because it does not require feasible starting
points. The initial values of y, z, S, Z must satisfy S Â 0 and Z Â 0, but
do not have to satisfy the linear equations A(y) + S +D = 0, B(y) + d = 0,
Aadj(Z) + Badj(z) + c = 0.

The update rule in Step 5 ensures that S Â 0, Z Â 0 throughout the
algorithm. If started at a feasible starting point, the iterates in the algorithm
will remain feasible. This is easily verified from the definition of the search
directions in Steps 3 and 4.

Termination

If we start at feasible points, the iterates satisfy A(y) + D + S = 0, B(y) +
d = 0, Aadj(Z) + Badj(z) + c = 0 throughout the algorithm, so the first
three conditions are automatically satisfied. If we start at infeasible points,
these conditions ensure that at termination the primal and dual residuals
A(y)+D+S, B(y)+ d, Aadj(Z)+Badj(z)+ c are sufficiently small. A typical
value for εfeas is 10−8.

At each iteration, we have S Â 0, Z Â 0, and hence Tr(SZ) > 0. The
third condition is therefore satisfied if one of the following conditions holds:

• Tr(SZ) ≤ εabs

• 〈c, y〉 ≤ 0 and Tr(SZ) ≤ εrel|〈c, y〉|
• Tr(DZ) + dT z > 0 and Tr(SZ) ≤ εrel(Tr(DZ) + dT z).



Interior-point algorithms for SDPs derived from the KYP lemma 31

Assuming y, S, z, Z are feasible, the first of these conditions implies that the
duality gap is less than εabs, and therefore

〈c, y〉 − p? ≤ εabs, d? −Tr(DZ)− dT z ≤ εabs,

i.e., the absolute errors between the primal and dual objective values and
their optimal values p? and d? are less than εabs.

If either the second or the third condition holds, then

〈c, y〉 − p?

|p?|
≤ εrel,

d? −Tr(DZ)− dT z

|d?|
≤ εrel,

i.e., we have determined the optimal values with a relative accuracy of at least
εabs. Typical values of εabs, εrel are εabs = εrel = 10−8.

Scaling matrix

The scaling matrix R is efficiently computed as follows. We first compute the
Cholesky factorization of S and Z:

S = L1L
T
1 , Z = L2L

T
2 ,

where L1 and L2 are block-diagonal with lower-triangular diagonal blocks of
dimensions m1, . . . , mL. Next, we compute the SVD of LT

2 L1:

LT
2 L1 = U diag(λ)V T ,

where U and V are block-diagonal with block dimensions l1, . . . , lL, U
TU = I,

V TV = I, and diag(λ) is a positive diagonal matrix of size m ×m. Finally,
we form

R = L1V diag(λ)−1/2.

It is easily verified that RTS−1R = diag(λ)−1 and RTZR = diag(λ).

Search directions

The definition of H and the definition of the affine scaling and centering-
corrector directions may be justified as follows. The central path for the
pair of primal and dual SDPs (61) and (22) is defined as the set of points
(y(µ), S(µ), Z(µ)) that satisfy S(µ) Â 0, Z(µ) Â 0, and

A(y(µ)) + S(µ) +D = 0, B(y(µ)) + d = 0
Aadj(Z(µ)) + Badj(z(µ)) + c = 0

Z(µ)S(µ) = µI,
(74)

for some µ > 0. In the limit for µ → 0, these equations reduce to the op-
timality conditions (62)–(64). Central points with parameter µ have duality



32 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

gap Tr(S(µ)Z(µ)) = mµ. Most interior-point methods can be interpreted as
damped Newton methods for solving a symmetrized version of the central-
path equations (74), for a decreasing sequence of values of µ.

A unified description of different symmetric formulations of the central
path was developed by Zhang [Zha98], who notes that positive definite ma-
trices S, Z satisfy SZ = µI if and only if there exists a nonsingular matrix P
such that

1

2
(PTZSP−T + P−1SZP ) = µI.

The algorithm outlined above uses P = R defined in Step 2 (known as the
Nesterov-Todd scaling matrix), but many other choices are possible.

Using Zhang’s parametrization, the central path equations can be ex-
pressed as

H(Z(µ)S(µ)) = µI

S(µ) +A(y(µ)) +D = 0

Aadj(Z(µ)) + Badjz + c = 0

B(y(µ)) + d = 0.

The Newton directions at some y, Z Â 0, S Â 0 are obtained by linearizing
these equations and solving the linearized equations

H(∆ZS + Z∆S) = µI −H(ZS) (75)

∆S +A(∆y) = −(A(y) + S +D) (76)

Aadj(∆Z) + Badj(∆z) = −(Aadj(Z) + Badj(z) + c). (77)

B(∆y) = −(B(y) + d) (78)

We can now interpret and justify the search directions defined in Steps 3,
4, and 5 as Newton directions. We first note that, if we choose R as in Step 2,

H(ZS) =
1

2
(RTZSR−T +R−1SZR) = diag(λ)2,

so the Newton equations (75)–(78) reduce to

H(∆ZS + Z∆S) = µI − diag(λ)2 (79)

∆S +A(∆y) = −(A(y) + S +D) (80)

Aadj(∆Z) + Badj(∆z) = −(Aadj(Z) + Badj(z) + c). (81)

B(∆y) = −(B(y) + d) (82)

Comparing this system with the sets of equations (66)–(69) and (70)–(73),
we see that, except for the term H(∆Za∆Sa), these equations are identical
to the Newton equations. More precisely, if we delete the term H(∆Za∆Sa),



Interior-point algorithms for SDPs derived from the KYP lemma 33

the solution (79)–(82) is given by ∆y = ∆ya + ∆yc, ∆S = ∆Sa + ∆Sc,
∆Z = ∆Za +∆Zc, ∆z = ∆za +∆zc,

A distinguishing feature of the predictor-corrector method is that the New-
ton equations are solved in two steps, by solving the two sets of linear equa-
tions (66)–(69) and (70)–(73) separately, instead of solving a single set of
equations (79)–(82). This strategy has proven to be very successful in primal-
dual methods for linear programming [Meh91], and offers two advantages. The
first, and most important, advantage is that it allows us to select the value
of µ adaptively. In the algorithm described above, this idea is implemented
as follows. In Step 3 we compute the affine scaling direction, i.e., the limit of
the Newton direction for µ→ 0. In Step 4, we first assess the ‘quality’ of the
affine direction as a search direction, by computing the ratio

η =
Tr((S + α∆Sa)(Z + β∆Za))

Tr(SZ)
,

where we take α = 1, β = 1 if possible, and otherwise take the maximum α
and β that satisfy S + α∆Sa º 0, resp. Z + β∆Za º 0. The ratio η gives the
reduction in Tr(SZ) that we can achieve by using the affine scaling direction.
If the ratio is small, we assume the affine scaling direction is a good search
direction and we choose a small value of µ; if the ratio η is large, we choose
a larger value of µ. Choosing µ = ηδ Tr(SZ)/m means that we select the
Newton step for central points y(µ), S(µ), Z(µ), with

Tr(S(µ)Z(µ) = ηδ Tr(SZ).

The second advantage of solving two linear systems is that we can add a
higher-order correction term when linearizing the equation H(Z(µ)S(µ)) =
µI. In Newton’s method we linearize this equation by expanding

H((Z +∆Z)(S +∆S)) = H(ZS) +H(∆ZS + Z∆S) +H(∆Z∆S)

and omitting the second-order term, which yields a linear equation

H(ZS) +H(Z∆S +∆ZS) = µI.

The combined directions, ∆Z = ∆Za +∆Zc, ∆S = ∆Sa +∆Sc, used in the
predictor-corrector method, on the other hand, satisfies

H(ZS) +H((∆Za +∆Zc)S + Z(∆Sa +∆Sc)S) +H(∆Za∆Sa) = µI,

which includes part of the second-order term, and can therefore be expected
to be more accurate.

We conclude by pointing out that the two sets of linear equations (66)–
(69) and (70)–(73) only differ in the righthand side, so the cost of solving both
systems is about the same as the cost of solving one system.



34 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

Step size

After computing the search directions, we update the variables in step 5. We
use different step sizes α and β for the primal and dual variables. If possible,
we make a full step (α = 1, β = 1). If this is unacceptable because it results
in values of S and Z that are not positive definite, we decrease α and/or β,
and make a step equal to a fraction 0.99 of the maximum steps that satisfy
S + α∆S º 0 and Z + β∆Z º 0.

A.3 Solving the Newton equations

When applied to an SDP that is primal and dual feasible, the predictor-
corrector method usually converges in 10–50 iterations. As a rule of thumb,
the overall cost of solving the SDP and its dual is therefore equal to the cost
of solving 10–50 linear equations of the form

H(∆ZS + Z∆S) = D1 (83)

∆S +A(∆y) = D2 (84)

Aadj(∆Z) + Badj(∆z) = D3 (85)

B(∆y) = D4. (86)

It can be shown that these equations have a unique solution if (A,B) has full
rank [TTT98, p.777].

The Newton equations can be simplified by eliminating ∆S. Using the
definition of R in (65), we first note that equation (83) can be written as

(RT∆ZR+R−1∆SR−T )diag(λ)+diag(λ)(R−1∆SR−T +RT∆ZR) = 2D1.

The general solution of the homogeneous equation (D1 = 0) is ∆S =
−RRT∆ZRRT . A particular solution is ∆Z = 0,

∆S = 2R(D1 ◦G)R
T

where Gij = 1/(λi + λj). All solutions of (83) can therefore be written as

∆S = −RRT∆ZRRT + 2R(D1 ◦G)R
T .

Substituting in (84) gives an equivalent set of linear equations

−W∆ZW +A(∆y) = D (87)

Aadj(∆Z) + Badj(∆z) = D3 (88)

B(∆y) = D4 (89)

where W = RRT , D = D2 − 2R(D1 ◦G)R
T .

A general-purpose SDP solver like SDPT3 solves (87)–(89) by eliminating
∆Z from the first equation, which yields

Aadj(W−1A(∆y)W−1) + Badj(∆z) = D3 +A
adj(W−1DW−1) (90)

B(∆y) = D4, (91)

and solving for ∆y and ∆z.



Interior-point algorithms for SDPs derived from the KYP lemma 35

B Derivation of (50) and (52)

B.1 Expression for H

Let H ∈ Sn+1 be defined as

Hij = Tr(FiWFjW ), i, j = 1 . . . , n+ 1,

where

Fi =

[
Xi ei
eTi 0

]
, i = 1, . . . , n, Fn+1 =

[
0 0
0 2

]
,

and Xi ∈ Sn. To simplify the expressions for H we first note that if we
partition W as

W =

[
W11 W12

WT
12 W22

]
,

with W11 ∈ S
n, W12 ∈ R

n, and W22 ∈ R, then

WFi =

[
W11Xi +W12e

T
i W11ei

WT
12Xi +W22e

T
i WT

12ei

]
, i = 1, . . . , n, WFn+1 =

[
0 2W12

0 2W22

]
.

The leading n× n block of H is given by

Hij = Tr((W11Xi +W12e
T
i )(W11Xj +W12e

T
j )) + eTi W11(XjW12 + ejW22)

+ (WT
12Xi +W22e

T
i )W11ej + eTi W12W

T
12ej

= Tr(W11XiW11Xj) + 2eTi W11XjW12 + 2WT
12XiW11ej + 2W22e

T
i W11ej

+ 2eTi W12W
T
12ej

for i, j = 1, . . . , n. The last column is given by

Hi,n+1 = 2(WT
12Xi +W22e

T
i )W12 + 2eTi W12W22

= 2WT
12XiW12 + 4(eTi W12)W22

for i = 1, . . . , n, and
Hn+1,n+1 = 4W 2

22.

In summary,

H =

[
H1 0
0 0

]
+ 2

[
W11

WT
12

] [
H2 0

]
+ 2

[
HT

2

0

] [
W11 W12

]

+ 2W22

[
W11 W12

WT
12 W22

]
+ 2

[
W12

W22

] [
WT

12 W22

]

where

(H1)ij = Tr(XiW11XjW11), i, j = 1, . . . , n

H2 =
[
X1W12 X2W12 · · · XnW12

]
.

This proves (50).



36 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

B.2 Expression for G

Let G ∈ R(n+1)×p be defined by

Gij = Tr(FiMj), i = 1, . . . , n, j = 1, . . . , p.

We will partition Mj as

Mj =

[
Mj,11 Mj,12

MT
j,12 Mj,22

]
,

with Mj,11 ∈ S
n. We have

Gij = Tr(XiMj,11) + 2eTi Mj,12, i = 1, . . . , n, Gij = 2Mj,22.

From this it is easy to see that

G = 2

[
Y1B Y2B · · · YpB
0 0 · · · 0

]
+ 2

[
M1,12 M2,12 · · · Mp,12

M1,22 M2,22 · · · Mp,22

]
,

with Yj is the solution of AYj + YjA
T +Mj,11 = 0.

C Derivation of (53) and (54)

Let X(v) be the solution of the Lyapunov equation

AX(v) +X(v)AT + vBT +BvT = 0,

i.e., X(v) =
∑n

i=1 viXi. The matrices H1 and H2 satisfy

vTH1v = Tr(X(v)W11X(v)W11, H2v = X(v)W12

for all v.

C.1 Expression for H1

First suppose A is diagonal, A = diag(λ), with λ ∈ Cn. Define Σ ∈ Hn×n as

Σij =
1

λi + λ̄j
, i, j = 1, . . . , n.

The solution of diag(λ)Y + Y diag(λ)∗ +Gw∗ +wG∗ = 0, where G ∈ Cn, is
given by

Y (w) = −(Gw∗ + wG∗) ◦Σ. (92)

Therefore, for general S ∈ H(n+1)×(n+1),



Interior-point algorithms for SDPs derived from the KYP lemma 37

Tr(Y (w)SY (w)S) = Tr(((Gw∗ + wG∗) ◦Σ)S((Gw∗ + wG∗) ◦Σ)S)

= Tr(DGΣD
∗
wSDGΣD

∗
wS) +Tr(DGΣD

∗
wSDwΣD

∗
GS)

+Tr(DwΣD
∗
GSDGΣD

∗
wS) +Tr(DwΣD

∗
GSDwΣD

∗
GS)

where Dx = diag(x). Now we use the property that for A,B ∈ Cn×n,

Tr(DxADyB) =
n∑

i=1

n∑

j=1

xiAijyjBji = xT (A ◦BT )y.

This gives

Tr(Y (w)SY (w)S)

= w∗((SDGΣ) ◦ (SDGΣ)T )w̄ + w∗(S ◦ (ΣD∗
GSDGΣ)T )w

+ wT ((ΣD∗
GSDGΣ) ◦ ST )w̄ + wT ((ΣD∗

GS) ◦ (ΣD
∗
GS)

T )w

= 2<(wT ((ΣD∗
GS) ◦ (ΣD

∗
GS)

T )w) + 2<(w∗(S ◦ (ΣD∗
GSDGΣ)T )w).(93)

Now suppose A is not diagonal, but diagonalizable, with AV = V diag(λ).
The solution of AX +XAT +BvT + vBT = 0 is given by

X(v) = V Y (V −1v)V ∗

where Y (w) is the solution of

diag(λ)Y + Y diag(λ)∗ + V −1Bw∗ + wBTV −∗ = 0.

Therefore, for W11 ∈ S
n+1,

Tr(X(v)W11X(v)W11) = Tr(Y (V −1v)V ∗W11V Y (V −1v)V ∗W11V ),

so we can apply (93) with w = V −1v, S = V ∗W11V , G = V −1B, and

Tr(X(v)W11X(v)W11)

= 2<(vTV −T ((Σ diag(V −1B)∗V ∗W11V ) ◦ (Σ diag(V −1B)∗V ∗W11V )T )V −1v)

+ 2<(vTV −∗(V ∗W11V ) ◦ (Σ diag(V −1B)∗V ∗W11V diag(V −1B)Σ)T )V −1v).

In conclusion,

H1 = 2<(V −T
(
(Σ diag(V −1B)∗V ∗W11V ) ◦ (Σ diag(V −1B)∗V ∗W11V )T

)
V −1)

+ 2<(V −∗
(
(V ∗W11V ) ◦ (Σ diag(V −1B)∗V ∗W11V diag(V −1B)Σ)T

)
V −1).

C.2 Expression for H2

With Y (w) defined as in (92), and s ∈ Cn,



38 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

Y (w)s = −((Gw∗ + wG∗) ◦Σ)s

= −DGΣD
∗
ws−DwΣD

∗
Gs

= −DGΣDsw̄ −DwΣD
∗
Gs

= −DGΣDsw̄ − diag(ΣD∗
Gs)w.

To determine H2 we apply this expression with s = V ∗W12, G = V −1B, and
w = V −1v:

X(v)W12 = V Y (V −1v)V ∗W12

= −V diag(V −1B)Σ diag(V ∗W12)V̄
−1v

− V diag(Σ diag(V −1B)∗V ∗W12)V
−1v.

Therefore,

H2 = −V diag(V −1B)Σ diag(V ∗W12)V̄
−1−V diag(Σ diag(V −1B)∗V ∗W12)V

−1.

D Non-controllable (A, B)

In this appendix we discuss how the assumption that (Ak, Bk) is control-
lable can be relaxed to (Ak, Bk) stabilizable, provided the range of Qk is in
the controllable subspace of (Ak, Bk). For simplicity we explain the idea for
problems with one constraint, and omit the subscripts k, as in (29). We define
M(x) =

∑p
i=1 xiMi−Ni, and assume the problem is strictly (primal) feasible.

Let T be a unitary state transformation such that

Ã =

[
Ã1 Ã12

0 Ã2

]
= TTAT, B̃ =

[
B̃1

0

]
= BT

where (Ã1, B̃1) is controllable and Ã2 is Hurwitz. Note that

[
TT 0
0 I

] [
ATP + PA PB

BTP 0

] [
T 0
0 I

]
=

[
ÃT P̃ + P̃ Ã P̃ B̃

B̃T P̃ 0

]

where P̃ = TTPT . Let

P̃ =

[
P̃1 P̃12

P̃T
12 P̃2

]
, Q̃ =

[
Q̃1 Q̃12

Q̃T
12 Q̃2

]
= TQTT

and let

M =



M̃1 M̃12 M̃13

M̃T
12 M̃2 M̃23

M̃T
13 M̃

T
23 M̃3


 =

[
TT 0
0 I

]
M(x)

[
T 0
0 I

]
.

Then it holds that (29) with strict inequality is equivalent to



Interior-point algorithms for SDPs derived from the KYP lemma 39

minimize qTx+Tr(Q̃1P̃ ) + 2Tr(Q̃12P12) +Tr(Q̃2P̃2)

subject to



P̃1Ã1 + ÃT

1 P̃1 P̃1Ã12 + P̃12Ã2 + ÃT
1 P̃12 P̃1B̃1

∗ P̃T
12Ã12 + P̃2Ã2 + ÃT

12P̃12 + ÃT
2 P̃2 P̃

T
12B̃1

∗ ∗ 0




+



M̃1 M̃12 M̃13

M̃T
12 M̃2 M̃23

M̃T
13 M̃

T
23 M̃3


 Â 0.

(94)

By the Schur complement formula the above constraint is equivalent to

[
P̃1Ã1 + ÃT

1 P̃1 P̃1B̃1

B̃T
1 P̃1 0

]
+

[
M̃1 M̃13

M̃T
13 M̃3

]
Â 0

and

P̃T
12Ã12 + P̃2Ã2 + ÃT

12P̃12 + ÃT
2 P̃2 + M̃2

−

[
P̃1Ã12 + P̃12Ã2 + ÃT

1 P̃12 + M̃12

BT
1 P̃12 + M̃

T
23

]T [
P̃1Ã1 + ÃT

1 P̃1 + M̃1 P̃1B̃1 + M̃13

B̃T
1 P̃1 + M̃

T
13 M̃3

]−1

×

[
P̃1Ã12 + P̃12Ã2 + ÃT

1 P̃12 + M̃12

B̃T
1 P̃12 + M̃

T
23

]
Â 0.

Now by our assumption that the range of Q is in the controllable subspace
of (A,B), we have Q̃2 = 0 and Q̃12 = 0. Then P̃12 and P̃2 only appear
in the latter matrix inequality. This shows that it is possible to partition
the optimization problem into one problem of the original form for which
(Ã1, B̃1) is controllable involving the variables x and P̃1, and a feasibility
problem involving P̃12 and P̃2. Notice that feasible P̃12 and P̃2 can be found
by solving a Lyapunov equation for P̃2. Hence all results presented in this
article extend to the case when (A,B) is stabilizable. Notice however that
there does not exist strictly dual feasible Z if (A,B) is not controllable.

E Linear independence

In this appendix, we relax the assumption that the mapping (6) has full rank.

E.1 Change of variables

Consider the constraint in (29) which can be written as

−A(P, x) =

[
PA+ATP PB

BTP 0

]
+

p∑

i=1

xi

[
M1,i M12,i

MT
12,i M2,i

]
º

[
N1 N12

NT
12 N2

]
.

Let Pi solve



40 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

ATPi + PiA =M1,i, i = 1, . . . , p

and let M̃12,i =M12,i − PiB, i = 1, . . . , p. Then with

P̄ = P −

p∑

i=1

xiPi

it holds that the above LMI is satisfied for P = P T and some x if and only if
P̄ and x satisfy

−Ã(P̄ , x) =

[
P̄A+AT P̄ P̄B

BT P̄ 0

]
+

p∑

i=1

xiM̃i º N

where

M̃i =

[
0 M̃12,i

M̃T
12,i M2,i

]
.

Hence it is no loss in generality to assume that the LMI constraint is of a
form where the M1,i-entries are zero. The objective function is transformed
to q̃Tx+TrQP̄ , where q̃i = qi+TrQPi. We remark that this structure of the
constraint is inherent in certain applications such as IQCs as they are defined
in the Matlab IQC-toolbox. Moreover, notice that we could have defined the
change of variables slightly differently using an affine change of variables such
that N would also have had a zero 1,1-block. However, the notation would
have been more messy, and it would also complicate the presentation in what
follows.

E.2 Linear independence

The full rank property of A(P, x) is needed for uniqueness of the solution of
the Newton equations. In this subsection we show that a sufficient and more
easily verified condition is that A is Hurwitz and M̃i, i = 1, . . . , p, are linearly
independent. We make use of the specific structure developed above to show
that A(P, x) = 0 implies (P, x) = 0. By the change of variables in the previous
subsection, A(P, x) = 0 is equivalent to Ã(P̄ , x) = 0. In the 1,1-position this
equation reads

P̄A+AT P̄ = 0

and since A is Hurwitz it follows that P̄ = 0. This implies that

p∑

i=1

xiM̃i = 0

and since M̃i, i = 1, . . . , p, are linearly independent it follows that x = 0. By
the definition of the change of variables it is now true that (P, x) = 0. We
remark that the above proof easily extends to the general problem formulation
in the introduction.



Interior-point algorithms for SDPs derived from the KYP lemma 41

E.3 Linear dependence

In case M̃i, i = 1, . . . , p, are linearly dependent, then either the objective
function is not bounded from below, or the problem can be reduced to an
equivalent problem with fewer variables for which M̃i, i = 1, . . . , p, are linearly
independent. To this end define

M̃ =
[
svec(M̃1) svec(M̃2) · · · svec(M̃p)

]
.

Apply a singular value decomposition to M̃ :

M̃ = U
[
Σ1 0

] [V T
1

V T
2

]
,

where Σ1 has full column rank. Define a change of variables for x via

x̄ =

[
x̄1

x̄2

]
=

[
V T

1

V T
2

]
x

Now clearly M̃x = M̄x̄1, where M̄ = UΣ1. Therefore we can rewrite the
constraint in the variables x̄1 and with a set of linearly independent matrices,
M̄i, given by the inverse symmetric vectorization of the columns of M̄ . The
part of the primal objective function involving x can be written as as

cTx = cT
[
V1 V2

] [V T
1

V T
2

]
x = c̄T1 x̄1 + c̄T2 x̄2

where c̄1 = V T
1 c, c̄2 = V T

2 c. Since x̄2 is not present in the constraint the
objective function is bounded below only if

c̄2 = V T
2 c = 0

Hence, this is a necessary condition for the optimization problem to have a
solution. Therefore either the problem is not bounded below or there is an
equivalent problem involving fewer variables for which M̄i, i = 1, . . . , p are
linearly independent.

The cost of the above operation is O(n3), where we assume that p is of
O(n).

References

[AA98] P. Apkarian and R. J. Adams. Advanced gain-scheduled techniques for
uncertain systems. IEEE Trans. Control Sys. Tech., 6(1):21–32, January
1998.

[AG95] P. Apkarian and P. Gahinet. A convex characterization of gain-scheduled
H∞ controllers. IEEE Transactions on Automatic Control, 40(5):853–
864, May 1995.



42 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

[AHN+97] F. Alizadeh, J. P. Haeberly, M. V. Nayakkankuppam, M. L. Overton,
and S. Schmieta. sdppack User’s Guide, Version 0.9 Beta. NYU, June
1997.

[AV00] B. Alkire and L. Vandenberghe. Handling nonnegative constraints in
spectral estimation. In Proceedings of the 34th Asilomar Conference on
Signals, Systems, and Computers, pages 202–206, 2000.

[AV01] B. Alkire and L. Vandenberghe. Interior-point methods for magnitude
filter design. In Proceedings of the 2001 IEEE International Conference
on Acoustics. Speech, and Signal Processing, volume VI, pages SPTM–11,
2001.

[AV02] B. Alkire and L. Vandenberghe. Convex optimization problems involving
finite autocorrelation sequences. Mathematical Programming Series A,
93:331–359, 2002.

[BB91] S. Boyd and C. Barratt. Linear Controller Design: Limits of Perfor-
mance. Prentice Hall, 1991.

[BEFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix In-
equalities in System and Control Theory, volume 15 of Studies in Applied
Mathematics. SIAM, Philadelphia, PA, June 1994.

[Bor02] B. Borchers. CSDP 4.2 User’s Guide, 2002. Available from
www.nmt.edu/~borchers/csdp.html.

[BV98] V. Balakrishnan and L. Vandenberghe. Linear Matrix Inequalities for
signal processing: An overview. In Proceedings of the 32nd Annual Con-
ference on Information Sciences and Systems, Princeton, New Jersey,
March 1998.

[BV03] V. Balakrishnan and L. Vandenberghe. Semidefinite programming dual-
ity and linear time-invariant systems. IEEE Trans. Aut. Control, 48:30–
41, 2003.

[BW99] V. Balakrishnan and F. Wang. Efficient computation of a guaranteed
lower bound on the robust stability margin for a class of uncertain sys-
tems. IEEE Trans. Aut. Control, AC-44(11):2185–2190, November 1999.

[BY02] S. J. Benson and Y. Ye. DSDP4 — A Software Package Implementing the
Dual-Scaling Algorithm for Semidefinite Programming, 2002. Available
from www-unix.mcs.anl.gov/~benson.

[DLS02] T. N. Davidson, Z.-Q. Luo, and J. F. Sturm. Linear matrix inequality
formulation of spectral mask constraints with applications to FIR filter
design. IEEE Transactions on Signal Processing, 50(11):2702–2715, 2002.

[Doy82] J. Doyle. Analysis of feedback systems with structured uncertainties.
IEE Proc., 129-D(6):242–250, November 1982.

[DTS01] B. Dumitrescu, Ioan Tabus, and Petre Stoica. On the parametrization
of positive real sequences and MA parameter estimation. IEEE Trans-
actions on Signal Processing, 49(11):2630–9, November 2001.

[FB97] M. Fu and N. E. Barabanov. Improved Upper Bounds for the Mixed
Structured Singular Value. IEEE Trans. Aut. Control, 42(10):1447–1452,
October 1997.

[FKN98] K. Fujisawa, M. Kojima, and K. Nakata. SDPA User’s Manual, 1998.
Available from www.is.titech.ac.jp/~yamashi9/sdpa.

[FTD91] M. K. H. Fan, A. L. Tits, and J. C. Doyle. Robustness in the presence
of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans.
Aut. Control, AC-36(1):25–38, January 1991.



Interior-point algorithms for SDPs derived from the KYP lemma 43

[GH03] J. Gillberg and A. Hansson. Polynomial complexity for a Nesterov-Todd
potential-reduction method with inexact search directions. In Proceedings
of thet 42nd IEEE Conference on Decision and Control, 2003.

[GHNV00] Y. Genin, Y. Hachez, Yu. Nesterov, and P. Van Dooren. Convex op-
timization over positive polynomials and filter design. In Proceedings
of the 2000 UKACC International Conference on Control, Cambridge
University, 2000.

[GHNV03] Y. Genin, Y. Hachez, Yu. Nesterov, and P. Van Dooren. Optimization
problems over positive pseudo-polynomial matrices. SIAM Journal on
Matrix Analysis and Applications, 25(3):57–79, 2003.

[GL95] M. Green and D. J. N. Limebeer. Linear Robust Control. Information
and System sciences. Prentice Hall, Englewood Cliffs, NJ, 1995.

[GN95] P. Gahinet and A. Nemirovskii. LMI Control Toolbox: the LMI Lab. The
MathWorks, Inc., 1995.

[Hac03] Y. Hachez. Convex Optimization over Non-Negative Polynomials: Struc-
tured Algorithms and Applications. PhD thesis, Université catholique de
Louvain, Belgium, 2003.

[HB99] H. Hindi and S. Boyd. Multiobjective H2/H∞-optimal control via finite-
dimensional Q-parametrization and linear matrix inequalities. In Proc.
American Control Conf., June 1999.

[Hen03] D. Henrion. LMI formulations of polynomial matrix problems in robust
control. Draft., 2003.

[HV00] A. Hansson and L. Vandenberghe. Efficient solution of linear matrix
inequalities for integral quadratic constraints. In Proc. IEEE Conf. on
Decision and Control, pages 5033–5034, 2000.

[HV01] A. Hansson and L. Vandenberghe. A primal-dual potential reduction
method for integral quadratic constraints. In 2001 American Control
Conference, pages 3013–3018, Arlington, Virginia, June 2001.

[IH98] T. Iwasaki and S. Hara. Well-posedness of feedback systems: Insights into
exact robustness analysis and approximate computations. IEEE Trans.
Aut. Control, AC-43(5):619–630, May 1998.

[Jön96] U. Jönsson. Robustness Analysis of Uncertain and Nonlinear Systems.
PhD thesis, Lund Institute of Technology, Sweden, 1996.

[KM01] C.-Y. Kao and A. Megretski. Fast algorithms for solving IQC feasibility
and optimization problems. In Proc. American Control Conf., pages
3019–3024, 2001.

[KMJ01] C.-Y. Kao, A. Megretski, and U. T. Jönsson. A cutting plane algorithm
for robustness analysis of periodically time-varying systems. IEEE Trans.
Aut. Control, 46(4):579–592, 2001.

[KMJ03] C.-Y. Kao, A. Megretski, and U. Jönsson. Specialized fast algorithms for
IQC feasibility and optimization problems. 2003. Submitted to Auto-
matica.

[KND85] J. Kautsky, N. K. Nichols, and P. Van Dooren. Robust pole assignment
in linear state feedback. Int. J. Control, 41:1129–1155, 1985.

[Löf02] J. Löfberg. Yalmip. Yet another LMI parser. University of Linköping,
Sweden, 2002.

[Meh91] S. Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization, 2(4):575–601, November 1991.

[MR97] A. Megretski and A. Rantzer. System analysis via integral quadratic
constraints. IEEE Trans. Aut. Control, 42(6):819–830, June 1997.



44 L. Vandenberghe, V. Balakrishnan, R. Wallin, A. Hansson, T. Roh

[OB99] J. Oishi and V. Balakrishnan. Linear controller design for the NEC
laser bonder via LMI optimization. In Laurent El Ghaoui and Silviu-
Iulian Niculescu, editors, Advances in Linear Matrix Inequality Methods
in Control, Advances in Control and Design. SIAM, 1999.

[Pac94] A. Packard. Gain scheduling via linear fractional transformations. Syst.
Control Letters, 22:79–92, 1994.

[Par00] P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic Ge-
ometry Methods in Robustness and Optimization. PhD thesis, California
Institute of Technology, Pasadena, California, May 2000.

[Ran96] A. Rantzer. On the Kalman-Yakubovich-Popov lemma. Syst. Control
Letters, 28(1):7–10, 1996.

[Saf82] M. G. Safonov. Stability margins of diagonally perturbed multivariable
feedback systems. IEE Proc., 129-D:251–256, 1982.

[Stu01] J. F. Sturm. Using SEDUMI 1.02, a Matlab Toolbox for
Optimization Over Symmetric Cones, 2001. Available from
fewcal.kub.nl/sturm/software/sedumi.html.

[Stu02] J. F. Sturm. Implementation of interior point methods for mixed semidef-
inite and second order cone optimization problems. Optimization Meth-
ods and Software, 17(6):1105–1154, 2002.

[TTT98] M. J. Todd, K. C. Toh, and R. H. Tütüncü. On the Nesterov-Todd direc-
tion in semidefinite programming. SIAM J. on Optimization, 8(3):769–
796, 1998.

[TTT02] K. C. Toh, R. H. Tütüncü, and M. J. Todd. SDPT3 version 3.02. A Mat-
lab software for semidefinite-quadratic-linear programming, 2002. Avail-
able from www.math.nus.edu.sg/~mattohkc/sdpt3.html.

[WB96] S.-P. Wu and S. Boyd. sdpsol: A Parser/Solver for Semidefinite Pro-
gramming and Determinant Maximization Problems with Matrix Struc-
ture. User’s Guide, Version Beta. Stanford University, June 1996.

[WB02] F. Wang and V. Balakrishnan. Improved stability analysis and gain-
scheduled controller synthesis for parameter-dependent systems. IEEE
Trans. Aut. Control, 47(5):720–734, May 2002.

[WBV98] S.-P. Wu, S. Boyd, and L. Vandenberghe. FIR filter design via spectral
factorization and convex optimization. In B. Datta, editor, Applied and
Computational Control, Signals, and Circuits, volume 1, pages 215–245.
Birkhauser, 1998.

[WBZ+03] F. Wang, V. Balakrishnan, P. Zhou, J. Chen, R. Yang, and C. Frank.
Optimal array pattern synthesis using semidefinite programming. IEEE
Trans. Signal Processing, 51(5):1172–1183, May 2003.

[WHV03] R. Wallin, H. Hansson, and L. Vandenberghe. Comparison of two
structure-exploiting optimization algorithms for integral quadratic con-
straints. In 4th IFAC Symposium on Robust Control Design, Milan, Italy,
25-27 June 2003. IFAC.

[Wil71] J. C. Willems. Least squares stationary optimal control and the alge-
braic Riccati equation. IEEE Transactions on Automatic Control, AC-
16(6):621–634, 1971.

[ZDG96] K. Zhou, J. Doyle, and K. Glover. Robust and Optimal Control. Prentice
Hall, 1996.

[Zha98] Y. Zhang. On extending some primal-dual interior-point algorithms from
linear programming to semidefinite programming. SIAM J. on Optimiza-
tion, 8:365–386, 1998.



Interior-point algorithms for SDPs derived from the KYP lemma 45


