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Abstract— We extend a fast technique for solving semidefinite
programs involving nonnnegative trigonometric polynomials to
problems derived from the discrete-time Kalman-Yakubovich-
Popov (KYP) lemma and some of its generalizations. The
frequency-domain inequality associated with the generalized
KYP lemma is first expressed as a weighted sum of squares
of rational functions. By taking a sufficient number of samples
of the sum-of-squares expression, an equivalent standard-form
semidefinite program with low-rank structure is obtained. This
low-rank structure is easily exploited in implementations of
primal-dual interior-point algorithms. A complexity analysis
and numerical examples are provided to support the perfor-
mance improvement over standard semidefinite programming
solvers.

I. I NTRODUCTION

The research on linear matrix inequalities during the
last fifteen years has created a need for fast and reliable
algorithms for semidefinite programming problems (SDPs)
arising in control. High-quality general-purpose semidefinite
programming packages [Stu99], [TTT03], [BY05], [YFK03],
[Bor99] can currently handle dense semidefinite programs
(SDPs) with up to a few thousand optimization variables (for
SDPs in inequality form) and several linear matrix inequality
(LMI) constraints of dimension up to a few hundred. They
can also solve much larger problems if the data matrices
are sufficiently sparse, and in fact most of the research on
exploiting problem structure in semidefinite programming
has focused on exploiting sparsity. SDPs in control, however,
are usually quite dense, and often include matrix variables,
so the number of optimization variables can easily run
into several ten thousand, even when the underlying control
problem is not particularly large (if problem size is measured
in terms of the number of states, inputs and outputs).

This has prompted several researchers to develop special-
purpose SDP algorithms targeted at control applications
[Par99], [GHNV03], [DR05], [AV02], [RV06], [VBW+05],
[KMJ03], [Hol06]. These algorithms are restricted to specific
classes of SDPs, and exploit problem structure and control-
theoretic properties to handle problem sizes that exceed
the capabilities of the general-purpose packages. Such an
approach has been particularly successful for SDPs derived
from the KYP lemma (or ‘KYP-SDPs’), a class of SDPs
with widespread application in control [Par00], [KMJ03],
[VBW+05]. A KYP-SDP is defined as

min. cT x
s.t. KH

i (Φ ⊗ Pi)Ki + Mi(x) � 0, i = 1, . . . , L,
(1)
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whereMi : Rp → Hni+mi is an affine mapping,c ∈ Rp,

Ki =

[

Ai Bi

I 0

]

,

with Ai ∈ Cni×ni , Bi ∈ Cni×mi , ⊗ denotes the Kronecker
product, and

Φ =

[

1 0
0 −1

]

, Φ =

[

0 1
1 0

]

for discrete-time and continuous-time systems, respectively.
The variables in (1) arex ∈ Rp andPi ∈ Hni , i = 1, . . . , L.
The name KYP-SDP refers to the Kalman-Yakubovich-
Popov lemma, which states that if(Ai, Bi) is controllable,
the existence of aPi that satisfies theith inequality in (1) is
equivalent to the frequency-domain inequality
[

(λI − Ai)
−1Bi

I

]H

Mi(x)

[

(λI − Ai)
−1Bi

I

]

� 0 (2)

for all λ on the unit circle, respectively, the imaginary axis.
Note that each (Hermitian) matrix variablePi in (1) addsn2

i

(real) variables to the SDP, making it very expensive to solve
directly via general-purpose interior-point packages when ni

exceeds, say, fifty.
The different proposals for dedicated KYP-SDP solvers

can be grouped in three categories. A first approach [Par99],
[KMJ00], [KM01], [KMJ03] avoids the matrix variablesPi

by working directly with the frequency-domain inequality
constraints (2) instead of the LMIs in (1). This results in a
semi-infinite SDP (or a semi-infinite linear program in the
systems(Ai, Bi) are single-input). The problem is solved by
localization methods such as the ellipsoid algorithm or the
analytic centering cutting plane method. Each iteration of
the cutting-plane algorithm requires determining whethera
givenx is feasible in (2), and, if not, generating a hyperplane
that separatesx from the feasible set. This can be done
efficiently by standard methods for checking nonnegativity
of a transfer function on the imaginary axis or the unit
circle (via the eigenvalue decomposition of a Hamiltonian or
symplectic matrix). The complexity of one iteration is low,
O(n3) operations if we assume for simplicity thatL = 1,
A1 is n × n, B1 is n × 1 andp = O(n). These algorithms
are well suited if the number of optimization variablesp is
not too high.

A second class of methods are the barrier methods
proposed by Kao and Megretski [KM01], [KM03]. These
algorithms are based on new barrier functions for the convex
set defined by the frequency inequalities (2), instead of
the standard logarithmic barrier function for the constraints



in (1). Thus the need for the auxiliary variablesPi is
avoided. Under the same assumptions as above the algorithm
in [KM03] has a complexity ofO(n5) per iteration, but it
requires many fewer iterations than a cutting-plane method,
and it reaches an accurate solution much more quickly.

Finally, one can consider customized versions of standard
primal-dual interior-point methods, applied directly to the
SDP (1). The method presented in [VBW+05] is a primal-
dual interior-point method, similar to the algorithms used
in [TTT03], [Stu99], with a complexity ofO(n4) per it-
eration (again, assuming thatL = 1, A1 is n × n, B1

is n × 1 and p = O(n)). This is achieved by exploiting
problem structure in the linear equations that are solved at
each step of the interior-point algorithm and form the most
time-consuming part of the algorithm. The complexity can
be further reduced by applying the conjugate gradient algo-
rithm [HV00], [GH03] to solve the linear equations, or by
transforming the matricesAi to a canonical form (diagonal
or companion) [VBW+05]. However these last techniques
are numerically less stable than theO(n4) method and
may adversely influence the total number of interior-point
iterations or the obtainable accuracy. The third approach has
the advantage that it is based on the most popular interior-
point methods for semidefinite programming, and that it
allows us to take advantage of the wealth of theoretical
and experimental knowledge about primal-dual interior-point
methods gathered during the last decade.

In this paper we describe a new method for solving KYP-
SDPs, as well as SDPs based on the generalized KYP lemma
introduced by Iwasaki and Hara [IH05]. We adopt the third
approach mentioned above and present a fast implementation
of a standard primal-dual interior-point method applied toa
reformulation of (1). Under the same assumptions as above,
the algorithm has a complexity ofO(n3) operations per
iteration. Contrary to theO(n3) method in [VBW+05], the
new method does not require the reduction of the state-
space model to a canonical form with questionable numerical
properties. It also uses less memory and a much simpler
preprocessing than the algorithms in [VBW+05].

This work is a continuation of the papers [AV02], [RV06].
In [AV02] a fast algorithm was presented for convex opti-
mization problems involving nonnegative trigonometric poly-
nomials (KYP-SDPs for FIR systems). The algorithm is a
dual barrier method, and achieves anO(n3) complexity per
iteration by using the discrete Fourier transform to compute
the Hessian of the dual barrier function. This idea is closely
related to the techniques in [GHNV03], which use the gen-
eralized Schur method to evaluate the derivatives of the dual
barrier function fast. In [RV06] the results of [AV02] were
extended to other types of interior-point methods (primal
and primal-dual methods), and a larger class of applications.
The key observation is that the discrete transform technique
of [AV02] can be interpreted as derived from a reformulation
of the KYP-SDP. The constraints in the SDP express the fact
that a nonnegative trigonometric polynomial can be factored
as a sum of squares [Nes00]. An equivalent formulation
of this constraint is obtained by first sampling the sum-

of-squares expression, and then interpolating the samples
to obtain the coefficients of the nonnegative polynomial.
This yields an SDP with a low-rank structure that is easily
exploited in any interior-point algorithm, resulting in a
complexity of O(n3) per iteration. In addition, the use of
discrete transforms offers the possibility of some further
improvements using fast transforms techniques. In [RV06]
the details were worked out for trigonometric polynomials,
cosine polynomials, and real polynomials of one variable.
Similar ideas have been applied in [LP04], [RDV07] to
multidimensional sum-of-squares optimization. The purpose
of this paper is to extend the method of [RV06] to state-space
representations of nonnegative rational functions.

Notation: Sn denotes the set of real symmetric matrices
of order n; Hn is the set of complex Hermitian matrices
of order n. The symbols� and ≻ are used for matrix
inequalities.Ā is the complex conjugate of the matrixA;
AH = ĀT is the complex conjugate transpose. The paracon-
jugate of a transfer matrixH(z) is H∗(z) = H(1/z̄)H . If
H(z) = C(zI − A)−1B + D, then H∗(z) = BH(z−1I −
AH)−1CH + DH . Note thatH∗(z) = H(z)H for z on the
unit circle.

II. T HE KYP AND GENERALIZED KYP LEMMAS

Assume that(A,B) is controllable, withA ∈ Cn×n and
B ∈ Cn×m, and thatA does not have eigenvalues on the
unit circle. We define

U(z) = (zI − A)−1B, V (z) =

[

U(z)
I

]

.

The discrete-time KYP lemma and its generalizations pro-
vide necessary and sufficient conditions for a rational func-
tion of the form

F (z) = V∗(z)MV (z), (3)

with M ∈ Hn+m, to be positive semidefinite on the unit
circle or a segment of the unit circle. A function of the
form (3) is often called aPopov function[IW93]. In this
section we review the variations of the KYP lemma needed
for our purposes.

A. Identically zero Popov functions

We first consider Popov functions that are identically zero,
i.e., satisfy

V∗(z)MV (z) = 0 ∀z. (4)

A well-known explicit parametrization is as follows:M
satisfies (4) if and only if there exists aP ∈ Hn such that

M = KH(Φ ⊗ P )K (5)

where⊗ denotes the Kronecker product and

K =

[

A B
I 0

]

, Φ =

[

1 0
0 −1

]

(6)

(see [HSK99, p.340]). The equation (5) is a set of linear
equations inM and the auxiliary variableP .



Another convenient way to convert (4) to a finite set of
equations follows from the fact that

V∗(z)MV (z) =
1

zn det(zI − A) det(z−1I − Ā)
Y (z)

where Y is a matrix polynomial of degree2n. Therefore
V∗(z)MV (z) is identically zero if it is zero at2n+1 or more
points (that are not zeros ofzn det(zI −A) det(z−1I − Ā)),
for example,2n+1 distinct points on the unit circle. In other
words, if we choose a set

C = {ejωk | 0 ≤ ω1 < · · · < ωq < 2π} (7)

of q ≥ 2n + 1 distinct points on the unit circle, then (4) is
equivalent to the linear equations

V∗(z)MV (z) = 0 ∀z ∈ C. (8)

(See [AG93] for other examples of similar techniques.)

B. The KYP lemma

The KYP lemma states thatF (ejω) � 0 for all ω if and
only if there exists aP ∈ Hn such that

M + KH(Φ ⊗ P )K � 0. (9)

This is a linear matrix inequality inM and the variable
P ∈ Hn. We can apply the results of the previous section
to reformulate the constraint (9) in a form that is better
suited for inclusion in semidefinite programming problems
solved by interior-point algorithms. First, if we denote the
slack in (9) byX, then (9) means that the Popov function
V∗(z)(M − X)V (z) is identically zero. Therefore (9) holds
for someP if and only if there exists anX such that

F (z) = V∗(z)XV (z) ∀z, X � 0. (10)

As in the previous paragraph, it is sufficient to impose the
equality at a finite set of at least2n + 1 points on the unit
circle. This yields the following form of the KYP lemma:
F (ejω) � 0 for all ω if and only if there exists anX such
that

F (z) = V∗(z)XV (z) ∀z ∈ C, X � 0, (11)

whereC is defined as in (7).
It is important to note the difference between (11) and

constraint generation as used, for example, in cutting-plane
methods. Sampling the constraintF (ejω) � 0 by replacing
it with

F (z) � 0 ∀z ∈ C,

where C is a finite set of points on the unit circle, is a
relaxationof the original constraint. The constraint (11), on
the other hand, is exactly equivalent toF (ejω) � 0 for all ω.

C. The generalized KYP lemma

Iwasaki and Hara [IH05] describe several extensions of
the KYP lemma that characterize nonnegativity of a rational
function on a segment of the unit circle. We mention the
following theorem from [IH05]. Supposeα andβ are given
with 0 < β < π. ThenF (ejω) � 0 for |ω − α| ≤ β if and
only if there existP,Q ∈ Hn such that

M + KH (Φ ⊗ P − Ψ ⊗ Q) K � 0, Q � 0. (12)

where

Ψ =

[

0 ejα

e−jα −2 cos β

]

. (13)

From section II-A, we know that there exists aP that
satisfies (12) if and only if

V∗(z)MV (z) = V∗(z)
(

X1 + KH(Ψ ⊗ Q)K
)

V (z)

= V∗(z)X1V (z) + 2g(z)U∗(z)QU(z)

whereg(z) = (ejαz−1 + e−jαz − 2 cos β)/2, andX1 is the
slack in the first inequality in (12). If we denoteX2 = 2Q,
we can conclude thatF (ejω) � 0 for |ω − α| ≤ β if and
only if there exist matricesX1 andX2 such that

F (z) = V∗(z)X1V (z) + g(z)U∗(z)X2U(z) ∀z
X1 � 0, X2 � 0.

(14)

Note thatg(ejω) = cos(ω−α)−cos β ≥ 0 for |ω−α| ≤ β.
One direction of the generalized KYP lemma is therefore
obvious. If F can be expressed as (14) for someX1 � 0,
X2 � 0, then clearlyF (ejω) � 0 for |ω − α| ≤ β, since
g(ejω) ≥ 0 on this interval.

As in the standard KYP lemma we can express (14) in
sampled form as

F (z) = V∗(z)X1V (z) + g(z)U∗(z)X2U(z) ∀z ∈ C
X1 � 0, X2 � 0.

(15)

III. SEMIDEFINITE PROGRAMMING

This section provides some background on interior-point
methods for semidefinite programming.

A. Standard form and inequality form SDPs

The following optimization problems are Lagrange duals:

minimize tr(QX) + dT x
subject to F(X) + Gx = h

X � 0,
(16)

with as variablesX ∈ Hs, x ∈ Rr, and

maximize hT z
subject to Fadj(z) � Q

GT z = d,
(17)

with variablez ∈ Rt. The coefficients in the cost functions
are Q ∈ Hs, d ∈ Rr, h ∈ Rt. The equality constraint in
the primal problem is defined in terms of a linear mapping
F : Hs → Rt. Fadj is the adjoint ofF .



The applications discussed in this paper have an additional
block-diagonal structure and take the form

minimize
∑L

k=1 tr(QkXk) + dT x
subject to Fk(Xk) + Gkx = hk, k = 1, . . . , L

Xk � 0, k = 1, . . . , L.

(18)

There areL sets of equality constraints of dimensionrk,
and L matrix variablesXk ∈ Hsk , each appearing in one
equality. The equality constraints are coupled only by the
variablex. The corresponding dual problem is

maximize
∑L

k=1 hT
k zk

subject to Fadj
k (zk) � Qk, k = 1, . . . , L

∑L
k=1 GT

k zk = d.

(19)

It is a matter of convention which of the two problems (16)
and (17) is called the primal or the dual. We therefore refer to
an SDP of the form (16) as astandard formSDP (with free
variables) and to an SDP of the form (17) as aninequality
form SDP.

B. Interior-point methods

To estimate the cost of solving the SDPs (16) and (17)
by a primal-dual interior-point algorithm of the type used in
the popular solvers [Stu99], [TTT03], it is sufficient to know
that the number of iterations of an interior-point method is
relatively small (usually less than 50) and grows slowly with
problem size. Each iteration requires the solution of a set of
linear equations

−T−1∆XT−1 + Fadj(∆z) = R

F(∆X) + G∆x = r1

GT ∆z = r2,

where T ≻ 0. The values ofT and the righthand sides
R, r1 and r2 change at each iteration. These equations are
often referred to as theNewton equations, because they can
be interpreted as obtained by linearizing the conditions that
characterize the primal and dual central paths.

The Newton equations are solved by eliminating∆X from
the first equation, and then solving

[

H G
GT 0

] [

∆z
∆x

]

=

[

r3

r2

]

(20)

wherer3 = r1 +F(TRT ) andH is the matrix that satisfies

F(TFadj(u)T ) = Hu (21)

for all u. The cost of solving (20) isO(max{r3, t3}). The
cost of forming the matrixH depends on the structure ofF ,
and often exceeds the cost of solving (20).

The Newton equations for the block-diagonal SDP (18)
can be reduced to an equation with coefficient matrix















H1 0 · · · 0 G1

0 H2 · · · 0 G2

...
...

.. .
...

...
0 0 · · · HL GL

GT
1 GT

2 · · · GT
L 0















(22)

whereHi is defined by the identityFi(TiF
adj
i (u)Ti) = Hiu.

C. General-purpose solvers

General-purpose software packages require thatF is ex-
pressed as a vector of inner products

F(X) = (tr(F1X), tr(F2X), . . . , tr(FtX)) . (23)

In this case, the elements ofH are given by

Hij = tr(FiTFjT ), i, j = 1, . . . , t. (24)

If no sparsity in the matricesFi is exploited, this re-
quiresmax{ts3, t2s2} operations, since each matrix product
TFiT requiresO(s3) operations, and thet2 inner products
tr(FiTFjT ) costO(s2) each.

D. Rank-one structure

Important savings are possible when the mappingF has
rank-one structure [BYZ00], [LP04], [RV06]. Suppose

F(X) = D diag(EHXE), (25)

where D ∈ Rt×q, E ∈ Cs×q. In (25) we express the
components ofF(X) as linear combinations of the diagonal
entries ofEHXE. These diagonal entries are inner products
with rank-one matrices. It can be shown that

H = D((EHTE) ◦ (EHTE))DH

where◦ denotes the Hadamard product. From this we see that
H can be assembled in ordermax{s2q, sq2, tq2, t2q} opera-
tions. If q = O(max{t, s}), this represents an important gain
over the complexity of general-purpose solvers discussed in
the last paragraph.

IV. SDPS DERIVED FROM THEKYP LEMMA

We now consider optimization problems of the form

min. cT x
s.t. Fi(e

jω, x) � 0, |ω − αi| ≤ βi, i = 1, . . . , L.
(26)

The optimization variable isx ∈ Rp. The constraints are
frequency domain inequalities defined in terms ofL Popov
functions

Fi(z, x) = Vi∗(z)Mi(x)Vi(z)

that are affine inx, i.e.,

Mi(x) = Mi0 +

p
∑

k=1

xkMik

whereMij ∈ Hni+mi , and

Vi(z) =

[

Ui(z)
I

]

, Ui(z) = (zI − Ai)
−1Bi,

with Ai ∈ Cni×ni , Bi ∈ Cni×mi . We assume that the pairs
(Ai, Bi) are controllable and thatAi has no eigenvalues on
the unit circle. Each inequality is defined on an interval[αi−
βi, αi + βi], where0 < βi ≤ π.

Our discussion of the KYP lemma in section II suggests
two routes to formulating (26) as an SDP.



A. Inequality form KYP-SDP

In the control literature, problems of the form (26) are
usually converted to SDPs using the inequality form of the
generalized KYP lemma (12). Theith constraint in (26) is
replaced with an LMI inx and two auxiliary variablesPi

andQi:

Mi(x) + KH
i (Φ ⊗ Pi − Ψ ⊗ Qi)Ki � 0, Qi � 0

where

Ki =

[

Ai Bi

I 0

]

, Ψi =

[

0 ejαi

e−jαi −2 cos βi

]

.

If βi = π for somei, we can remove the variableQi:

Mi(x) + KH
i (Φ ⊗ Pi)Ki � 0.

We obtain an SDP in inequality form, with variablesx,
Pi, Qi. The resulting SDP is expensive to solve by interior-
point methods. Each matrix variablePi or Qi contributes
n2

i variables, and as we have seen, the cost of solving an
inequality form SDP grows at least as fast as the cube of the
number of variables. If for simplicity we assume thatL = 1,
mi = 1 and n1 = n, p = O(n), we obtain a complexity
of at leastO(n6) per iteration (not including the cost of
assembling the coefficient matrix defined in (24).

B. Standard form KYP-SDP

Using the equality form of the KYP lemma, we can replace
each constraint in (26) with a constraint

Fi(z, x) = Vi∗(z)Xi1Vi(z) + gi(z)Ui∗(z)Xi2Ui(z)
Xi1 � 0, Xi2 � 0,

(27)

wheregi(z) = (ejαiz−1 + e−jαiz − 2 cos βi)/2, or with

Fi(z, x) = Vi∗(z)XiVi(z) Xi � 0 (28)

if βi = π. If we then sample these equality constraints on
sets

Ci = {ejωk | 0 ≤ ω1 ≤ · · · ≤ ωqi
< 2π}

of qi ≥ 2ni + 1 or more distinct points on the unit circle,
we obtain an SDP in standard form, with free variablesx.

For single-input KYP-SDPs (mi = 1), the problem can be
expressed succinctly as

minimize cT x
subject to Di diag(EH

i XiEi) + Gix = hi, i = 1, . . . , L
Xi � 0, i = 1, . . . , L

wherehi − Gix = (Fi(zi1, x), . . . , Fi(ziqi
, x)),

Di =
[

I diag(gi(zi1), . . . , gi(ziqi
))

]

Ei =

[

Ei1 0
0 Ei2

]

, Xi =

[

Xi1 0
0 Xi2

]

,

and

Ei1 =
[

Vi(zi1) Vi(zi2) · · · Vi(zi,qi
)

]

Ei2 =
[

Ui(zi1) Ui(zi2) · · · Ui(zi,qi
)

]

.

Note that the dimensions of the matricesDi, Ei, Xi are
all O(ni). If L = 1, n1 = O(n), p = O(n), the SDP can
therefore be solved at a cost of ordern3 per iteration.

For multi-input KYP-SDPs (mi > 1), sampling themi ×
mi matrix equations (27) or (28) on2ni + 1 points results
in O(nim

2
i ) scalar equalities with rank-one coefficients. The

complexity per iteration therefore grows rapidly (at leastas
m6

i ) with the number of inputs.

V. BASIS MATRICES AND SELECTION OF SAMPLE POINTS

The sampled KYP-SDPs formulations described in the last
section require the matrix

[

U(z1) U(z2) · · · U(zq)
]

, (29)

whereU(z) = (zI−A)−1B, the pair(A,B) is controllable,
and z1, . . . , zq are q ≥ 2n + 1 distinct points on the unit
circle. The sample pointszi can be chosen arbitrarily, but
their choice clearly affects the condition number of (29). It
is also important to be able to compute (29) fast.

A. Single-input systems

We first consider single-input systems, so throughout this
section we assume thatm = 1. We make two assumptions
that can be satisfied at the expense of a simple preprocessing
step with a complexity ofO(n3).

First, we assumeA is stable. IfA is unstable, we can find a
stabilizing state feedback, for example, by pole placementor
by solving an LQR problem, and replace the KYP constraint
with an equivalent constraint defined in terms of a stable
matrix A + BF (see [VBW+05]).

Second, we assume that(A,B) is input balanced,i.e.,
AAH + BBH = I. An input-balanced realization is easily
obtained by computing the controllability GrammianP from
APAH − P + BBH = 0, and redefiningA andB asA :=
P−1/2AP 1/2, B := P−1/2B.

The following results are related to orthogonal transfor-
mation techniques used in system identification [HVW05,
Chapter 3]. SinceAAH + BBH = I, there existC and D
such that the matrix

[

A B
C D

]

is unitary. (This means thatG(z) = D + C(zI − A)−1B
is an inner function, i.e., G∗(z)G(z) = 1.) Consider the
generalized eigenvalue problem of order2n + 1

Mv = zNv (30)

where

M =





A B 0
0 0 I
C D 0



 , N =





I 0 0
0 B̄ Ā
0 D̄ C̄



 . (31)

The eigenvalues and a unitary matrix of eigenvectors can be
obtained by a Schur factorization

NHM = Qdiag(z1, . . . , z2n+1)Q
H . (32)

This factorization, withQ unitary andzk on the unit circle,
exists because the lefthand side is a product of unitary



matrices, hence unitary itself. From (30) we see that the
(non-normalized) generalized eigenvectors satisfy

v =
(

(zI − A)−1B, 1, (z−1I − Ā)−1B̄
)

and the eigenvalues are solutions ofG(z) = zG∗(z). The
unitary matrix of eigenvectorsQ is therefore

Q =





Q1

1

Q1



 Λ (33)

whereΛ is diagonal and

Q1 =
[

U(z1) · · · U(z2n+1)
]

. (34)

Thus from the Schur factorization (32), we obtain2n+1 sam-
ple pointszk and the matrix of sampled basis functionsQ1.

B. Discrete transform interpretation

The matrixQ in (33) defines a discrete transform matrix
similar to the discrete Fourier transform (DFT). LetF : C →
C be a function of the form

F (z) = V∗(z)

[

0 y1

yT
3 y2

]

V (z) (35)

= U∗(z)y1 + y2 + yT
3 U(z)

wherey = (y1, y2, y3) ∈ C2n+1.
Supposex = (F (z1), . . . , F (z2n+1)) are the samples ofF

at the2n + 1 pointszk defined by (30). From (33) and (34)
we see thatx = Wy where W = (QΛ−1)H . Conversely,
if a vector x ∈ C2n+1 contains the samples of a function
of the form (35), then the coefficients ofF arey = W−1x
where W−1 = QΛH . We can interpret this as a pair of
forward and inverse discrete transforms. Multiplication with
W−1 provides the forward transform and maps a vector of
samples ofF to the corresponding coefficientsy. The inverse
transformx = Wy maps the coefficients to the samples.

As an example, if we take

A =

[

0 0
I 0

]

, B =

[

1
0

]

, C =
[

0 1
]

andD = 0, then we haveU(z) = (z−1, z−2, . . . , z−n). The
matrix N in (31) is the identity. The matrixM , permuted as





A 0 B
C 0 D
0 I 0



 =









0 0 0 1
I 0 0 0
0 1 0 0
0 0 I 0









,

is the circulant shift matrix of order2n + 1. Therefore the
eigenvalueszk are the DFT sample pointsej2πk/(2n+1), and
the eigenvector matrixQ is the DFT matrix with its columns
and rows permuted. We therefore retrieve as a special
case the results on nonnegative trigonometric polynomials
in [RV06].

n uniform sampling uniform sampling from Schur
(unbalanced) (balanced) decomposition

5 3.8 10
7

1.3 10
3

8.2

10 6.1 10
7

1.4 10
3

6.7

15 6.4 10
7

2.1 10
3

6.5

20 1.8 10
8

1.4 10
4

6.3

25 2.5 10
8

2.3 10
4

6.1

TABLE I

CONDITION NUMBER OF THE BASIS MATRICESQ1 CONSTRUCTED BY

THREE DIFFERENT METHODS.

C. Numerical example

In table I we compare the condition numbers of the
matricesQ1 constructed by three different methods. For each
model order we randomly generate 500 controllable discrete-
time state-space models of orders up to25, using the Matlab
commanddrss. The second column (‘uniform sampling
(unbalanced)’) shows the maximum condition number if
we sample uniformly on the unit circle, using the original
state-space model. The third column (‘uniform sampling
(balanced)’) shows the maximum condition number if we
sample uniformly and use an input-balanced realization. The
last column shows the condition numbers based on the input-
balanced realization and the Schur decomposition. The last
method results in better conditioned basis matrices, and the
condition number appears not to increase withn.

The precise connection between the condition number
of Q1 and the condition number of the KYP-SDPs is
obviously complicated to analyze. In our practical experience
with the interior-point solver applied to problems generated
with drss, uniform sampling often led to numerical diffi-
culties that were not observed with the Schur decomposition
sampling.

D. Multi-input systems

The construction in section V-A applies to state-space
models with one input. For systems with more than one
input, the2n + m eigenvalues of (30) includem repeated
eigenvaluesz = 1, but the eigenvector matrix does not
directly provide the matrix (29). However, we can note that
if the sample pointszk are given (computed from (30)
or selected otherwise), then the matrices(zkI − A)−1B
are easily computed (inO(n2m) operations), ifA is first
transformed to triangular form using a Schur decomposition.

VI. N UMERICAL EXAMPLES

A. Randomly generated KYP-SDPs

We first consider a family of randomly generated problems
with one KYP-LMI constraint:

minimize cT x
subject to M(x) + KH(Φ ⊗ P )K � 0,

(36)

where c ∈ Rp and K is defined in (6) withA ∈ Rn×n

and B ∈ Rn. The system ordersn range from20 to 1000;
the dimension of the variablex is p = n/5. The state-space



Inequality form Standard form KYPD This
n SeDuMi SDPT3 SeDuMi SDPT3 paper
20 0.12 0.20 0.03 0.03 0.02 0.01

30 0.72 0.59 0.05 0.05 0.04 0.02

45 5.7 3.3 0.14 0.10 0.09 0.04

70 64 33 0.63 0.31 0.41 0.12

100 2.6 0.91 1.2 0.31

150 10 3.6 4.7 0.94

220 44 15 18 2.9

350 11.1

500 30.2

750 98.2

1000 227

TABLE II

TIMES PER ITERATION(SEC.) OF DIFFERENT SOLVERS FORKYP-SDPS.

models are constructed by randomly generating orthogonal
matrices

[

A B
C D

]

.

The coefficients of the linear mappingM(x) are randomly
generated in such a way that the problem is strictly feasible.
Instances that are dual infeasible (unbounded below) are
discarded.

The table shows the CPU times in seconds on a 3.0
GHz Pentium 4 with 3.0 GB of memory, using Matlab
7.4 (R2007a). All times are averaged over five randomly
generated instances. The number of iterations itself is not
reported but was roughly 10–15 for all the algorithms. Blank
entries in the table indicate that the simulation was aborted
due to excessive execution time or an out-of-memory error.

Column 2 and 3 show the times per iteration for solving
the inequality form SDP (36) using the general-purpose
solver SeDuMi (version 1.1R3) and SDPT3 (version 4.0 beta)
[TTT03], via the YALMIP interface [L̈of04]. The YALMIP
pre-processing time was excluded when calculating the times
per iteration. Column 4 and 5 show the times per iteration
using the SeDuMi and SDPT3 solvers directly for solving
the equivalent standard form SDP

minimize cT x
subject to V∗(z)(M(x) − X)V (z) = 0 ∀z ∈ C

X � 0
(37)

whereC is a set of2n + 1 sample points on the unit circle,
generated as described in section V.

The next column, labeled KYPD, shows the results for
the KYPD Matlab package [Wal03], which implements the
algorithm of [VBW+05]. This method requires a significant
amount of processing before the start of the first iteration,
and we excluded the preprocessing time when calculating
the time per iteration.

The last column shows the results of a Matlab implementa-
tion of a primal-dual interior-point method that exploits rank-
one structure in the standard form SDP (37). The algorithm
is similar to [TTT03] and follows [VBW+05, Appendix A]
and [RV06].

Figure 1 shows the average times per iteration versusn.
We can note that the complexity of the fast algorithm is
almost exactlyO(n3).
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Fig. 1. Graph of the results in table II.

Inequality form Standard form This
n SeDuMi SDPT3 SeDuMi SDPT3 paper
20 0.89 1.2 0.08 0.16 0.02

30 8.0 6.1 0.18 0.17 0.03

45 77 44 0.71 0.54 0.09

70 3.8 2.1 0.24

100 11 7.5 0.61

150 60 38 1.9

220 5.7

350 23

500 63

750 205

TABLE III

TIMES PER ITERATION(SEC.) OF SOLVERS FORGKYP-SDPS.

B. Randomly generated GKYP-SDPs

The second experiment (table III and figure 2) is based on
a family of SDPs with one generalized KYP constraint,

min. cT x
s.t. KH(Φ ⊗ P + Ψ ⊗ Q)KH + M(x) � 0

Q � 0,

with Ψ defined as in (13). The problem data (including
α and β) are randomly generated, and the problem is
strictly feasible by construction. Dual infeasible problems are
discarded. The system orders range fromn = 20 to n = 750,
andp = n/5.

VII. SUMMARY AND CONCLUSIONS

We have described a fast technique for solving SDPs
derived from the discrete-time (generalized) KYP lemma.
The key idea is to represent the frequency-domain inequality
as a weighted sum of squares of rational functions, and
then take a sufficient number of samples on the unit circle.
The resulting SDP has a low-rank structure, which is eas-
ily exploited in interior-point algorithms. The techniqueis
particularly efficient if the number of inputs is small: for
single-input systems, the complexity isO(n3) operations
per iteration if the number of optimization variables is of
the same order as the system ordern. This allows us to
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Fig. 2. Graph of the result in table III.

solve much larger problems than using standard SDP solvers
applied to the matrix inequality form of the KYP lemma.

We have also presented an efficient method for selecting
sample points on the unit circle and for computing the
associated generalized discrete transform matrix.
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Linköping University, SE-581 83 Link̈oping, Sweden, 2003.

[YFK03] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation
and evaluation of SDPA 6.0 (Semidefinite Programming Algo-
rithm 6.0). Optimization Methods and Software, 18:491–505,
2003.


