Low-rank structure in semidefinite programs derived from the KY P
lemma

Zhang Liu and Lieven Vandenberghe

Abstract— We extend a fast technique for solving semidefinite  where M; : R — H™T™: is an affine mapping; € R?,
programs involving nonnnegative trigonometric polynomials to
problems derived from the discrete-time Kalman-Yakubovich- K, — Ai B;
Popov (KYP) lemma and some of its generalizations. The ! I 0 |’
frequency-domain inequality associated with the generalized . o
KYP lemma is first expressed as a weighted sum of squares With A4; € C"*", B; € C""*™ @ denotes the Kronecker
of rational functions. By taking a sufficient number of samples product, and
of the sum-of-squares expression, an equivalent standard+fm
semidefinite program with low-rank structure is obtained. This b = { L0 ] o — { 0 1 ]
low-rank structure is easily exploited in implementations of 0o -1}’ 1 0
primal-dual interior-point algorithms. A complexity analysis . . . . .
and numerical examples are provided to support the perfor- fOr discrete-time and continuous-time systems, respelgtiv
mance improvement over standard semidefinite programming The variables in (1) are € R” andP;, ¢ H",i=1,..., L.
solvers. The name KYP-SDP refers to the Kalman-Yakubovich-
Popov lemma, which states that(ifi;, B;) is controllable,

the existence of &; that satisfies théth inequality in (1) is

Thg research on linear matrix inequalities during _th%quivalent to the frequency-domain inequality
last fifteen years has created a need for fast and reliable

algorithms for semidefinite programming problems (SDPs)[ (M — A4;)'B; " Mi(z) (M — A)7iB; =0 ()
arising in control. High-quality general-purpose semiuiédi I i\t I -
programming packages [Stu99], [TTT03], [BYOS5], [YFKO3], for all A on the unit circle, respectively, the imaginary axis.

[Bor99] can currently handle dense _se_miqlefinite_ Program, e that each (Hermitian) matrix variabi& in (1) addsn?
(SDPs) with up to a few thousand optimization variables (fo(real) variables to the SDP, making it very expensive toésolv

SDPs in inequality form) and several linear matrix inegwali di : S .
: . . irectly via general-purpose interior-point packages nmhg
(LMI) constraints of dimension up to a few hundred. Theyexceeds, say, fifty.

can also solve much larger problems if the data matrices The different proposals for dedicated KYP-SDP solvers

are sufficiently sparse, and in fact most of the research Yin be grouped in three categories. A first approach [Par99],

exploiting problem structure in semidefinite programmin KMJOO], [KMO1], [KMJO3] avoids the matrix variable®;
has focused on exploiting sparsity. SDPs in control, howev: ! ' !

. . ) . y working directly with the frequency-domain inequality
are usually quite dense., a}nd _often mclude matrix Va.”ableéonstraints (2) instead of the LMIs in (1). This results in a
so the number of optimization variables can easily run

into several ten thousand, even when the underlying Cont@ami-infinite SDP (or a semi-infinite linear program in the
problem is not particularly large (if problem size is measur ystemg(4;, B;) are single-input). The problem is solved by

! ! localization methods such as the ellipsoid algorithm or the
in terms of the number of states, inputs and outputs). P g

, yti i i I hod. Each i i f
This has prompted several researchers to develop spec%rl]-a ytic centering cutting plane method. Each iteration o

purpose SDP algorithms targeted at control applicationse cutt_m?-pla_lkr)lle glg(;nthmdre_:fquwes determlmnghwheta:er
[Par99]. [GHNVO3], [DROS], [AV02], [RVO6], [VBW 05], givenz is feasible in (2), and, if not, generating a hyperplane

. ) ' . that separates: from the feasible set. This can be done
£T£22§]6£H;$0§i' :\zzsgxalﬁj?tm??bﬁear;e;ﬁﬁg{ﬁid;g dslgﬁﬁltr cﬁfﬁciently by standard methods for checking nonnegativity
. " piott p X of a transfer function on the imaginary axis or the unit
theoretic properties to handle problem sizes that exceed . . " S
- circle (via the eigenvalue decomposition of a Hamiltonian o

the capabilities of the general-purpose packages. Such an

approach has been particularly successful for SDPs deriva mplectic matrix). The complexity of one iteration is low,
3 : : T a
from the KYP lemma (or ‘KYP-SDPs’), a class of SDPs n”) operations if we assume for simplicity that = 1,

. . N Ajisn xn, By isn x 1 andp = O(n). These algorithms
with widespread application in control [Par00], [KMJO03], D SO - X
[VBW05]. A KYP-SDP is defined as are well suited if the number of optimization variabless

I. INTRODUCTION

) not too high.
min. ¢’z 1) A second class of methods are the barrier methods
st. Kf(®@P)K;+ M;(z) =0,i=1,...,L, proposed by Kao and Megretski [KMO1], [KMO3]. These

) o o - algorithms are based on new barrier functions for the convex
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in (1). Thus the need for the auxiliary variabldg is of-squares expression, and then interpolating the samples

avoided. Under the same assumptions as above the algorittonobtain the coefficients of the nonnegative polynomial.

in [KMO3] has a complexity ofO(n%) per iteration, but it This yields an SDP with a low-rank structure that is easily

requires many fewer iterations than a cutting-plane methodxploited in any interior-point algorithm, resulting in a

and it reaches an accurate solution much more quickly. complexity of O(n?) per iteration. In addition, the use of
Finally, one can consider customized versions of standadiscrete transforms offers the possibility of some further

primal-dual interior-point methods, applied directly toet improvements using fast transforms techniques. In [RV06]

SDP (1). The method presented in [VBW5] is a primal- the details were worked out for trigonometric polynomials,

dual interior-point method, similar to the algorithms useaosine polynomials, and real polynomials of one variable.

in [TTTO3], [Stu99], with a complexity ofO(n*) per it- Similar ideas have been applied in [LP04], [RDV07] to

eration (again, assuming thdt = 1, A; is n x n, By multidimensional sum-of-squares optimization. The psgo

isnx 1 andp = O(n)). This is achieved by exploiting of this paper is to extend the method of [RV06] to state-space

problem structure in the linear equations that are solved etpresentations of nonnegative rational functions.

each step of the interior-point algorithm and form the most  Notation: S” denotes the set of real symmetric matrices

time-consuming part of the algorithm. The complexity carof order n; H™ is the set of complex Hermitian matrices

be further reduced by applying the conjugate gradient algof order n. The symbols= and - are used for matrix

rithm [HVOO0], [GHO3] to solve the linear equations, or byinequalities. A is the complex conjugate of the matrix;

transforming the matriced; to a canonical form (diagonal A” = AT is the complex conjugate transpose. The paracon-

or companion) [VBW 05]. However these last techniquesjugate of a transfer matri¥/(z) is H.(z) = H(1/z)". If

are numerically less stable than ti@(n*) method and H(z) = C(2I — A)~'B + D, then H,(z) = B" (27T —

may adversely influence the total number of interior-pointA”)~1C# + DH . Note thatH,(z) = H(z) for z on the

iterations or the obtainable accuracy. The third approash hunit circle.

the advantage that it is based on the most popular interior-

point methods for semidefinite programming, and that it Il. THE KYP AND GENERALIZED KYP LEMMAS

allows us to take advantage of the wealth of theoretical Assyme that(4, B) is controllable, withA € C"*" and

and experimental knowledge about primal-dual interidRpo p < c"*™ and thatA does not have eigenvalues on the

methods gathered during the last decade. unit circle. We define
In this paper we describe a new method for solving KYP-

SDPs, as well as SDPs based on the generalized KYP lemma U(z) = (21 — A)7'B, V(z) = [ U(z) } .

introduced by Ilwasaki and Hara [IHO5]. We adopt the third

approach mentioned above and present a fast implementatipfe discrete-time KYP lemma and its generalizations pro-

of a standard primal-dual interior-point method appliedto yide necessary and sufficient conditions for a rational func
reformulation of (1). Under the same assumptions as abovign of the form

the algorithm has a complexity af(n?) operations per

iteration. Contrary to the)(n®) method in [VBW'05], the F(z) = Vi(2)MV(2), ©))
new method does not require the reduction of the state- ndtm "y e .
space model to a canonical form with questionable numericgﬁ'th M < H , 10 be positive semidefinite on the unit

; : cle or a segment of the unit circle. A function of the
properties. It also uses less memory and a much simpl f . ) .
preprocessing than the algorithms in [VB\5]. %%rm (3) is often called a@opov function[IW93]. In this

This work is a continuation of the papers [AV02], [RVOG].SeCtion we review the variations of the KYP lemma needed
In [AV02] a fast algorithm was presented for convex opti—for our purposes.
miza_tion problems involving nonnegative trigonome_tri@pp A. Identically zero Popov functions

nomials (KYP-SDPs for FIR systems). The algorithm is a ) ] _ ) )

dual barrier method, and achieves @?) complexity per We f|_rst consider Popov functions that are identically zero,
iteration by using the discrete Fourier transform to coraput-€- Satisfy

the Hessian of the dual barrier function. This idea is clpsel Vi(z)MV(2) =0 Va. (4)
related to the techniques in [GHNVO03], which use the gen- - T
eralized Schur method to evaluate the derivatives of thé du% \_Ne_ll-know_n explicit parametrization s as followsr
barrier function fast. In [RV06] the results of [AV02] were satisfies (4) if and only if there exists/a € H" such that
extended to other types of interior-point methods (primal M=K"®® P)K (5)
and primal-dual methods), and a larger class of application

The key observation is that the discrete transform teclniquwvhere® denotes the Kronecker product and

of [AV02] can be interpreted as derived from a reformulation A B 1 0

of the KYP-SDP. The constraints in the SDP express the fact K= [ I 0 } , P = [ 0 -1 } (6)
that a nonnegative trigonometric polynomial can be factore

as a sum of squares [Nes00]. An equivalent formulatio(see [HSK99, p.340]). The equation (5) is a set of linear

of this constraint is obtained by first sampling the sumequations inA/ and the auxiliary variable®.



Another convenient way to convert (4) to a finite set ofC. The generalized KYP lemma

equations follows from the fact that Iwasaki and Hara [IHO5] describe several extensions of

1 the KYP lemma that characterize nonnegativity of a rational
—Y(2) function on a segment of the unit circle. We mention the
n _ 17 _
2" det(zI — A)det(211 — A) following theorem from [IHO5]. Suppose and 3 are given
with 0 < 3 < 7. Then F(e/*) = 0 for |w — a| < 3 if and
only if there existP, @ € H™ such that

Vi(z) MV (z) =

whereY is a matrix polynomial of degre@n. Therefore
Vi (2)MV (z) is identically zero if it is zero a2n+1 or more

points (that are not zeros of' det(zI — A) det(z~11 — A)), M+K (@oP-UaQ)K=0, Q=0. (12)
for example2n+1 distinct points on the unit circle. In other - -
words, if we choose a set where ‘
0 el
, U= _., . 13
C={e* |0<w; < - <wy <27} (7) e 1% —2cosf (13)

From section II-A, we know that there existsa that

of ¢ > 2n + 1 distinct points on the unit circle, then (4) is 4isfies (12) if and only if
equivalent to the linear equations
Vi(z)MV(z) = Vi(z) (X1 + KT (T @ Q)K) V(2)
Vi(z)MV(z) =0 VzeC. C) = V.(2)X1V(2) + 29(2)U.(2)QU ()

(See [AG93] for other examples of similar techniques.) Whereg(z) = (e7*z7 +e77%z — 2cos 8)/2, and X is the
slack in the first inequality in (12). If we denot&; = 2Q),
we can conclude thak'(e?~) = 0 for |w — a| < 3 if and
only if there exist matrices{; and X, such that

F(z) =Vi(2) X1V (2) + 9(2)Us(2) X2U(2) Vz
X, =0, Xy 0.

B. The KYP lemma

The KYP lemma states thdt(e’~) = 0 for all w if and
only if there exists aP € H" such that (14)
M+ K (@ P)K = 0. 9) Note thatg(e’*) = cos(w—a)—cos 3 > 0 for jw—a| < .
One direction of the generalized KYP lemma is therefore
This is a linear matrix inequality iM/ and the variable obvious. If I’ can be expressed as (14) for sokig¢ = 0,
P € H". We can apply the results of the previous sectiorX, = 0, then clearlyF(e/*) = 0 for |w — a| < 3, since
to reformulate the constraint (9) in a form that is betteg(e’*) > 0 on this interval.
suited for inclusion in semidefinite programming problems As in the standard KYP lemma we can express (14) in
solved by interior-point algorithms. First, if we denoteeth sampled form as
slack in (9) by X, then (9) means that the Popov function
V.(2)(M — X)V(z) is identically zero. Therefore (9) holds £ (2) = Vi(2) X1V (2) + g(2)U.(2) X2U(z) ¥z €C
for someP if and only if there exists arX such that X120, Xpz0. (15)

F(z) =Vi(2)XV(z) Vz, X =0. (10) [1l. SEMIDEFINITE PROGRAMMING

As in the previous paragraph, it is sufficient to impose the TE'S sefct|on pr'ow]flje's SOme background on interior-point
equality at a finite set of at lea8h + 1 points on the unit methods for semidefinite programming.
circle. This yields the following form of the KYP lemma:

, A. Standard form and inequality form SDPs
F(e?*) = 0 for all w if and only if there exists arX such quatiy

that The following optimization problems are Lagrange duals:
F(z)=Vi(2)XV(z) VzeC, X=0, (11) minimize  tr(QX) +d"x
subjectto F(X)+ Gz =h (16)
where( is defined as in (7). X =0,

It is important to note the difference between (11) angith as variablest € H*. 2 € R” and
constraint generation as used, for example, in cuttingela

methods. Sampling the constraif(ei*) = 0 by replacing maximize h'z
it with subject to F2di(2) < Q a7
Gz =d,

F(z) =0 VzeCcC,
with variable z € R?. The coefficients in the cost functions
where C is a finite set of points on the unit circle, is aareQ € H*, d € R", h € R’. The equality constraint in
relaxation of the original constraint. The constraint (11), onthe primal problem is defined in terms of a linear mapping
the other hand, is exactly equivalentfige’=) = 0 for all w.  F : H* — R". 724 is the adjoint ofF.



The applications discussed in this paper have an addition@l General-purpose solvers

block-diagonal structure and take the form General-purpose software packages require fhas ex-

minimize Zé:l tr(QrXy) +dla pressed as a vector of inner products

subject to Fy(Xk) + Gz =hy, k=1,...,L (18)
Xe>=0, k=1,...,L.

There areL sets of equality constraints of dimensiep, In this case, the elements &f are given by

and L matrix variablesX; € H®+, each appearing in one

F(X) = (tr(F1 X), tr(F2X), ..., tr(F:X)). (23)

equality. The equality constraints are coupled only by the Hij = te(FTET), 6,5 =1,....1 (24)
variablez. The corresponding dual problem is If no sparsity in the matrices; is exploited, this re-
maximize 3" h7z, quiresmax{ts®, t*s*} operations, since each matrix product

- _ \ 3 . :
subject to ]:'Zdl(zk) <Qu k=1,....L (19) TF,T requiresO(s°) 2operatlons, and thée? inner products
L T tr(F,TF;T) costO(s*) each.
> k=1 G 2e = d. '

It is a matter of convention which of the two problems (16)D. Rank-one structure

and (17) is called the primal or the dual. We therefore refer t Important savings are possible when the mapphgas

an SDP of the form (16) as standard formSDP (with free  5nk-one structure [BYZ00], [LP04], [RVO06]. Suppose
variables) and to an SDP of the form (17) asimequality
form SDP. F(X) = Ddiag(E" XE), (25)

B. Interior-point methods where D € R™, E € C**% In (25) we express the
To estimate the cost of solving the SDPs (16) and (1®omponents ofF(X) as linear combinations of the diagonal
by a primal-dual interior-point algorithm of the type used i entries of E¥ X E. These diagonal entries are inner products

the popular solvers [Stu99], [TTTO03], it is sufficient to kmo with rank-one matrices. It can be shown that
that the number of iterations of an interior-point method is
relatively small (usually less than 50) and grows slowlyhwit

problem size. Each iteration requires the solution of a 8et Qhereo denotes the Hadamard product. From this we see that
linear equations H can be assembled in orderax{s2q, sq?, tq*, t>q} opera-
—T'AXT 4+ F(A2) R tions. If ¢ = O(max{t, s}), this represents an important gain
FAX) +GAz = n over the complexity of general-purpose solvers discussed i
- the last paragraph.
G Az = 1o,

where T >~ 0. The values of" and the righthand sides
R, r, andry change at each iteration. These equations are We now consider optimization problems of the form
often referred to as thBewton equationsbecause they can
be interpreted as obtained by linearizing the conditioras th
characterize the primal and dual central paths.

The Newton equations are solved by eliminatihg from
the first equation, and then solving

H=D(E"TE)o (EHTE))D?

IV. SDPs DERIVED FROM THEKYP LEMMA

min. Tz

st Fi(e,2) =0, |w—ai| <G, i=1,..., L.
(26)
The optimization variable iz € RP. The constraints are
frequency domain inequalities defined in termsloPopov

{ H G } { Az } _ { T3 } 20) functions
SRR L S B Fy(z,2) = Vie(2) My(2)Vi )
wherers = r; + F(TRT) and H is the matrix that satisfies that are affine inc. i.e
F(TFN(u)T) = Hu (21) »
for all u. The cost of solving (20) i®)(max{r3,¢3}). The M;(z) = Mio + Zkaik-
cost of forming the matri¥d depends on the structure &f, k=1
and often exceeds the cost of solving (20). where M;; € H" ™ and
The Newton equations for the block-diagonal SDP (18)
can be reduced to an equation with coefficient matrix Vi(z) = [ UiI(Z) ] 7 Ui(z) = (21 — A)"'Bi,
H 0 --- 0 G

0 Hy --- 0 Gs with 4, € C™*™ B; € C™*™ We assume that the pairs
: : .. : (22) (4, B;) are controllable and that; has no eigenvalues on
i i - . the unit circle. Each inequality is defined on an intefual-
0 0 --- Hp, Gp
GT of ... gT o Bi, o + Bi], where0 < 3; < 7.
Lo L - Our discussion of the KYP lemma in section Il suggests
whereH; is defined by the identity-‘i(Ti}‘fdJ(u)Ti) = H;u. two routes to formulating (26) as an SDP.



A. Inequality form KYP-SDP Note that the dimensions of the matricéy, E;, X; are

In the control literature, problems of the form (26) are®!l O(7i). If L =1, n1 = O(n), p = O(n), the SDP can
usually converted to SDPs using the inequality form of thi1€refore be solved at a cost of ordet per iteration.

generalized KYP lemma (12). Thih constraint in (26) is  FOf multi-input KYP-SDPs:{; > 1), sampling them; x
replaced with an LMI inz and two auxiliary variablegp, /7% Matrix equations (27) or (28) o, + 1 points results

andQ;: in O(n;m?) scalar equalities with rank-one coefficients. The
complexity per iteration therefore grows rapidly (at least
Mi(z) + KT (@@ P, -V ®Q)K; =0, Q;>0 m$) with the number of inputs.
where V. BASIS MATRICES AND SELECTION OF SAMPLE POINTS
A; B; 0 el The sampled KYP-SDPs formulations described in the last
K; = { I 0 } ; ;= { ei%  _2cosf; | section require the matrix
If 8; = for somei, we can remove the variabl@;: [ U(z1) U(z2) -+ Ulzg) |, (29)
Mi(z) + KF (@ ® P)K; = 0. whereU (z) = (21 — A)~! B, the pair(4, B) is controllable,
’ ’ R and zy, ..., z, areq > 2n + 1 distinct points on the unit

We obtain an SDP in inequality form, with variables circle. The sample points; can be chosen arbitrarily, but
P;, ;. The resulting SDP is expensive to solve by interiortheir choice clearly affects the condition number of (29). |
point methods. Each matrix variablg or @; contributes is also important to be able to compute (29) fast.

n? variables, and as we have seen, the cost of solving an
inequality form SDP grows at least as fast as the cube of the

number of variables. If for simplicity we assume that= 1, We first consider single-input systems, so throughout this
m; = 1 andn; = n, p = O(n), we obtain a complexity section we assume that = 1. We make two assumptions

of at leastO(n®) per iteration (not including the cost of that can be satisfied at the expense of a simple preprocessing

Single-input systems

assembling the coefficient matrix defined in (24). step with a complexity 0D (n?).
First, we assumel is stable. IfA is unstable, we can find a
B. Standard form KYP-SDP stabilizing state feedback, for example, by pole placerent
Using the equality form of the KYP lemma, we can replac®¥ S0lving an LQR problem, and replace the KYP constraint
each constraint in (26) with a constraint with an equivalent constraint defined in terms of a stable
matrix A + BF (see [VBW"05]).

Fi(Z, CL‘) = V;*(Z)Xll‘/z(z) + gz(Z)UM(Z>X12U1(Z)

27) Second, we assume thé#, B) is input balancedj.e,
Xn =0, X;p=0,

AAH + BBH = I. An input-balanced realization is easily
obtained by computing the controllability Grammi&nfrom
APAH" — p 4+ BBH =0, and redefiningd and B as A :=
Fi(z,2) = Vi(2)XiVi(z)  X;>=0 (28) P~'/2APY2 B:=P-l/2B.
The following results are related to orthogonal transfor-
if 8; = 7. If we then sample these equality constraints Ofnation techniques used in system identification [HVWO5,

whereg;(z) = (e/%z71 + e79% 2z — 2cos f3;) /2, or with

sets _ Chapter 3]. Sinced A" + BBH = I, there existC' and D
Ci={e* |0<w; <+ Swy <27} such that the matrix

of ¢; > 2n; + 1 or more distinct points on the unit circle, { A B }

we obtain an SDP in standard form, with free variables ¢ D

For single-input KYP-SDPsi; = 1), the problem can be s unitary. (This means tha®(z) = D + C(2I — A)~'B
expressed succinctly as is an inner function i.e, G.(z)G(z) = 1.) Consider the
minimize Tz generalized eigenvalue problem of order+ 1
SUbjeCt to D; dlag(ElHXzEl) + Gix = hi, 1=1,..., L Muv = zNv (30)
X; =0, i=1,...,L

where
WherEhi—GiCL‘: (Fi(Z“,x),...,FZ‘(Ziqi,I)), A B 0 I 0 0
[ (9i(zi1) (2ig:)) ] c Do 0o D C
E;, = [ Ea 0 ] , X, = [ Xa o 0 } , The eigenvalues and a unitary matrix of eigenvectors can be
0 Ep 0 X obtained by a Schur factorization
and NP M = Qdiag(z1, ..., zon1)Q". (32)
By = [ Vi(zan) Vi(zi2) -+ Vi(2ig) ] This factorization, with@ unitary andz; on the unit circle,

Eip = [U(z1) Ui(ziz) -+ Uilzig,) |- exists because the lefthand side is a product of unitary



matrices, hence unitary itself. From (30) we see that the

(non-normalized) generalized eigenvectors satisfy
v=((zI —A)'B, 1, (:7'I - A)"'B)

and the eigenvalues are solutions @fz) = zG.(z). The
unitary matrix of eigenvector§) is therefore

Q1
Q=1 |A (33)
@
whereA is diagonal and
Qi=1[ U(=) U(zon+1) |- (34)

Thus from the Schur factorization (32), we obtain-1 sam-
ple pointsz; and the matrix of sampled basis functiofs.

B. Discrete transform interpretation

n uniform sampling | uniform sampling| from Schur
(unbalanced) (balanced) decomposition
5 3.8 107 1.3 103 8.2
10 6.1 107 1.4 108 6.7
15 6.4 107 2.1103 6.5
20 1.8 108 1.4 10* 6.3
25 2.5 108 2.3 104 6.1
TABLE |

CONDITION NUMBER OF THE BASIS MATRICES(R 1 CONSTRUCTED BY
THREE DIFFERENT METHODS

C. Numerical example

In table | we compare the condition numbers of the
matrices); constructed by three different methods. For each
model order we randomly generate 500 controllable discrete
time state-space models of orders uR%e using the Matlab
commanddr ss. The second column (‘uniform sampling
(unbalanced)’) shows the maximum condition number if
we sample uniformly on the unit circle, using the original

The matrixQ in (33) defines a discrete transform matrixstate-space model. The third column (‘uniform sampling

similar to the discrete Fourier transform (DFT). Liét C —
C be a function of the form

ol § 3w

= U(2)y1 +y2+y3 U(2)

F(z) (35)

Wherey = (y17y2ay3) € C2Tl+1_
Supposer = (F(z1),..., F(z2,+1)) are the samples af

(balanced)’) shows the maximum condition number if we
sample uniformly and use an input-balanced realizatiom. Th
last column shows the condition numbers based on the input-
balanced realization and the Schur decomposition. The last
method results in better conditioned basis matrices, aad th
condition number appears not to increase with

The precise connection between the condition number
of 1 and the condition number of the KYP-SDPs is
obviously complicated to analyze. In our practical experee

at the2n + 1 points z;, defined by (30). From (33) and (34) with the interior-point solver applied to problems genedat

we see thatr = Wy where W = (QA~1)H. Conversely,

with dr ss, uniform sampling often led to numerical diffi-

if a vectorz € C*"*' contains the samples of a functionculties that were not observed with the Schur decomposition

of the form (35), then the coefficients éf arey = W'z

where W~ = QAY. We can interpret this as a pair of

forward and inverse discrete transforms. Multiplicatioithw

sampling.

D. Multi-input systems

-1 .
W+ provides the forward transform and maps a vector of The construction in section V-A applies to state-space

samples off' to the corresponding coefficiergs The inverse
transformz = Wy maps the coefficients to the samples.
As an example, if we take

0 0 1
A_{I 0}’ B_[o

andD = 0, then we havé/(z) = (271,272, ...,27"). The
matrix IV in (31) is the identity. The matrid/, permuted as

}, C=[0 1]

A0
c 0
0 I

SRwRey
Il
com~Oo
o~ oo
~o oo
coow

is the circulant shift matrix of orde®n + 1. Therefore the
eigenvalues;;, are the DFT sample pointg?/(27+1) 'gnd

the eigenvector matrig) is the DFT matrix with its columns

models with one input. For systems with more than one
input, the2n + m eigenvalues of (30) include: repeated
eigenvaluesz = 1, but the eigenvector matrix does not
directly provide the matrix (29). However, we can note that
if the sample pointsz;, are given (computed from (30)
or selected otherwise), then the matrices/ — A)~'B
are easily computed (i©(n?m) operations), ifA is first
transformed to triangular form using a Schur decomposition

VI.

A. Randomly generated KYP-SDPs

We first consider a family of randomly generated problems
with one KYP-LMI constraint:

NUMERICAL EXAMPLES

minimize Tz

subjectto M(x) + K(® ® P)K <0, (36)

and rows permuted. We therefore retrieve as a speciaherec € RP and K is defined in (6) withA € R™*"
case the results on nonnegative trigonometric polynomiaiad B € R™. The system orders range from20 to 1000;

in [RVO06].

the dimension of the variable is p = n/5. The state-space



Inequality form Standard form KYPD | This
n SeDuMi | SDPT3 | SeDuMi | SDPT3 paper 10°
20 0.12 0.20 0.03 0.03 0.02 0.01
30 0.72 0.59 0.05 0.05 0.04 0.02 )
45 5.7 3.3 0.14 0.10 0.09 0.04 2 10
70 64 33 0.63 0.31 0.41 0.12 8
100 2.6 0.91 1.2 0.31 3
150 10 3.6 4.7 0.94 E .
220 44 15 18 2.9 S
350 11.1 ©
500 30.2 o
750 98.2 '~ 10°
1000 227 8. —— Inequality form - SeDuMi
TABLE I g . —O— Inequality form — SDPT3
= 107t —S/— Standard form - SeDuMi |
TIMES PER ITERATION(SEC.) OF DIFFERENT SOLVERS FOKYP-SDPs. = —5— Standard form — SDPT3
—%— KYPD
s —— This paper

10
models are constructed by randomly generating orthogon
matrices

A B Fig. 1. Graph of the results in table II.

o) | |

Inequality form Standard form This
The coefficients of the linear mappiny (x) are randomly n_| SeDuMi | SDPT3 | SeDuMi | SDPT3 | paper
generated in such a way that the problem is strictly feasible ?),8 08-809 éf 8-?2 8-1? 8-8§
Instances that are dual infeasible (unbounded below) are | 45 77 44 0.71 054 | 0.09
discarded. 70 3.8 2.1 0.24
The table shows the CPU times in seconds on a 3.0 }gg éé gé’ 01'691
GHz Pentium 4 with 3.0 GB of memory, using Matlab 220 57
7.4 (R2007a). All times are averaged over five randomly 350 23
generated instances. The number of iterations itself is not 57’(5)8 26035

reported but was roughly 10-15 for all the algorithms. Blank E——

entries in the table indicate that the simulation was ablorte
due to excessive execution time or an out-of-memory error.
Column 2 and 3 show the times per iteration for solving
the inequality form SDP (36) using the general-purpose
solver SeDuMi (version 1.1R3) and SDPT3 (version 4.0 bet
[TTTO3], via the YALMIP interface [16f04]. The YALMIP . Randomly generated GKYP-SDPs
pre-processing time was excluded when calculating thestime The second experiment (table Ill and figure 2) is based on
per iteration. Column 4 and 5 show the times per iteratiod family of SDPs with one generalized KYP constraint,

TIMES PER ITERATION(SEC.) OF SOLVERS FORGKYP-SDFs.

using the SeDuMi and SDPT3 solvers directly for solving min. Iz

the equivalent standard form SDP st. KH@@P+U®Q)KH + M) =<0
minimize ¢’ QR =0,
subject to V. (2)(M(z) —X)V(2) =0 Vze€C (37)

with ¥ defined as in (13). The problem data (including
X=z0 « and ) are randomly generated, and the problem is
whereC is a set of2n + 1 sample points on the unit circle, strictly feasible by construction. Dual infeasible prahkeare
generated as described in section V. discarded. The system orders range from 20 to n = 750,
The next column, labeled KYPD, shows the results foandp = n/5.
the KYPD Matlab package [Wal03], which implements the
algorithm of [VBW"05]. This method requires a significant VIl. SUMMARY AND CONCLUSIONS
amount of processing before the start of the first iteration, We have described a fast technique for solving SDPs
and we excluded the preprocessing time when calculatirdgrived from the discrete-time (generalized) KYP lemma.
the time per iteration. The key idea is to represent the frequency-domain inequalit
The last column shows the results of a Matlab implementas a weighted sum of squares of rational functions, and
tion of a primal-dual interior-point method that exploigsk- then take a sufficient number of samples on the unit circle.
one structure in the standard form SDP (37). The algorithmhe resulting SDP has a low-rank structure, which is eas-
is similar to [TTTO3] and follows [VBW 05, Appendix A] ily exploited in interior-point algorithms. The techniqis
and [RV06]. particularly efficient if the number of inputs is small: for
Figure 1 shows the average times per iteration versus single-input systems, the complexity 3(n®) operations
We can note that the complexity of the fast algorithm iger iteration if the number of optimization variables is of
almost exactlyO(n?). the same order as the system orderThis allows us to
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=00 1
g— KMO1
) —— Inequality form - SeDuMi [ ]
g 10 —E— Inequality form — SDPT3 ||
= —S/— Standard form - SeDuMi
—B— standard form - SDPT3
. —=f=— This paper [KMO3]
10 10" 1;)2 10°
n [KMJ0O0]
Fig. 2. Graph of the result in table IlI.
[KMJ03]

solve much larger problems than using standard SDP solvers
applied to the matrix inequality form of the KYP lemma. [-0f04]

We have also presented an efficient method for selecting
sample points on the unit circle and for computing thé-P04]
associated generalized discrete transform matrix.
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