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Abstract. This paper presents generalizations of semidefinite programming formulations of 1-
norm optimization problems over infinite dictionaries of vectors of complex exponentials, which were
recently proposed for superresolution, gridless compressed sensing, and other applications in signal
processing. Results related to the generalized Kalman–Yakubovich–Popov lemma in linear system
theory provide simple, constructive proofs of the semidefinite representations of the penalty functions
used in these applications. The connection leads to several extensions to gauge functions and atomic
norms for sets of vectors parameterized via the nullspace of matrix pencils. The techniques are
illustrated with examples of low-rank matrix approximation problems arising in spectral estimation
and array processing.
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1. Introduction. The notion of the atomic norm introduced in [5] gives a unified
description of convex penalty functions that extend the `1-norm penalty, used to
promote sparsity in the solution of an optimization problem, to various other types
of structure. The atomic norm associated with a nonempty set C is defined as the
gauge of its convex hull, i.e., the convex function

g(x) = inf {t ≥ 0 | x ∈ t convC}

= inf

{
r∑

k=1

θk | x =

r∑
k=1

θkak, θk ≥ 0, ak ∈ C

}
.(1)

This function is convex, nonnegative, and positively homogeneous. It is not necessarily
a norm, but it is common to use the term “atomic norm” even when g is not a norm.
When used as a regularization term in an optimization problem, the function g(x)
defined in (1) promotes the property that x can be expressed as a nonnegative linear
combination of a small number of elements (or “atoms”) of C.

The best-known examples of atomic norms are the vector `1-norm and the matrix
trace norm. The `1-norm of a real or complex n-vector is the atomic norm associated
with C = {sek | |s| = 1, k = 1, . . . , n}, where ek is the kth unit vector of length n.
The matrix trace norm (or nuclear norm) is the atomic norm for the set of rank-1
matrices with unit norm. Specifically, the trace norm on Cn×m is the atomic norm for
C = {vwH | v ∈ Cn, w ∈ Cm, ‖v‖ = ‖w‖ = 1}, where wH is the conjugate transpose
and ‖ ·‖ denotes the Euclidean norm. Many other examples are discussed in [3, 5, 42].

The atomic norm associated with the set

(2) Ce = {γ (1, ejω, . . . , ej(n−1)ω) ∈ Cn | ω ∈ [0, 2π), |γ| = 1/
√
n},
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where j =
√
−1, has been studied extensively in recent research in signal processing

[3, 4, 8, 9, 10, 27, 42, 45]. It is known that the atomic norm for this set is the optimal
value of the semidefinite program (SDP)

(3)

minimize (trV + w)/2

subject to

[
V x
xH w

]
� 0, V is Toeplitz,

with variables w and V ∈ Hn (the n × n Hermitian matrices). This result can be
proved via convex duality and semidefinite characterizations of bounded trigonometric
polynomials [3, 4, 8], or directly by referring to the classical Vandermonde decompo-
sition of positive semidefinite Toeplitz matrices as a positive sum of the outer product
of vectors in Ce [41, 42]. More generally, one can consider the atomic norm of the set
of matrices C = {vwH ∈ Cn×m | v ∈ Ce, ‖w‖ = 1}. The atomic norm for this set,
evaluated at a matrix X ∈ Cn×m, is the optimal value of the SDP

(4)

minimize (trV + trW )/2

subject to

[
V X
XH W

]
� 0, V is Toeplitz,

with variables V ∈ Hn and W ∈ Hm; see [10, 27, 45]. Further extensions, which place
restrictions on the parameter ω in the definition (2), can be found in [30, 31].

In this paper we discuss extensions of the SDP representations (3) and (4) to a
larger class of atomic norms and gauge functions. The starting point is the observation
that Ce can be parameterized as

(5) Ce = {a | (λG− F )a = 0, λ ∈ C, ‖a‖ = 1},

where C is the unit circle in the complex plane, and F and G are the (n − 1) × n
matrices

F =
[

0 In−1

]
, G =

[
In−1 0

]
.

We generalize (5) in three ways and derive semidefinite representations of the corre-
sponding atomic norms. The first generalization is to allow F and G to be arbitrary
matrices of equal size, i.e., to replace λG−F with an arbitrary matrix pencil (a matrix
polynomial of degree 1). Second, we allow C to be an arbitrary circle or line in the
complex plane, or a segment of a line or a circle. Third, we replace the normalization
‖a‖ = 1 with a condition of the type ‖Ea‖ ≤ 1, where E is not necessarily full column
rank. Specific examples of these extensions, with different choices of F , G, and C, are
discussed in sections 2.2–2.4.

We present direct, constructive proofs, based on elementary matrix algebra, of
the semidefinite representations of the atomic norms. These results are the subject
of sections 2 and 3, and Appendix B. In section 4 we derive the convex conjugates
of the atomic norms and gauge functions, and discuss the relation between the dual
SDP representations and the Kalman–Yakubovich–Popov (KYP) lemma from linear
system theory. Appendix C contains a discussion of the properties of the matrix pencil
λF − G that are needed to ensure strong duality in the dual problems. In section 5
the SDP formulations are illustrated with several applications in signal processing.

2. Positive semidefinite matrix factorization. Throughout the paper we
assume that F and G are complex matrices of size p×n, and Φ and Ψ are Hermitian
2× 2 matrices with det Φ < 0. We define

(6) A = {a ∈ Cn | (µG− νF )a = 0, (µ, ν) ∈ C},
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where

(7) C =
{

(µ, ν) ∈ C2 | (µ, ν) 6= 0, qΦ(µ, ν) = 0, qΨ(µ, ν) ≤ 0
}
.

Here qΦ, qΨ are the quadratic forms defined by Φ and Ψ:

(8) qΦ(µ, ν) =

[
µ
ν

]H
Φ

[
µ
ν

]
, qΨ(µ, ν) =

[
µ
ν

]H
Ψ

[
µ
ν

]
.

The set C is a subset of a line or circle in the complex plane, expressed in homogeneous
coordinates, as explained in Appendix A. If Φ11 6= 0 or Ψ11 > 0, then ν 6= 0 for all
elements (µ, ν) ∈ C, and we can simplify the definition of A as

(9) A = {a ∈ Cn | (λG− F )a = 0, (λ, 1) ∈ C}.

If Φ11 = 0 and Ψ11 ≤ 0, then the pair (1, 0) is also in C and the set A in (6) is the
union of the right-hand side of (9) and the nullspace of G. Examples of sets A are
given in sections 2.2–2.4.

The purpose of this section is to discuss a semidefinite representation of the convex
hull of the set of matrices aaH with a ∈ A:

(10) conv
{
aaH | a ∈ A

}
=

{
r∑

k=1

aka
H
k | ak ∈ A, k = 1, . . . , r

}
.

2.1. Conic decomposition. The key result (Theorem 2.1) is known in various
forms in system theory, signal processing, and moment theory [17, 25, 26]. Our
purpose is to give a simple semidefinite formulation that encompasses a wide variety of
interesting special cases, and to present a constructive proof that can be implemented
using the basic decompositions of numerical linear algebra (specifically, symmetric
eigenvalue, singular value, and Schur decompositions).

Theorem 2.1. Let A be defined by (6) and (7), where F , G ∈ Cp×n and Φ,
Ψ ∈ H2 with det Φ < 0. A matrix X ∈ Hn is positive semidefinite of rank r ≥ 1 and
satisfies

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0,(11)

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0(12)

if and only if X can be decomposed as X =
∑r
k=1 aka

H
k with linearly independent

vectors a1, . . . , ar ∈ A.

Proof. Sufficiency is readily proved by substituting X =
∑r
k=1 aka

H
k in (11)

and (12), and verifying that if (µkG− νkF )ak = 0 with (µk, νk) 6= 0, then

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H =

r∑
k=1

αkqΦ(µk, νk)yky
H
k ,

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H =

r∑
k=1

αkqΨ(µk, νk)yky
H
k ,

where αk = 1/|νk|2, yk = Gak if νk 6= 0, and αk = 1/|µk|2, yk = Fak if νk = 0.
To show necessity, we start from any factorization X = Y Y H where Y ∈ Cn×r

has rank r. It follows from Lemma B.2 in Appendix B, applied to U = FY and
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V = GY , that there exist a matrix W ∈ Cp×r, a unitary matrix Q ∈ Cr×r, and two
vectors µ, ν ∈ Cr such that

FY Q = W diag(µ), GY Q = W diag(ν), (µi, νi) ∈ C, i = 1, . . . , r.

Choosing ak equal to the kth column of Y Q gives the decomposition of X.

Viewed geometrically, the theorem says that (10) is the set of positive semidefinite
matrices X that satisfy (11) and (12).

It is useful to note that the proof of Lemma B.2 in Appendix B is constructive
and gives a simple algorithm, based on singular value and Schur decompositions, for
computing the matrices W , Q and the vectors µ, ν.

2.2. Trigonometric polynomials. In this and the following two sections we
illustrate the decomposition in Theorem 2.1 with different choices of F , G, Φ, and Ψ.

Complex exponentials. As a first example, we take p = n− 1,

(13) F =
[

0 In−1

]
, G =

[
In−1 0

]
, Φ = Φu ,

[
1 0
0 −1

]
, Ψ = 0.

A nonzero pair (µ, ν) satisfies qΦ(µ, ν) = |µ|2 − |ν|2 = 0 only if µ and ν are nonzero
and λ = µ/ν is on the unit circle. The condition (λG − F )a = 0 in the definition of
A gives a recursion λa1 = a2, λa2 = a3, . . . , λan−1 = an. Defining exp(jω) = λ, we
find that A contains the vectors

(14) a = c (1, ejω, ej2ω, . . . , ej(n−1)ω)

for all ω ∈ [0, 2π) and c ∈ C. The matrix constraints (11)–(12) reduce to FXFH =
GXGH , i.e., X is a Toeplitz matrix. Theorem 2.1 therefore reduces to the well-known
fact that every n× n positive semidefinite Toeplitz matrix can be decomposed as

(15) X =

r∑
k=1

|ck|2


1
ejωk

...
ej(n−1)ωk




1
ejωk

...
ej(n−1)ωk


H

with ck 6= 0 and distinct ω1, . . . , ωr [40, page 170].
Restricted complex exponentials. Define F , G, and Φ as in (13), and

Ψ =

[
0 −ejα

−e−jα 2 cosβ

]
with α ∈ [0, 2π) and β ∈ [0, π). The elements a ∈ A have the same general form (14),
with the added constraint that cosβ ≤ cos(ω − α). Since we can restrict ω to the
interval [α − π, α + π], this is equivalent to |ω − α| ≤ β. The constraints (11)–(12)
specify that X is Toeplitz and satisfies the matrix inequality

(16) −e−jαFXGH − ejαGXFH + 2(cosβ)GXGH � 0.

The theorem states that a positive semidefinite Toeplitz matrix of rank r satisfies (16)
if and only if it can be decomposed as (15) with nonzero ck and |ωk − α| ≤ β.
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Real trigonometric functions. Next consider p = n− 1,

G =


1 0 0 · · · 0 0
0 2 0 · · · 0 0
0 0 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 0

 , F =


0 1 0 · · · 0 0 0
1 0 1 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0 1

 ,

and

Φ = Φr ,

[
0 j
−j 0

]
, Ψ = Φu =

[
1 0
0 −1

]
.

A nonzero pair (µ, ν) satisfies qΦ(µ, ν) = j(µ̄ν−µν̄) = 0 and qΨ(µ, ν) = |µ|2−|ν|2 ≤ 0
only if ν 6= 0 and λ = µ/ν is real with |λ| ≤ 1. The condition (λG− F )a = 0 gives a
recursion λa1 = a2, 2λak = ak−1 + ak+1 for k = 2, . . . , n − 1. If we write λ = cosω,
we recognize the recursion 2 cosω cos kω = cos (k − 1)ω + cos (k + 1)ω and find that
A contains the vectors

a = c (1, cosω, cos 2ω, . . . , cos (n− 1)ω)

for all ω ∈ [0, 2π) and all c. With the same F and G = [ 2In−1 0 ], the condition
(λG− F )a = 0 reduces to 2λa1 = a2, 2λak = ak−1 + ak+1 for k = 2, . . . , n− 1. If we
write λ = cosω, the solutions are the vectors

a = c

(
1,

sin 2ω

sinω
,

sin 3ω

sinω
, . . . ,

sinnω

sinω

)
for all ω ∈ [0, 2π) and all c.

2.3. Polynomials.
Real powers. Next, define F , G as in (13), and Φ = Φr, Ψ = 0. A pair (µ, ν)

satisfies qΦ(µ, ν) = 0 if and only if µ̄ν is real. If (µ, ν) 6= 0, we either have ν = 0 and
µ arbitrary, or ν 6= 0 and λ = µ/ν real. The set A therefore contains the vectors

a = c (1, λ, λ2, . . . , λn−1), a = c (0, 0, . . . , 0, 1)

for all λ ∈ R and c. The matrix constraints (11)–(12) reduce to FXGH = GXFH ,
i.e., X is a symmetric (real) Hankel matrix.

Restricted polynomials. If F , G are defined as in (13) and Φ = Φr,

Ψ =

[
2 −(α+ β)

−(α+ β) 2αβ

]
,

where −∞ < α < β < ∞, then A contains all vectors a = c(1, λ, . . . , λn−1) with
λ ∈ [α, β]. The matrix constraints require X to be a real symmetric Hankel matrix
that satisfies

2FXFH − (α+ β)(FXGH +GXFH) + 2αβGXGH � 0.

Orthogonal polynomials. Let p0(λ), p1(λ), p2(λ), . . . be a sequence of real polyno-
mials on R with pi of degree i. It is well known that the polynomials are orthonormal
with respect to an inner product that satisfies the property

(17) 〈f(λ), λg(λ)〉 = 〈λf(λ), g(λ)〉
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(for example, an inner product of the form 〈f, g〉 =
∫
f(λ)g(λ)w(λ)dλ with w(λ) ≥ 0)

if and only if the polynomials satisfy a three-term recurrence

(18) βi+1pi+1(λ) = (λ− αi)pi(λ)− βipi−1(λ)

with p−1(λ) = 0 and p0(λ) = 1/d0, where d2
0 = 〈1, 1〉. This can be seen as follows [15].

Suppose p0, . . . , pn−1 is any set of polynomials with pi of degree i. Then λpi(λ)
can be expressed as a linear combination of the polynomials p0(λ), . . . , pi+1(λ), and
therefore

(19) λ


p0(λ)
p1(λ)
...

pn−2(λ)

 =
[
J βn−1en−1

]


p0(λ)
p1(λ)
...

pn−1(λ)


for some lower-Hessenberg matrix J (i.e., satisfying Jij = 0 for j > i + 1). Let 〈·, ·〉
be an inner product on the space of polynomials of degree n− 1 or less. Taking inner
products on both sides of (19), we find that

H = JG+ βn−1en−1g
T ,

where Hij = 〈λpi−1(λ), pj−1(λ)〉, Gij = 〈pi−1(λ), pj−1(λ)〉, and gj = 〈pn−1(λ), pj−1

(λ)〉 for i, j = 1, . . . , n− 1. The polynomials are orthonormal for the inner product if
and only if G = I and g = 0. The inner product satisfies the property (17) if and only
if H is symmetric. Hence, if the polynomials are orthonormal for an inner product
that satisfies (17), then J is a symmetric tridiagonal matrix. If we use the notation

(20) J =



α0 β1 0 · · · 0 0
β1 α1 β2 · · · 0 0
0 β2 α2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · αn−3 βn−2

0 0 0 · · · βn−2 αn−2


,

the recurrence (18) follows. Conversely, if the three-term recurrence holds, and we
define the inner product by setting G = I, g = 0, then H is symmetric and the inner
product satisfies (17).

Now consider (6) and (7), with p = n− 1 and

Φ = Φr, Ψ = 0, G =
[
In−1 0

]
, F =

[
J βn−1en−1

]
,

where J is the Jacobi matrix (20) of a system of orthogonal polynomials. Then
(µ, ν) ∈ C if and only if either ν 6= 0 and λ = µ/ν ∈ R, or ν = 0. The set contains
the vectors a of the following form for all λ ∈ R:

a = c (p0(λ), p1(λ), p2(λ), . . . , pn−1(λ)), a = c (0, 0, . . . , 0, 1).

2.4. Rational functions. As a final example, we consider the controllability
pencil of a linear system

(21) G =
[
I 0

]
, F =

[
A B

]
,

where A ∈ Cns×ns and B ∈ Cns×m. With this choice, A contains the vectors a =
(x, u) that satisfy the equality (µI−νA)x = νBu for some (µ, ν) ∈ C. Since (µ, ν) 6= 0,
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we either have ν = 0 and x = 0, or ν 6= 0 and ((µ/ν)I − A)x = Bu. If A has no
eigenvalues λ that satisfy (λ, 1) ∈ C, then A contains the vectors

a =

[
(λI −A)−1Bu

u

]
for all (λ, 1) ∈ C and all u ∈ Cm. If C includes the point (1, 0) at infinity, then A also
contains the vectors (0, u) for all u ∈ Cm.

This can be extended to the controllability pencil of a descriptor system

G =
[
E 0

]
, F =

[
A B

]
,

where E ∈ Cns×ns is possibly singular. With this choice, A contains the vectors
a = (x, u) that satisfy the equality (µE − νA)x = νBu for some (µ, ν) ∈ C. If
det(µE − νA) 6= 0 for all (µ, ν) ∈ C, then A contains all vectors

a =

[
(λE −A)−1Bu

u

]
for (λ, 1) ∈ C and u ∈ Cm. If (1, 0) ∈ C, then A also contains (0, u) for all u ∈ Cm.

3. Semidefinite representation of gauges and atomic norms. A function g
is called a gauge if it is convex, positively homogeneous (g(tx) = tg(x) for t > 0),
nonnegative, and vanishes at the origin [36, section 15], [26, Chapter 1]. Examples
are the (Minkowski) gauges of nonempty convex sets C, which are defined as

g(x) = inf {t ≥ 0 | x ∈ tC}.

Conversely, if g is a gauge, then it is the Minkowski gauge of the set C = {x | g(x) ≤
1}. A gauge is a norm if it is defined everywhere, positive except at the origin, and
symmetric (g(x) = g(−x)).

The gauge of the convex hull convC of a set C can be expressed as

g(x) = inf

{
r∑

k=1

θk | x =

r∑
k=1

θkxk, θk ≥ 0, xk ∈ C, k = 1, . . . , r

}
.

The minimum is over all possible decompositions of x as a nonnegative combination
of a finite number of elements of C. The gauge of the convex hull of a compact set is
also called the atomic norm associated with the set [5].

3.1. Symmetric matrices. Let F , G, Φ, and Ψ be defined as in Theorem 2.1.
We assume that the set C defined in (7) is not empty. In this section we discuss the
gauge of the convex hull of the set

C = {aaH ∈ Hn | a ∈ A, ‖a‖ = 1},

where A is defined in (6). The gauge of the convex hull of C is the function

g(X) = inf

{
r∑

k=1

θk | X =

r∑
k=1

θkaka
H
k , θk ≥ 0, ak ∈ A, ‖ak‖ = 1

}
(22)

= inf

{
r∑

k=1

‖ak‖2 | X =

r∑
k=1

aka
H
k , ak ∈ A

}
.(23)

The second expression follows from the fact that if a ∈ A, then βa ∈ A for all β.
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The expressions
∑
k θk and

∑
k ‖ak‖2 in these minimizations take only two pos-

sible values: trX if X can be decomposed as in (22) and (23), and +∞ otherwise.
Theorem 2.1 tells us that a decomposition exists if and only if X is positive semidef-
inite and satisfies the two constraints (11), (12). Therefore,

(24) g(X) =

{
trX, X � 0, (11), (12),
+∞ otherwise.

Now consider an optimization problem in which we minimize the sum of a function
f : Hn → R and the gauge defined in (23) and (24):

(25) minimize f(X) + g(X).

If we substitute the definition (23), this can be written as

(26)

minimize f(X) +
r∑

k=1

‖ak‖2

subject to X =
r∑

k=1

aka
H
k , ak ∈ A, k = 1, . . . , r.

The variables are X and the parameters a1, . . . ,ar, and r of the decomposition of
X. This formulation shows that the function g(X) in (25) acts as a regularization
term that promotes a structured low-rank property in X. If we substitute the expres-
sion (24), we obtain the equivalent formulation

(27)

minimize f(X) + trX
subject to Φ11FXF

H + Φ21FXG
H + Φ12GXF

H + Φ22GXG
H = 0,

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0,
X � 0.

This problem is convex if f is convex.
A useful generalization of (23) is the gauge of the convex hull of

C = {aaH | a ∈ A, ‖Ea‖ ≤ 1},

where E may have rank less than n. The gauge of convC is

(28) g(X) = inf

{
r∑

k=1

θk | X =

r∑
k=1

θkaka
H
k , θk ≥ 0, ak ∈ A, ‖Eak‖ ≤ 1

}
.

The variables θk in this definition can be eliminated by making the following observa-
tion. Suppose that the directions of the vectors ak in the decomposition of X in (28)
are given, but not their norms or the coefficients θk. If 0 < ‖Eak‖ < 1, then we
can decrease θk by scaling ak until ‖Eak‖ = 1. If Eak = 0, then θk can be made
arbitrarily small by scaling ak. Hence, we obtain the same result if we use

√
θkak as

variables and write the infimum as

(29) g(X) = inf

{
r∑

k=1

‖Eak‖2 | X =

r∑
k=1

aka
H
k , ak ∈ A, k = 1, . . . , r

}
.

Therefore, g(X) =
∑
k ‖Eak‖2 = tr(EXEH) if X can be decomposed as in (29) and

+∞ otherwise. Using Theorem 2.1, we can express this result as

(30) g(X) =

{
tr(EXEH), X � 0, (11), (12),
+∞ otherwise.
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Minimizing f(X) + g(X) is equivalent to the optimization problem

(31)

minimize f(X) +
r∑

k=1

‖Eak‖2

subject to X =
r∑

k=1

aka
H
k , ak ∈ A, k = 1, . . . , r,

with variables X and the parameters a1, . . . , ar, r of the decomposition of X. When
EHE = I, this is the same as (26). By choosing different E we assign different weights
to the vectors ak. Using the expression (30), the problem (31) can be written as

(32)

minimize f(X) + tr (EXEH)
subject to Φ11FXF

H + Φ21FXG
H + Φ12GXF

H + Φ22GXG
H = 0,

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0,
X � 0.

Example. Parametric line spectrum estimation is concerned with fitting signal
models of the form

(33) y(t) =

r∑
k=1

cke
jωkt + v(t),

where v(t) is noise. If the phase angles of ck are independent random variables,
uniformly distributed on [−π, π], and v(t) is circular white noise with E |v(t)|2 = σ2,
then the covariance matrix of y(t) of order n is given by

(34)


r0 r−1 · · · r−n+1

r1 r0 · · · r−n+2

...
...

. . .
...

rn−1 rn−2 · · · r0

 = σ2I +

r∑
k=1

|ck|2


1
ejωk

...
ej(n−1)ωk




1
ejωk

...
ej(n−1)ωk


H

,

where rk = E (y(t)y(t− k)) [40, section 4.1], [34, section 12.5]. Classical methods,
such as MUSIC and ESPRIT, are based on the eigenvalue decomposition of an esti-
mated covariance matrix. With the formulation outlined in this section, one can solve
related but more general covariance fitting problems, expressed as

minimize f(R) + n
r∑

k=1

|ck|2

subject to R = σ2I +
r∑

k=1

|ck|2


1
ejωk

...
ej(n−1)ωk




1
ejωk

...
ej(n−1)ωk


H

with the variables R ∈ Hn, σ2, |ck|, ωk, and r, where f is a convex penalty or indicator
function that measures the quality of the fit between R and the estimated covariance
matrix. This is equivalent to the convex optimization problem

minimize f(X + tI) + trX
subject to X � 0, t ≥ 0, X is Toeplitz.

A numerical example is given in section 5.
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3.2. Nonsymmetric matrices. We define F , G, E, Φ, Ψ, and A as in the
previous section, but add the assumption that the matrices F , G, and E are block-
diagonal:

(35) G =

[
G1 0
0 G2

]
, F =

[
F1 0
0 F2

]
, E =

[
E1 0
0 E2

]
.

Here F1, G1 ∈ Cp1×n1 and F2, G2 ∈ Cp2×n2 (possibly with p1 = 0 or p2 = 0). The
matrices E1 and E2 have n1 and n2 columns, respectively. We discuss the function

h(Y ) =
1

2
inf
V,W

g

([
V Y
Y H W

])
of Y ∈ Cn1×n2 , where g is defined in (29) and (30). Using (29), we can write h(Y ) as

(36) h(Y ) = inf

{
1

2

r∑
k=1

(‖E1vk‖2 + ‖E2wk‖2) | Y =

r∑
k=1

vkw
H
k , (vk, wk) ∈ A

}
,

while the characterization (30) shows that h(Y ) is the optimal value of the SDP:

(37)

minimize
(
tr(E1V E

H
1 ) + tr(E2WEH2 )

)
/2

subject to Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0,

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0,

X =

[
V Y
Y H W

]
� 0

with V and W as variables. This can be seen as an extension of the well-known SDP
formulation of the trace norm of a matrix. If we take F and G to have zero row
dimensions (equivalently, define A = Cn1 × Cn2 and omit the first two constraints
in (37)) and choose E1 = I, E2 = I, then h(Y ) = ‖Y ‖∗, the trace norm of Y .

The block-diagonal form of F and G implies that if (v, w) ∈ A, then (αv, βw) ∈ A
for all α, β. This observation leads to a number of useful equivalent expressions
for (36). First, we note that h(Y ) can be written as

(38) h(Y ) = inf

{
r∑

k=1

‖E1vk‖‖E2wk‖ | Y =

r∑
k=1

vkw
H
k , (vk, wk) ∈ A

}
.

This follows from the fact that ‖E1vk‖2 + ‖E2wk‖2 ≥ 2‖E1vk‖‖E2wk‖, with equality
if ‖E1vk‖ = ‖E2wk‖. If the decomposition of Y in (36) involves a term vkw

H
k with

E1vk and E2wk nonzero, then replacing vk and wk with ṽk = (‖E2wk‖/‖E1vk‖)1/2vk
and w̃k = (‖E1vk‖/‖E2wk‖)1/2wk gives another valid decomposition with

1

2
(‖E1ṽk‖2 + ‖E2w̃k‖2) = ‖E1vk‖‖E2wk‖ ≤

1

2
(‖E1vk‖2 + ‖E2wk‖2).

If E1vk = 0 and E2wk 6= 0, then replacing vk and wk with ṽk = αvk, w̃k = (1/α)wk
gives an equivalent decomposition with

1

2

(
‖E1ṽk‖2 + ‖E2w̃k‖2

)
=

1

2α2
‖E2wk‖2 → 0

as α goes to infinity. The same argument applies when E1vk 6= 0 and E2wk = 0. In
all cases, therefore, the two expressions (36) and (38) give the same result.
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From (38), we obtain two other useful expressions:

h(Y ) = inf

{
r∑

k=1

‖E1vk‖ | Y =

r∑
k=1

vkw
H
k , (vk, wk) ∈ A, ‖E2wk‖ ≤ 1

}
(39)

= inf

{
r∑

k=1

‖E2wk‖ | Y =

r∑
k=1

vkw
H
k , (vk, wk) ∈ A, ‖E1vk‖ ≤ 1

}
.(40)

This again follows from the property that the components vk, wk of elements (vk, wk)
in A can be scaled independently. At the optimal decomposition in (39), all terms
satisfy E2wk = 0 or ‖E2wk‖ = 1. In (40), all terms satisfy E1vk = 0 or ‖E1vk‖ = 1.

A final interpretation of h is

(41)

h(Y ) = inf

{
r∑

k=1

θk | Y =

r∑
k=1

θkvkw
H
k ,

θk ≥ 0, (vk, wk) ∈ A, ‖E1vk‖ ≤ 1, ‖E2wk‖ ≤ 1

}
.

The equivalence with (38) follows from the fact that if the optimal decomposition
of Y =

∑r
k=1 θkvkw

H
k involves the term vkw

H
k , then the norms ‖E1vk‖ and ‖E2wk‖

will be either zero or 1. (If 0 < ‖E1vk‖ < 1, we can decrease θk by scaling vk until
‖E1vk‖ = 1, and similarly for wk.) The expression (41) shows that h(Y ) is the gauge
of the convex hull of the set {vwH ∈ Cn1×n2 | (v, w) ∈ A, ‖E1v‖ ≤ 1, ‖E2w‖ ≤ 1}.

The SDP representation of h in (37) allows us to reformulate the problems

(42) minimize f(Y ) + h(Y ),

where f is convex and h is the gauge (36)–(41), as convex problems with SDP con-
straints. Minimizing f(Y ) + h(Y ) is equivalent to

(43)

minimize f(Y ) +
r∑

k=1

‖E1vk‖‖E2wk‖

subject to Y =
r∑

k=1

vkw
H
k , (vk, wk) ∈ A, k = 1, . . . , r.

Alternatively, one can replace the second term in the objective with
∑
k ‖E2wk‖ and

add constraints ‖E1vk‖ ≤ 1, as in

(44)

minimize f(Y ) +
r∑

k=1

‖E2wk‖

subject to Y =
r∑

k=1

vkw
H
k , (vk, wk) ∈ A, k = 1, . . . , r,

‖E1vk‖ ≤ 1, k = 1, . . . , r,

or vice versa. When E1 and E2 are identity matrices, we can interpret h(Y ) as
a convex penalty that promotes a structured low-rank property of Y . The outer
products vkw

H
k are constrained by the set A; the penalty term in the objective is the

sum of the norms ‖vkwHk ‖2 = ‖vk‖‖wk‖. The matrices E1 and E2 can be chosen to
assign a different weight to different terms vkw

H
k .
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Problems (43) and (44) can be reformulated as

(45)

minimize f(Y ) + (tr(E1V E
H
1 ) + tr(E2WEH2 ))/2

subject to Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0,

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0,

X =

[
V Y
Y H W

]
� 0.

Example: Column structure. When p2 = 0, the matrices F and G in (35) have
the form F = [ F1 0 ] and G = [ G1 0 ]. This means that A = A1 ×Cn2 , where

A1 = {v ∈ Cn1 | (µG1 − νF1)v = 0, (µ, ν) ∈ C}.

There are no restrictions on the w-component in (v, w) ∈ A. Problem (43) simplifies
to

(46)

minimize f(Y ) +
r∑

k=1

‖E1vk‖‖E2wk‖

subject to Y =
r∑

k=1

vkw
H
k , vk ∈ A1, k = 1, . . . , r.

The equivalent semidefinite formulation (45) simplifies to

minimize f(Y ) + (tr(E1V E
H
1 ) + tr(E2WEH2 ))/2

subject to Φ11F1V F
H
1 + Φ21F1V G

H
1 + Φ12G1V F

H
1 + Φ22G1V G

H
1 = 0,

Ψ11F1V F
H
1 + Ψ21F1V G

H
1 + Ψ12G1V F

H
1 + Ψ22G1V G

H
1 � 0,[

V Y
Y H W

]
� 0.

This SDP formulation of (46) (with E1 = I, E2 = I) was studied in [6].
As an example, we again consider the signal model (33). A natural idea for

estimating the parameters ωk and ck is to solve a nonlinear least squares problem

minimize

n−1∑
t=0

∣∣∣∣∣ym(t)−
r∑

k=1

cke
jωkt

∣∣∣∣∣
2

,

where ym(t) is the observed signal. This problem is not convex and is difficult to solve
iteratively without a good starting point [40, page 148]. Instead of fixing r, we can
also impose a penalty on

∑
k |ck| and consider the optimization problem

(47)

minimize γ‖y − ym‖2 +
r∑

k=1

|ck|

subject to y =
r∑

k=1

ck(1, ejωk , . . . , ej(n−1)ωk).

The optimization variables are y and the parameters ck, ωk, and r in the decompo-
sition of y. The vector ym has elements ym(0), . . . , ym(n − 1). This is a special case
of (44) with f(y) = γ‖y − ym‖2, n1 = n, n2 = 1, Φ = Φu, Ψ = 0, and

E1 = (1/
√
n)I, E2 = 1, F1 =

[
0 In1−1

]
, G1 =

[
In1−1 0

]
,
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so that A1 is the set of all multiples of vectors (1, ejω, . . . , ej(n−1)ω). The problem is
therefore equivalent to the convex problem

minimize γ‖y − ym‖2 + (trV )/(2n) + w/2

subject to

[
V y
yH w

]
� 0, V is Toeplitz.

A related numerical example will be given in section 5.2.
Example: Joint column and row structure. To illustrate the general problem (43),

we consider a variation on the previous example. Suppose we arrange the observations
in an n×m Hankel matrix,

Ym =


ym(0) ym(1) · · · ym(m− 1)
ym(1) ym(2) · · · ym(m)
...

...
...

ym(n− 1) ym(n) · · · ym(m+ n− 2)

 ,
and we fit to this matrix a matrix Y with the same Hankel structure and with elements
y(t) =

∑r
k=1 ck exp(jωkt). We formulate the problem as

(48)

minimize γ‖Y − Ym‖2F +
r∑

k=1

|ck|

subject to Y =
r∑

k=1

ck


1
ejωk

...
ej(n−1)ωk




1
e−jωk

...
e−j(m−1)ωk


H

.

This is an instance of (43) with n1 = n, n2 = m, Φ = Φu, Ψ = 0, E1 = (1/
√
n)I,

E2 = (1/
√
m)I, and

G1 =
[
In−1 0

]
, F1 =

[
0 In−1

]
, G2 =

[
0 Im−1

]
, F2 =

[
Im−1 0

]
.

With these parameters, the set A contains the pairs (v, w) of the form

v = α(1, ejω, . . . , ej(n−1)ω), w = β(1, e−jω, . . . , e−j(m−1)ω).

The convex formulation is

min. γ‖Y − Ym‖2F + (trV )/(2n) + (trW )/(2m)

s.t.

[
V Y
Y H W

]
� 0,[

F1 0
0 F2

] [
V Y
Y H W

] [
F1 0
0 F2

]T
=

[
G1 0
0 G2

] [
V Y
Y H W

] [
G1 0
0 G2

]T
.

A related example is discussed in section 5.2.

4. Duality. In this section, we derive the conjugates of the gauge functions
defined in section 3 and show that they can be interpreted as indicator functions of sets
of nonnegative or bounded generalized polynomials. This gives a useful interpretation
of the dual problems for (25) and (42).
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We assume that the subset of the complex plane represented by C in (7) is one-
dimensional, i.e., C is not a singleton and not the empty set. Equivalently, the in-
equality qΨ(µ, ν) ≤ 0 in the definition is either redundant (and C represents a line or
circle), or it is not redundant and then there exist elements of C with qΨ(µ, ν) < 0.
When stating and analyzing the dual problems, we will need to distinguish these two
cases (qΨ(µ, ν) ≤ 0 is redundant or not). For the sake of brevity, we only give the
formulas for the case where the inequality is not redundant. The dual problems for
the other case follow by setting Ψ = 0 and making obvious simplifications.

We also assume that µG − νF has full row rank (rank(µG − νF ) = p) for all
nonzero (µ, ν)). This condition will serve as a “constraint qualification” that guaran-
tees strong duality.

4.1. Symmetric matrix gauge. We first consider the conjugate of the function
g defined in (30). The conjugate is defined as g∗(Z) = supX (tr(XZ)− g(X)), i.e.,
the optimal value of the SDP

(49)

maximize tr ((Z − EHE)X)
subject to X � 0,

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0,
Ψ11FXF

H + Ψ21FXG
H + Ψ12GXF

H + Ψ22GXG
H � 0.

The dual of this problem is

(50)

minimize 0

subject to Z −
[
F
G

]H
(Φ⊗ P + Ψ⊗Q)

[
F
G

]
� EHE,

Q � 0

with variables P,Q ∈ Hp. It is shown in Appendix C that strong duality holds under
the assumptions listed at the beginning of section 4.

If strong duality holds, then g∗(Z) is the optimal value of (50), i.e., equal to zero
if there exist P , Q that satisfy the constraints in (50), and +∞ otherwise. In other
words, g∗(Z) is the indicator function of the set described by the constraints in (50).
To complete the picture, we now show that g∗(Z) can be expressed as

(51) g∗(Z) =

{
0, aHZa ≤ ‖Ea‖2 for all a ∈ A,
+∞ otherwise.

This expression of g∗ follows directly from the definition of the conjugate and (29),
since

g∗(Z) = sup
X

(tr (XZ)− g(X)) = sup
a1,...,ar∈A

r∑
k=1

(
aHk Zak − ‖Eak‖2

)
,

which is the same as (51). This is consistent with a property from gauge duality:
the conjugate of the gauge of a set is the indicator of the unit level set of the polar
gauge [11, Proposition 2.1]. It is also instructive to derive (51) from the dual SDP (50).
Suppose P and Q are feasible in (50). Consider any a ∈ A and (µ, ν) ∈ C with
µGa = νFa. Define y = (1/ν)Ga if ν 6= 0 and y = (1/µ)Fa otherwise. Then
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aHZa− ‖Ea‖2 ≤
[
Fa
Ga

]H
(Φ⊗ P + Ψ⊗Q)

[
Fa
Ga

]
=

[
µy
νy

]H
(Φ⊗ P + Ψ⊗Q)

[
µy
νy

]
= (yHPy)qΦ(µ, ν) + (yHQy)qΨ(µ, ν)

≤ 0.

The last line follows from Q � 0 and qΦ(µ, ν) = 0, qΨ(µ, ν) ≤ 0. Conversely, if
problem (50) is infeasible, then the optimal value is +∞ and, since strong duality
holds, there exist matrices X that are feasible for (49) with tr((Z − EHE)X) > 0.
Applying Theorem 2.1, we see that there exist a1, . . . , ar ∈ A with

∑
k(aHk Zak −

‖Eak‖2) > 0. Therefore, aHk Zak > ‖Eak‖2 for at least one ak.
The interpretation of the conjugate gives useful insight in problem (25), where g

is defined in (30). The dual problem is

maximize −f∗(Z)− g∗(−Z).

Expanding g∗(−Z) using (50) gives the equivalent problem

(52)

maximize −f∗(Z)

subject to −Z −
[
F
G

]H
(Φ⊗ P + Ψ⊗Q)

[
F
G

]
� EHE,

Q � 0

with variables Z, P , and Q, and using the expression (51) we can put the constraints
in this problem more succinctly as

(53)
maximize −f∗(Z)
subject to ‖Ea‖2 + aHZa ≥ 0 for all a ∈ A.

This last form leads to an interesting set of optimality conditions. Suppose X and Z
are feasible for (31) and (53), respectively. Then

f(X) +

r∑
k=1

‖Eak‖2 ≥ −f∗(Z) + tr(XZ) +

r∑
k=1

‖Eak‖2

= −f∗(Z) +

r∑
k=1

(‖Eak‖2 + aHk Zak)

≥ −f∗(Z).

The first inequality follows by definition of f∗(Z), and the second and third line follow
from primal and dual feasibility. If X and Z are optimal and strong duality holds,
then f(X) +

∑
k ‖Eak‖2 = −f∗(Z). This is only possible if f(X) + f∗(Z) = tr(XZ)

and ‖Eak‖2 + aHk Zak = 0 for k = 1, . . . , r. Hence, only the vectors a ∈ A, at which
the inequality in (53) is active, can be used to form an optimal X =

∑
k aka

H
k .

Example: Generalized KYP lemma. When specialized to the controllability pen-
cil (21), the equivalence between the constraints in (53) and (52) is known as the
(generalized) KYP lemma [22, 24, 33, 39, 44].

We assume that A has no eigenvalues λ with (λ, 1) ∈ C, and that the pair (A,B)
is controllable, so the pencil satisfies the rank condition that rank(λF −G) = ns for
all λ. The dual problem (53) becomes
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maximize −f∗(Z)
subject to F(λ, Z) � 0 for all (λ, 1) ∈ C,

M22 + Z22 � 0 if (1, 0) ∈ C,

where M = EHE and

F(λ, Z) =

[
(λI −A)−1B

I

]H [
M11 + Z11 M12 + Z12

M21 + Z21 M22 + Z22

] [
(λI −A)−1B

I

]
.

The function F is called the Popov function with central matrix M + Z [19, 21].

4.2. Nonsymmetric matrix gauge. Consider the conjugate of the gauge de-
fined in (36)–(41). We have h∗(Z) = supY (Re (trZHY )− h(Y )), where h(Y ) is the
optimal value of (37). Therefore, h∗(Z) is the optimal value of the SDP

(54)

maximize
1

2
tr

([
−EH1 E1 Z
ZH −EH2 E2

]
X

)
subject to Φ11FXF

H + Φ21FXG
H + Φ12GXF

H + Φ22GXG
H = 0,

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0,
X � 0.

The dual of this problem is
(55)

min. 0

s.t.

[
0 Z
ZH 0

]
−
[
F
G

]H
(Φ⊗ P + Ψ⊗Q)

[
F
G

]
�
[
EH1 E1 0

0 EH2 E2

]
,

Q � 0.

As in the previous section, it follows from Appendix C that strong duality holds.
Therefore, h∗(Z) is equal to the optimal value of (55), i.e., zero if there exist P and
Q that satisfy the constraints of this problem, and +∞ otherwise. This will now be
shown to be equivalent to

h∗(Z) =

{
0, Re (vHZw) ≤ (‖E1v‖2 + ‖E2w‖2)/2 for all (v, w) ∈ A,
+∞ otherwise,

=

{
0, Re (vHZw) ≤ ‖E1v‖‖E2w‖ for all (v, w) ∈ A,
+∞ otherwise.

(56)

To see this, first assume that P and Q are feasible in (55), and a = (v, w) ∈ A satisfies
(µG− νF )a = 0 with (µ, ν) ∈ C. Then

vHZw + wHZHv − ‖E1v‖2 − ‖E2w‖2 ≤
[
Fa
Ga

]H
(Φ⊗ P + Ψ⊗Q)

[
Fa
Ga

]
= (yHPy)qΦ(µ, ν) + (yHQy)qΨ(µ, ν)

≤ 0,

where y = (1/ν)Ga if ν 6= 0 and y = (1/µ)Fa otherwise. Conversely, if problem (55)
is infeasible, then (54) is unbounded above, so there exists a feasible X with positive



1378 HSIAO-HAN CHAO AND LIEVEN VANDENBERGHE

objective value. If we decompose X as in Theorem 2.1, with ak = (vk, wk), we find
that

0 < tr

([
−EH1 E1 Z
ZH −EH2 E2

] r∑
k=1

[
vk
wk

] [
vk
wk

]H)

=

r∑
k=1

(
vHk Zwk + wHk Z

Hvk − ‖E1vk‖2 − ‖E2wk‖2
)
,

so at least one term in the sum is positive. The second expression for h∗(Z) in (56)
follows from the block-diagonal structure of F and G. Following similar arguments as
in section 4.1, the expression (56) can also be derived directly from definition of the
conjugate, (36), and (38), or via gauge duality.

The interpretation of the conjugate h∗ can be applied to interpret the dual of (42)

maximize −f∗(Z)− h∗(−Z).

Substituting the expression (56) for h∗(−Z), we obtain

maximize −f∗(Z)
subject to Re (vHZw) ≤ ‖E1v‖‖E2w‖ for all (v, w) ∈ A.

As in the previous section, the primal-dual optimality conditions provide a useful set
of complementary slackness relations between primal optimal Y and dual optimal Z.
The optimal Y can be decomposed as Y =

∑
k vkw

H
k with elements (vk, wk) ∈ A at

which Re (vHk Zwk) = ‖E1vk‖‖E2wk‖.
Example. Suppose A ∈ Cns×ns , B ∈ Cns×m, C ∈ Cl×ns , and D ∈ Cl×m are

matrices in a state-space model with (A,B) controllable, and A has no eigenvalues
that satisfy (λ, 1) ∈ C. We take p1 = 0, n1 = l, p2 = ns, n2 = ns +m,

G2 =
[
I 0

]
, F2 =

[
A B

]
, E1 = I, E2 =

[
0 I

]
.

With this choice of parameters, A = Cl ×A2, where A2 contains the vectors

w =

[
(λI −A)−1Bu

u

]
for all u ∈ Cm and all (λ, 1) ∈ C, plus the vectors (0, u) if (1, 0) ∈ C. Since v
is arbitrary and E1 = I, the inequality in (56) reduces to ‖Zw‖ ≤ ‖E2w‖ for all
w ∈ A2. With Z = [ C D ], this is equivalent to a bound on the transfer function

‖D + C(λI −A)−1B‖2 ≤ 1 for all (λ, 1) ∈ C, ‖D‖2 ≤ 1 if (1, 0) ∈ C.

5. Examples. The formulations in section 3 will now be illustrated with exam-
ples from signal processing. The optimization problems were solved with the software
package CVX [16].

5.1. Line spectrum estimation by Toeplitz covariance fitting. We fit a
covariance matrix of the form (34) to an estimated covariance matrix Rm. The esti-
mate Rm is constructed from N = 150 samples of the time series y(t) defined in (33),
with r = 3, and the frequencies ωk and the magnitudes |ck| shown in Figure 1. The
noise is Gaussian white noise with variance σ2 = 64. The sample covariance matrix
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Fig. 1. Line spectrum estimation by Toeplitz covariance fitting (section 5.1). The red dots
represent the frequencies and magnitudes of the true model. The blue lines show the estimated
parameters obtained by solving (57).

is constructed as Rm = Y Y H/(N − n + 1), where Y is the n × (N − n + 1) Hankel
matrix with y(1), . . . , y(N − n+ 1) in its first row. To estimate the model, we solve

(57)

minimize γ‖R−Rm‖2 +
r∑

k=1

|ck|2

subject to R = σ2I +
r∑

k=1

|ck|2


1
ejωk

...
ej(n−1)ωk




1
ejωk

...
ej(n−1)ωk


H

with variables σ2, |ck|2, ωk, r, and R. The norm ‖ · ‖2 in the objective is the spectral
norm. The regularization parameter γ is set to 0.25. As can be seen from Figure 1,
the recovered parameters ωk and |ck| are quite accurate, despite the very low signal-
to-noise ratio. The estimated noise variance σ2 is 79.6.

The semidefinite optimization approach allows us to fit a covariance matrix with
the structure prescribed in (34) to a sample covariance matrix that may not be
Toeplitz or positive semidefinite. The formulation can also be extended to appli-
cations where the noise v(t) is modeled as a moving-average process, by combining it
with the formulation in [14].

5.2. Line spectrum estimation by penalty approximation. This example
is a variation on problem (47). We take n = 50 consecutive measurements of the signal
defined in (33). There are three sinusoids with frequencies and magnitudes shown in
Figure 3. The noise v(t) is a superposition of white noise and a sparse corruption of
20 elements (see Figure 2). The model parameters are estimated by solving

(58)

minimize γ
n∑
i=1

φ(yi − ym,i) +
r∑

k=1

|ck|

subject to y =
r∑

k=1

ck(1, ejωk , . . . , ej(n−1)ωk),

|ωk| ≤ ωc, k = 1, . . . , r,

where φ is the Huber penalty, γ = 0.071, and ωc = π/6. The variables are y and the
parameters r, ck, and ωk in the decomposition of y. Figure 3 shows the result, as
well as the estimates obtained from a simple implementation (without filtering) of the
matrix pencil method described in [20, 38], where we form a 30× 21 Hankel matrix
Ym from the measurements and compute the generalized eigenvalues of λYm1 − Ym2
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Fig. 2. The data for the example in section 5.2. The red dashed lines show the exact, noise-free
signal. The circles show the signal corrupted by Gaussian white noise (in blue), plus a few larger
errors in 20 positions (in black). The green dots show the recovered signal y from (58).
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Fig. 3. Line spectrum models estimated from the signal in Figure 2 by solving the optimization
problem (58) (left) and using the matrix pencil method (right).

as estimates of ejωk (Ym1 and Ym2 represent the matrix Ym with the last and the
first column removed, respectively). The comparison illustrates the usefulness of
incorporating the prior frequency constraint and the Huber penalty in (58).

It is interesting to note that problem (58) can be equivalently formulated as

(59)

min. γ
n∑
i=1

φ(yi − ym,i) +
r∑

k=1

|ck|

s.t.


y1 y2 · · · yn2

y2 y3 · · · yn2+1

...
...

...
yn1 yn1+1 · · · yn1+n2−1

=
r∑

k=1

ck


1
ejωk

...
ej(n1−1)ωk




1
e−jωk

...
e−j(n2−1)ωk


H

|ωk| ≤ ωc, k = 1, . . . , r,

,

where n1 + n2 − 1 = n. The SDPs equivalent to (58) and (59), respectively, give the
same result y, but may have different numerical properties (in terms of accuracy or
complexity).

5.3. Direction of arrival from multiple measurement vectors. This ex-
ample demonstrates the advantage of using multiple measurement vectors (or snap-
shots) in direction-of-arrival (DOA) estimation, as pointed out in [27, 45]. Suppose
we have K omnidirectional sensors placed at randomly chosen positions of a linear
grid of length n. The measurements of the K sensors at one time instance form one
measurement vector. We collect m of these measurement vectors, at m different times,
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Fig. 4. The results with 15 (top) and 30 (bottom) measurement vectors in the DOA estimation
problem of section 5.3. The figures on the right show the magnitude of the trigonometric polynomials
obtained from the dual solution. The red dots show the true directions of arrival (and magnitudes).

and assume that the directions of arrival and the source magnitudes remain constant
while the measurements are taken. The problem is formulated as

(60)

minimize
r∑

k=1

‖ck‖

subject to Y =
r∑

k=1


1

ejα sin θk

...
ej(n−1)α sin θk

 cHk ,
|θk| ≤ θc, k = 1, . . . , r,
YI = B,

with variables Y ∈ Cn×m, ck ∈ Cm, θk, and r. Here α = 2πd/λc, where d is the
distance between the grid points, λc is the signal wavelength, and θc is a given cutoff
angle. The columns of the K×m matrix B are the measurement vectors. The matrix
YI is the submatrix of Y containing the K rows indexed by I ⊂ {1, . . . , n}.

Figure 4 shows an instance with n = 30, K = 7, α = 2, and θc = π/4. We
show the solution for m = 15 and m = 30. The blue lines show the values of θk
and ‖ck‖/

√
m computed by solving problem (60). In an experiment of 150 trials with

randomly chosen index sets I, the signal was recovered accurately in 67.3% of the
trials for m = 15 and 85.3% for m = 30.

6. Conclusion. In this paper we developed semidefinite representations of a
class of gauge functions and atomic norms for sets parameterized by linear ma-
trix pencils. The formulations extend the semidefinite representation of the atomic
norm associated with the trigonometric moment curve, which underlies recent re-
sults in continuous or “off-the-grid” compressed sensing. The main contribution is a
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self-contained constructive proof of the semidefinite representations, using techniques
developed in the literature on the Kalman–Yakubovich–Popov (KYP) lemma. In ad-
dition to opening new possible areas of applications in system theory and control, the
connection with the KYP lemma is important for numerical algorithms. Specialized
techniques for solving SDPs derived from the KYP lemma, for example, by exploiting
real symmetries and rank-one structure [13, 18, 28, 29, 37], should be useful in the
development of fast solvers for the SDPs discussed in this paper.

Appendix A. Subsets of the complex plane. In this appendix we explain
the notation used in (7) to describe subsets of the closed complex plane. Recall that
we use the notation qΦ, qΨ for the quadratic forms (8).

If Φ is a 2 × 2 Hermitian matrix with det Φ < 0, then the quadratic equation
qΦ(λ, 1) = 0 defines a straight line (if Φ11 = 0) or a circle (if Φ11 6= 0) in the
complex plane. When Φ11 = 0, we include the point λ = ∞ in the solution set of
qΦ(λ, 1) = 0. Alternatively, one can define points in the closed complex plane as pairs
(µ, ν) 6= 0. If ν 6= 0, the pair (µ, ν) represents the complex number λ = µ/ν. If
ν = 0, it represents the point at infinity. Using this notation, a circle or line in the
closed complex plane is defined as the nonzero solution set of a quadratic equation
qΦ(µ, ν) = 0 with det Φ < 0. A congruence transformation Φ̃ = RΦRH corresponds
to a linear transformation between the sets associated with the matrices Φ and Φ̃.

The second type of set we encounter is defined by an equality and an inequality:

(61) qΦ(λ, 1) = 0, qΨ(λ, 1) ≤ 0.

We assume that det Φ < 0. If the inequality is redundant (e.g., Ψ = 0), then the
solution set of (61) is the line or circle defined by the equality. Otherwise, it is an
arc of a circle, a closed interval of a line, or the complement of an open interval of a
line. It includes the point at infinity if Φ11 = 0 and Ψ11 ≤ 0. Alternatively, one can
use homogeneous coordinates and consider sets of nonzero points (µ, ν) that satisfy
qΦ(µ, ν) = 0 and qΨ(µ, ν) ≤ 0. Some common combinations of Φ and Ψ are listed
in [7].

As for circles and lines, we can apply a congruence transformation to reduce (61)
to a simple canonical case. Iwasaki and Hara [22, Lemma 2] show that, for every Φ,
Ψ with det Φ < 0, there exists a nonsingular R such that

(62) Φ = RH
[

0 1
1 0

]
R, Ψ = RH

[
α β
β γ

]
R

with α, β, γ real, and α ≥ γ (see also [7]). Applying the congruence defined by R,
we can reduce the conditions (61) to an equivalent system Reλ′ = 0, α|λ′|2 + γ ≤ 0.
Keeping in mind that α ≥ γ, we can distinguish four cases. If 0 < γ ≤ α, the solution
set is empty. If γ = 0 < α, the solution set is a singleton {0}. If γ < 0 < α, the
solution set is the interval of the imaginary axis defined by |λ′| ≤ (−γ/α)1/2. If
γ ≤ α ≤ 0, the inequality is redundant and the solution set is the imaginary axis.

Appendix B. Matrix factorization results. This appendix contains a self-
contained proof of Lemma B.2, needed in the proof of Theorem 2.1, and some other
matrix factorization results that have appeared in papers on the KYP lemma [1, 2,
23, 32, 35]. We include the proofs because their constructive character is important
for the result in Theorem 2.1. Lemma B.1 is based on [35, Lemma 3] and [22, Lemma
5]. Lemma B.2 can be found in [32, Corollary 1].

Lemma B.1. Let U and V be two matrices in Cp×r.



SEMIDEFINITE REPRESENTATIONS OF GAUGE FUNCTIONS 1383

(a) If UUH = V V H , then U = V Λ for some unitary matrix Λ ∈ Cr×r.
(b) If UUH = V V H and UV H + V UH = 0, then U = V Λ for some unitary and

skew-Hermitian matrix Λ ∈ Cr×r.
(c) If UUH � V V H and UV H + V UH = 0, then U = V Λ for some skew-

Hermitian matrix Λ ∈ Cr×r with ‖Λ‖2 ≤ 1.

Proof. Part (a). If UUH = V V H , then U and V have singular value decomposi-
tions of the form

(63) U = PΣQHu , V = PΣQHv

with unitary P , Qu, Qv. The unitary matrix Λ = QvQ
H
u satisfies U = V Λ.

Part (b). If we substitute the singular value decompositions (63) in the equation
UV H + V UH = 0, we obtain

(64) Σ(QHu Qv +QHv Qu)ΣT = 0.

If U and V , and therefore Σ, have full column rank, this implies that the matrix
Λ̃ = QHu Qv is skew-Hermitian. The matrix Λ = QvΛ̃Q

H
v = QvQ

H
u is skew-Hermitian

and unitary, and satisfies U = V Λ. If U and V do not have full column rank, we
modify Λ̃ as follows. We write (64) as[

Σ1 0
0 0

] [
Λ̃11 + Λ̃H11 Λ̃12 + Λ̃H21

Λ̃21 + Λ̃H12 Λ̃22 + Λ̃H22

] [
Σ1 0
0 0

]
= 0

with Σ1 positive diagonal of size q × q, where q = rank(U) = rank(V ), and Λ̃11

is the q × q leading diagonal block of Λ̃. This shows that Λ̃11 + Λ̃H11 = 0, so Λ̃ is
unitary with a skew-Hermitian 1, 1 block. Since Λ̃11 is skew-Hermitian, it has a Schur
decomposition Λ̃11 = Q∆QH with unitary Q ∈ Cq×q, and ∆ is diagonal and purely
imaginary. Moreover, ∆∆H � I because Λ̃11 is a submatrix of the unitary matrix Λ̃.
Partition Q and ∆ as

(65) Λ̃11 =
[
Q1 Q2

] [ ∆1 0
0 ∆2

] [
Q1 Q2

]H
with ∆1∆H

1 ≺ I and ∆2∆H
2 = I. Since Λ̃ is unitary, we have Λ̃12Λ̃H12 = I − Λ̃11Λ̃H11 =

Q1(I −∆1∆H
1 )QH1 , and by part (a),

(66) Λ̃12 = Q1

(
I −∆1∆H

1

)1/2
Ω

for some unitary Ω. Therefore the matrix

[
Λ̃11 Λ̃12

−Λ̃H12 ΩH∆H
1 Ω

]
=

[
Q1 Q2 0
0 0 ΩH

] ∆1 0 Γ
0 ∆2 0
−Γ 0 ∆H

1

 QH1 0
QH2 0
0 Ω

 ,
where Γ = (I −∆1∆H

1 )1/2, is skew-Hermitian (from the expression on the left-hand
side and the fact that Λ̃11 is skew-Hermitian and ∆1 is purely imaginary) and unitary
(the right-hand side is a product of three unitary matrices). If we now define

Λ = Qv

[
Λ̃11 Λ̃12

−Λ̃H12 ΩH∆H
1 Ω

]
QHv ,
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then Λ is unitary and skew-Hermitian, and

U = P

[
Σ1 0
0 0

] [
Λ̃11 Λ̃12

Λ̃21 Λ̃22

]
QHv

= P

[
Σ1 0
0 0

] [
Λ̃11 Λ̃12

−Λ̃H12 ΩH∆H
1 Ω

]
QHv

= P

[
Σ1 0
0 0

]
QHv Λ

= V Λ.

Part (c). Assume UUH � V V H and V V H − UUH has rank s. We factorize
V V H −UUH = Ũ ŨH with Ũ ∈ Cp×s and write UUH � V V H and UV H +V UH = 0
as

(67)
[
U Ũ

] [
U Ũ

]H
=
[
V 0

] [
V 0

]H
and [

U Ũ
] [

V 0
]H

+
[
V 0

] [
U Ũ

]H
= 0.

It follows from part (b) that there exists a unitary skew-Hermitian matrix Λ̃ for which

[
U Ũ

]
=
[
V 0

] [ Λ̃11 Λ̃12

Λ̃21 Λ̃22

]
.

The subblock Λ = Λ̃11 satisfies U = V Λ, Λ + ΛH = 0, and ΛHΛ � I.

Lemma B.2. Let Φ, Ψ ∈ H2 with det Φ < 0. If U, V ∈ Cp×r satisfy

Φ11UU
H + Φ21UV

H + Φ12V U
H + Φ22V V

H = 0,(68)

Ψ11UU
H + Ψ21UV

H + Ψ12V U
H + Ψ22V V

H � 0,(69)

then there exist a W ∈ Cp×r, a unitary Q ∈ Cr×r, and vectors µ, ν ∈ Cr such that

U = W diag(µ)QH , V = W diag(ν)QH ,

and qΦ(µi, νi) = 0, qΨ(µi, νi) ≤ 0, (µi, νi) 6= 0 for i = 1, . . . , r.

Proof. Suppose U and V are p× r matrices that satisfy (68) and (69). As ex-
plained in Appendix A, there exists a nonsingular R such that

Φ = RH
[

0 1
1 0

]
R, Ψ = RH

[
α β
β γ

]
R

with β real and γ ≤ α. Define S = R11U +R12V and T = R21U +R22V . Then

(70) STH + TSH =
[
U V

] [ Φ11I Φ21I
Φ12I Φ22I

] [
UH

V H

]
= 0

and

(71) αSSH + γTTH =
[
U V

] [ Ψ11I Ψ21I
Ψ12I Ψ22I

] [
UH

V H

]
� 0.
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We show that this implies that S = W diag(s)QH , T = W diag(t)QH for some
W ∈ Cp×r, unitary Q ∈ Cr×r, and vectors s, t ∈ Cr that satisfy

sit̄i + s̄iti = 0, α|si|2 + γ|ti|2 ≤ 0, (si, ti) 6= 0, i = 1, . . . , r.

The result is trivial if S and T are zero, since in that case we can choose W = 0 and
arbitrary Q, s, t. If at least one of the two matrices is nonzero, then (71), combined
with α ≥ γ, implies that γ ≤ 0. Therefore, there are three cases to consider.

• If α ≤ 0, we write (70) as (S + T )(S + T )H = (S − T )(S − T )H . From
Lemma B.1, S+T = (S−T )Λ with Λ unitary. Let Λ = Qdiag(ρ)QH be the
Schur decomposition of Λ with |ρi| = 1 for i = 1, . . . , r. Define W = (S−T )Q,
s = (1/2)(ρ+ 1), and t = (1/2)(ρ− 1).

• If γ = 0 < α, then S = 0, and we can take Q = I, W = T , s = 0, and t = 1.
• If γ < 0 < α, then from Lemma B.1, S = (−γ/α)1/2TΛ for some skew-

Hermitian Λ with ΛHΛ � I. This matrix has a Schur decomposition Λ =
Qdiag(ρ)QH with |ρi| ≤ 1 for i = 1, . . . , r. Define W = TQ, s = (−γ/α)1/2ρ,
and t = 1.

The factorizations of U and V now follow from[
U
V

]
= (R−1 ⊗ I)

[
S
T

]
= (R−1 ⊗ I)

[
W diag(s)
W diag(t)

]
QH =

[
W diag(µ)
W diag(ν)

]
QH ,

where µ and ν are defined as (µi, νi) = R−1(si, ti) for i = 1, . . . , r. These pairs (µi, νi)
are nonzero and satisfy qΦ(µi, νi) = 0 and qΨ(µi, νi) ≤ 0.

Appendix C. Strict feasibility. In this appendix, we discuss strict feasibility
of the constraints X � 0, (11), and (12) in Theorem 2.1. We assume that the set
C defined in (7) is not empty and not a singleton. This means that if the inequality
qΨ(µ, ν) ≤ 0 in the definition is not redundant, then there exist points in C with
qΨ(µ, ν) < 0. We will distinguish these two cases.

• Line or circle. If the inequality qΨ(µ, ν) ≤ 0 is redundant, we have C =
{(µ, ν) ∈ C2 | (µ, ν) 6= 0, qΦ(µ, ν) = 0}, a line or circle in homogeneous
coordinates. In this case we understand by strict feasibility of X that

(72) X � 0, Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0.

We also define C◦ = C.
• Segment of line or circle. In the second case, C is a proper one-dimensional

subset of the line or circle defined by qΦ(µ, ν) = 0. In this case we define
strict feasibility of X as

(73) (72), Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H ≺ 0.

We also define C◦ = {(µ, ν) 6= 0 | qΦ(µ, ν) = 0, qΨ(µ, ν) < 0}.
The conditions on F and G that guarantee strict feasibility will be expressed in terms
of the Kronecker structure of the matrix pencil λG − F [12, 43]. For every matrix
pencil, there exist nonsingular matrices P and Q such that

(74) P (λG− F )Q = diag (Lη1(λ)T , . . . , Lηl(λ)T , λB −A,Lε1(λ), . . . , Lεr (λ)),
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where diag represents the block-diagonal operator, Lε(λ) is the ε× (ε+ 1) pencil

Lε(λ) =


λ −1 0 · · · 0 0
0 λ −1 · · · 0 0
...

...
... 0 0

0 0 0 · · · −1 0
0 0 0 · · · λ −1

 ,

and λB−A is a regular pencil, i.e., it is square and det(λB−A) is not identically zero.
The parameters ε1,. . . ,εr, and η1,. . . ,ηl are the right and the left Kronecker indices
of the pencil, respectively. The normal rank of the pencil is p− l, where p is the row
dimension.

We show that there exists a strictly feasible X if and only if the following two
conditions hold.

1. The normal rank of λG− F is p. This means that l = 0 in (74).
2. The generalized eigenvalues of λB −A are nondefective and lie in C◦. (More

accurately, if λ is a finite generalized eigenvalue, then (λ, 1) ∈ C◦. If it is an
infinite generalized eigenvalue, then (1, 0) ∈ C◦.)

A sufficient but more easily verified condition is that rank (µG− νF ) = p for all
(µ, ν) 6= 0, i.e., l = 0 and the block λB −A in (74) is not present.

Proof. Without loss of generality, we assume that the pencil is in the Kronecker
canonical form (P = I, Q = I in (74)) and Φ = Φu, so the equality in (72) is

(75) FXFH = GXGH .

We first show that the conditions are necessary. Assume X is strictly feasible. Parti-
tion X as an (l+ 1 + r)× (l+ 1 + r) block matrix, with block dimensions equal to the
column dimensions of the l+ 1 + r block columns in (74). Suppose l ≥ 1 and consider
the kth diagonal block Xkk with 1 ≤ k ≤ l. The kth diagonal block of the pencil is

λGk − Fk = Lηk(λ)T = λ

[
Iηk

01×ηk

]
−
[

01×ηk
Iηk

]
.

The kth diagonal block of (75) is FkXkkF
H
k = GkXkkG

H
k or[

01×ηk
Iηk

]
Xkk

[
0ηk×1 Iηk

]
=

[
Iηk

01×ηk

]
Xkk

[
Iηk 0ηk×1

]
.

This is impossible, since Xkk � 0. Hence, if (75) holds with X � 0, then l = 0.
Next suppose det(µB− νA) = 0 for some (µ, ν) 6= 0. If ν 6= 0, then µ/ν is a finite

generalized eigenvalue of the pencil λB−A; if ν = 0, then the pencil has a generalized
eigenvalue at infinity. Let y be a corresponding left generalized eigenvector, i.e.,
yH(µB − νA) = 0, while yHB and yHA are not both zero (since yHB = yHA = 0
would imply that the pencil λB − A is singular). Define uH = yHB if ν 6= 0 and
uH = yHA otherwise. This is a nonzero vector. The first diagonal block of (75) is

(76) AX11A
H = BX11B

H .

From this it follows that |µ|2uHX11u = |ν|2uHX11u, and, since X11 � 0, we have
qΦ(µ, ν) = |µ|2 − |ν|2 = 0, i.e., the generalized eigenvalues are on the unit circle. In
addition, if the inequality in (73) holds, then

Ψ11AX11A
H + Ψ21AX11B

H + Ψ12BX11A
H + Ψ22BX11B

H ≺ 0,
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and from this, qΨ(µ, ν)(uHX11u) < 0. This is only possible if qΨ(µ, ν) < 0. We
conclude that if det(µB − νA) = 0 for nonzero (µ, ν), then (µ, ν) ∈ C◦.

Next we show that the generalized eigenvalues of the pencil λB − A are nonde-
fective. Since C◦ is the unit circle or a subset of the unit circle, there are no infinite
generalized eigenvalues. Assume the pencil is in Weierstrass canonical form, i.e.,

λB −A = diag ((λ− ρ1)I − Js1 , (λ− ρ2)I − Js2 , . . . , (λ− ρt)I − Jst),

where ρ1,. . . ,ρt are the generalized eigenvalues (which satisfy |ρi| = 1), and Js is the
s×s matrix with 1s on the first superdiagonal and zeros elsewhere. Then (76) implies
that (ρiI + Jsi)X11,i(ρiI + Jsi)

H = X11,i, where X11,i is the ith diagonal block of
X11 if we partition X11 as a t× t block matrix with i, j block of size of si × sj . Since
|ρi| = 1, this simplifies to

ρiX11,iJ
T
si + ρ̄iJsiX11,i + JsiX11,iJ

T
si = 0.

The last rows of the second and third matrices are zero. Therefore, the last row of the
first matrix is zero. However, the element in column si−1 is the last diagonal element
of the positive definite matrix X11,i. This is a contradiction unless si = 1, i.e., the
eigenvalue ρi is nondefective. We conclude that the two conditions are necessary.

It remains to show sufficiency. Suppose λG−F has the Kronecker canonical form

λG− F = diag (λ− ρ1, . . . , λ− ρt, Lε1(λ), . . . , Lεr (λ))

with ρi ∈ C◦. Define X = diag (1, . . . , 1, X11, . . . , Xrr) with diagonal blocks

Xkk =

εk+1∑
i=1


1
λki
...
λεkki




1
λki
...
λεkki


H

, k = 1, . . . , r,

where λk1,. . . ,λk,εk+1 are distinct and in C◦. This matrix X is strictly feasible.

Acknowledgments. We would like to thank the associate editor and the two
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