
Sampling method for semidefinite programs with nonnegative

Popov function constraints∗

Anders Hansson† Lieven Vandenberghe‡

Abstract

An important class of optimization problems in control and signal processing involves the
constraint that a Popov function is nonnegative on the unit circle or the imaginary axis. Such
a constraint is convex in the coefficients of the Popov function. It can be converted to a finite-
dimensional linear matrix inequality via the Kalman-Yakubovich-Popov lemma. However, the
linear matrix inequality reformulation requires an auxiliary matrix variable and often results in a
very large semidefinite programming problem. Several recently published methods exploit prob-
lem structure in these semidefinite programs to alleviate the computational cost associated with
the large matrix variable. These algorithms are capable of solving much larger problems than
general-purpose semidefinite programming packages. In this paper we address the same prob-
lem by presenting an alternative to the linear matrix inequality formulation of the nonnegative
Popov function constraint. We sample the constraint to obtain an equivalent set of inequalities
of low dimension, thus avoiding the large matrix variable in the linear matrix inequality formu-
lation. Moreover, the resulting semidefinite program has constraints with low-rank structure,
which allows the problems to be solved efficiently by existing semidefinite programming pack-
ages. The sampling formulation is obtained by first expressing the Popov function inequality as
a sum-of-squares condition imposed on a polynomial matrix and then converting the constraint
into an equivalent finite set of interpolation constraints. A complexity analysis and numerical
examples are provided to demonstrate the performance improvement over existing techniques.

1 Introduction

A Popov function is a rational matrix function of the form

FM (z) =

[
((1/z̄)E −A)−1B

I

]H
M

[
(zE −A)−1B

I

]
, (1)

defined for all complex z with det(zE − A) 6= 0 and det(z̄−1E − A) 6= 0. The symmetric matrix
M ∈ R(n+m)×(n+m) is sometimes called the center matrix of the Popov function. The other
parameters in the definition are the matrices A,E ∈ Rn×n and B ∈ Rn×m.

A variety of important system properties can be expressed in the form

FM (z) � 0 ∀z ∈ C : |z| = 1, (2)

∗This work was carried out while the first author was a Visiting Professor at University of California, Los Angeles.
The research of the second author is supported in part by the National Science Foundation under Grant No. 1128817.
†A. Hansson is with the Division of Automatic Control, Linköping University, Sweden, e-mail: hansson@isy.liu.se.
‡L. Vandenberghe is with the Electrical Engineering Department, University of California, Los Angeles, USA,

e-mail: lieven.vandenberghe@ucla.edu.

1

where the inequality FM (z) � 0 means that FM (z) is Hermitian positive semidefinite. We will
call this type of constraint a Popov function constraint. In applications one is often interested in
optimization problems of the form

minimize cTx
subject to FM(x)(z) � 0 ∀z ∈ C : |z| = 1,

(3)

in which a linear cost function is minimized, subject to a Popov function constraint with a center
matrix M(x) that depends affinely on the optimization variable x ∈ Rp, and possibly subject to
additional convex constraints on x; see [BDG+93, BEFB94, Pag95, Bal95, Jön96, MR97a, MKJR98,
HAPS01, RP02, HSK03, WBV98, Dum07]. As we explain in Section 2, this problem is readily
transformed to an equivalent problem

minimize cTx
subject to W (1/z̄)HM(x)W (z) � 0 ∀z ∈ C : |z| = 1,

(4)

where W (z) is matrix polynomial satisfying[
−zE +A B

]
W (z) = 0 ∀z.

The main point of the paper is that such an optimization problem can be exactly reformulated as
a semidefinite program (SDP)

minimize cTx
subject to Wi(1/ζ̄)H (M(x)−X)Wj(ζ) = 0, ζ ∈ Zij , 1 ≤ i ≤ j ≤ m

X � 0
(5)

with variables x and X ∈ Sm+n, where Wi denotes the ith column of W , and Zij are finite sets of
points in C ∪ {∞}. We will refer to the SDP (5) as the sampled problem or sampled formulation.
Notice the difference between (5) and a straightforward discretization of (4),

minimize cTx
subject to W (1/ζ̄)HM(x)W (ζ) � 0, ζ ∈ Z, (6)

where Z is a finite set of sample points on the unit circle. This is only an approximation of (4),
while the sampled form (5) is exactly equivalent.

In control theory and signal processing, Popov function constraints are usually transformed
to finite-dimensional inequalities by invoking the discrete-time Kalman-Yakubovich-Popov (KYP)
lemma, which states that the Popov frequency domain inequality holds if and only if[

A B
E 0

]T [
P 0
0 −P

] [
A B
E 0

]
+M � 0 (7)

for some symmetric matrix variable P . (There is also a continuous-time version, and more generally,
the lemma holds for many other “stability” regions. In this paper we will focus on the discrete-time
case. All the other cases can be transformed to this case, see [WHJ09].) By applying the KYP
lemma the optimization problem in (5) is reformulated as an optimization problem of the form

minimize cTx

subject to

[
A B
E 0

]T [
P 0
0 −P

] [
A B
E 0

]
+M(x) � 0.

(8)

2

This is an SDP problem in inequality form, with variables P and x, and is sometimes referred to
as a KYP-SDP. In this paper we argue that in many cases the sampled formulation (5) is easier to
solve than the equivalent KYP-SDP (8).

Before developing the details of the sampling formulation we review previous work on exploiting
structure in KYP-SDPs.

Algorithms This work is motivated by the limits of general-purpose SDP solvers [Stu99, TTT03,
BY05, YFK03, Bor99] when applied to (8). KYP-SDPs are usually quite dense, and include matrix
variables, so the number of optimization variables can easily run into several ten thousand, even
when the dimensions (number of states, inputs, and outputs) of the underlying control problem is
not particularly large. The SDP (8) has in the order of p+ n2 real variables and is therefore very
expensive to solve via standard semidefinite programming software.

For this reason, several types of dedicated algorithms for KYP-SDPs have been proposed in
the literature. These include cutting-plane methods that avoid the introduction of the matrix
variable P by working directly with the frequency-domain inequality (2) [Par99, KMJ00, KM01,
KMJ03, WKH08], interior-point methods based on new barrier functions for the convex set defined
by the frequency domain inequalities [KM01, KM03, KM07], and customized implementations of
standard interior-point methods for semidefinite programming [HV00, AV02, GHNV03, Hac03,
GH03, VBW+05, LP04, RV06, HWH06, LV07].

With improvements in general-purpose SDP software packages, their capabilities of handling
problem structure have advanced. It is therefore of interest to explore reformulations of Popov
function constraints that result in problems that can be solved by general-purpose solvers at a
cost that is comparable to the dedicated solvers listed above. (An example of such a preprocessor,
based on a reformulation of the dual problem, is discussed in [WHJ09].) In particular, several
general-purpose packages now exploit low-rank structure in the coefficient matrices of SDPs, in
addition to sparsity. For example, SDPT3 [TTT10] offers this capability [FLH11]. Some of the fast
algorithms for SDPs involving nonnegative scalar polynomials and Popov functions [LP04, RV06,
RDV07, LV07] are based on exploiting low-rank structure and are are therefore easily implemented
with a general-purpose solver that exploits such structure. The main contribution of the paper is to
extend the low-rank approach to Popov function constraints for multi-input systems. We present
a reformulation that allows the problem to be solved at a cost in the order of n3 floating point
operations per iteration (for fixed m and p) using existing packages that exploit low-rank structure.

Organization The remaining part of this paper is organized as follows. Next we will define some
notation and make some standing assumptions that will hold throughout the paper. In Section 2
we revisit the KYP lemma and discuss Popov functions in more detail. Here we will derive the
sampling formulation and discuss its computational complexity. In Section 3 we recapitulate some
common methods for modeling based on orthogonal basis functions. They are especially suitable
when considering sampling, since they often result in well-conditioned problem formulations. In
Section 4 we present two applications of Popov function inequalities: the identification of frequency
domain spectra and stability analysis using integral quadratic constraints. We carry out numerical
experiments for the two examples and we demonstrate that for larger problems the sampling method
in many cases outperforms other solution methods. Finally, in Section 5 we make some concluding
remarks and discuss directions for future research.

3

Notation and assumptions R and C denote the sets of real and complex numbers, respectively,
and Sn denotes the set of real symmetric matrices of order n. The symbols � and � are used for
matrix inequalities. Ā is the complex conjugate of the matrix A; AH = ĀT is the complex conjugate
transpose. trX is the trace of the matrix X. We use Y = diag(X1, X2, . . . , Xp) to denote the block-
diagonal matrix with the matrices Xi as its diagonal blocks. The matrices Xi are not necessarily
square. If T (z) is a polynomial matrix with r columns, then we define T∗(z) as the polynomial
matrix

T∗(z) = diag(zn1 , zn2 , . . . znr)T (1/z̄)H

where ni is the column degree of column i of T (z). In other words, if Ti(z) = a0 +a1z+ · · ·+aniz
ni

is column i of T (z), with ani 6= 0, then T∗(z) has as its ith row the polynomial row vector

aH0 z
ni + aH1 z

ni−1 + · · ·+ aHni−1z + aHni .

We assume that the n× (n+m) pencil
[
−zE +A B

]
, defined by the matrices A, B, E in the

Popov function (1), has full row rank for all z and that E is invertible. Hence the pencil describes a
controllable descriptor system without any algebraic constraints. It is also assumed that zE−A is
invertible on the unit circle. This can always be achieved with a preliminary state-feedback. Notice
that Popov function constraints are invariant under state-feedback.

2 The KYP lemma

The discrete-time KYP lemma states that the Popov function FM (z) defined in (1) is positive
semidefinite on the unit circle if and only if there exists a matrix P ∈ Sn that satisfies the LMI (7).
In this section we develop an equivalent form of the KYP lemma that is better suited for semidefinite
programming algorithms. The formulation is based on the interpretation of the KYP lemma as a
sum-of-squares characterization of nonnegative Popov functions [Nes00, GHN+02].

2.1 Reformulated KYP lemma

Let A : Sn → Sm+n be the linear mapping

A(P) =

[
A B
E 0

]T [
P 0
0 −P

] [
A B
E 0

]
and let L = {A(P) | P ∈ Sn} be its range. It is shown in [HSK99, p.340] that L is the space of the
center matrices of identically zero Popov functions:

L =
{
Q ∈ Sn+m | FQ(z) = 0 ∀z ∈ C

}
. (9)

(See also [IOW99].) Using this result we can rephrase the KYP lemma as follows. The standard
version of the KYP lemma states that FM (z) � 0 on the unit circle if and only if A(P) + M � 0
for some P . Equivalently, the matrix X = A(P) +M satisfies

M −X ∈ L, X � 0. (10)

We conclude that the Popov function FM (z) is positive semidefinite on the unit circle if and only
if there exists an X that satisfies (10).

4

We can use the geometric form of the KYP lemma to write problem (3) as

minimize cTx
subject to M(x)−X ∈ L

X � 0.
(11)

This is an SDP in the variables X and x, with the equality constraint expressed geometrically,
without choosing a specific parametrization of L. It can be shown that if (A,B) is controllable,
then dimL = n(n+ 1)/2, i.e., the nullspace of A has dimension zero [BV03].

Various equivalent forms of this SDP can now be derived by choosing different parameterizations
of L. If we use the range space parametrization L = {A(P) | P ∈ Sn}, we obtain the standard
KYP-SDP (8). In the next section we develop an alternative minimal ‘nullspace’ parametrization
L = {Q | B(Q) = 0} where B : Sm+n 7→ Rr is a linear mapping

B(X) = (tr(A1X), . . . , tr(ArX)).

A simple dimension argument shows that this should be possible with

r =
(n+m)(n+m+ 1)

2
− dimL = mn+

m(m+ 1)

2
. (12)

linear equalities. Using the nullspace parametrization of L, the SDP (11) and its dual can be
written as

minimize cTx
subject to Gx+ B(X) = b

X � 0,

maximize bT y
subject to Badj(y) � 0

GT y = c,

(13)

where Badj(y) =
∑r

i=1 yiAi is the adjoint of B. If M(x) is given as M(x) = M0 +
∑p

i=1 xiMi then
G and b in (13) are defined as

Gik = − tr(AiMk), bi = tr(AiM0), i = 1, . . . , r, k = 1, . . . , p. (14)

In the semidefinite programming literature, the primal problem in (13) is called an SDP in standard
form with free variables (the variables x are ‘free’, i.e., do not have to be nonnegative).

One can also eliminate the equality constraint in the dual problem in (13) by expressing the
dual variable as y = Fu− h, where F has r− p columns that span the nullspace of GT . This gives

minimize tr(CX)
subject to D(X) = d

X � 0,

maximize dTu
subject to Dadj(u) � C

(15)

with C = Badj(h), D(X) = F TB(X), and d = F T b. The primal problem is a standard form SDP
with r− p equality constraints; the dual problem is an inequality form SDP with a vector variable
u of dimension r − p.

A nullspace representation of L can be derived by eliminating P from the range space parametriza-
tion. However, in the following sections we will see that a more direct derivation provides a nullspace
representation with useful low-rank structure in the coefficients Ai.

5

2.2 Polynomial Popov functions

Consider a right co-prime Matrix Fraction Description (MFD) of (zE −A)−1B:

(zE −A)−1B = N(z)D(z)−1

where N(z) and D(z) are n ×m and m ×m polynomial matrices with real coefficients and D(z)
is column reduced. The column degrees ni, i = 1, 2, . . . ,m, of D(z) are the controllability indexes
(hence they satisfy n1 + · · · + nm = n) and the column degrees of N(z) are equal to ni − 1; see
[Kai80, chapter 6]. The columns of the polynomial matrix

W (z) =

[
N(z)
D(z)

]
have column degree ni and form a minimal basis of the nullspace of the controllability pencil[
−zE +A B

]
. Several numerically reliable algorithms for computing the basis matrix W (z) have

been developed (see, e.g., [Pat81, BV87]) and this can be done in cubic complexity in n. Substituting
the MFD in the definition of FQ we obtain

FQ(z) =

[
N(1/z̄)D(1/z̄)−1

I

]H
Q

[
N(z)D(z)−1

I

]
.

Now define

PQ(z) = diag(zn1 , . . . , znm)D(1/z̄)HFQ(z)D(z)

= diag(zn1 , . . . , znm)W (1/z̄)HQW (z) (16)

= W∗(z)QW (z).

This is a polynomial matrix with i, j element of degree ni + nj or less. We will refer to PQ(z) as
the polynomial Popov function with central matrix Q. Clearly, FQ(z) = 0 ∀z ∈ C if and only if

PQ(z) = 0 ∀z ∈ C, (17)

and therefore L = {Q | PQ(z) = 0 ∀z ∈ C}.

2.3 Sampled constraint

We now reduce the equality (17) in Q to a finite set of equalities

(PQ(ζ))ij = 0, ζ ∈ Zij , 1 ≤ i, j ≤ m, (18)

where each Zij is a finite set of points in C ∪ {∞}. If ζ = ∞ the equality (PQ(ζ))ij = 0 means
that the highest order coefficient of (PQ(ζ))ij is zero. We refer to (18) as the sampled form of the
constraint PQ(z) = 0.

Before deriving the conditions on the sets of sample points Zij we note an important symmetry
property. Define

pij(z) = z−ni(PQ(z))ij = Wi(1/z̄)
HQWj(z) (19)

6

where Wi(z) denotes the ith column of W (z). The functions pij(z) are Laurent polynomials of the
form pij(z) =

∑nj
k=−ni akz

k. The definition (19) implies that

pji(z) = pij(1/z̄) (20)

for all z. Hence, pji(z) is identically zero if and only if pij(z) is identically zero. It is therefore
sufficient to impose constraints that guarantee that the upper triangular part of PQ(z) is zero. In
other words, Q ∈ L if and only if

pij(z) = 0 ∀z, 1 ≤ i ≤ j ≤ m.

Each of these constraints can be converted as follows to a finite set of constraints

pij(ζ) = 0, ζ ∈ Zij . (21)

(If ζ =∞, the equality means that the coefficient of znj in pij(z) is zero; if ζ = 0, it means that the
coefficient of z−ni is zero). We consider the off-diagonal and the diagonal polynomials separately.

• i < j. The polynomial znipij(z) has degree ni +nj or less, and hence at most ni +nj distinct
zeros. Therefore znipij(z) is identically zero if it is zero at a set Zij of ni + nj + 1 or more
distinct but otherwise arbitrary points in C ∪ {∞}. Here we give the same interpretation
as above to a zero at infinity, i.e., the coefficient of zni+nj in znipij(z) is zero. Thus, if
Zij contains ni + nj + 1 distinct elements, then the sampled constraint (21) is equivalent to
pij(z) = 0 ∀z.

• i = j. The polynomial znipii(z) has degree 2ni or less. By the same argument as above,
znipii(z) is identically zero if it is zero at 2ni + 1 distinct points in C ∪ {∞}. However, the
symmetry relation (20) implies that if pii(ζ) = 0, then pii(1/ζ̄) = 0. Hence, any sampling
point with |ζ| 6= 1 counts for two. We conclude that for i = j the sampled constraint (21) is
equivalent to pii(z) = 0 ∀z if the points in Zii are distinct, ζ 6= 1/γ̄ for any two ζ, γ ∈ Zii,
and ∑

ζ∈Zii

δ(ζ) = 2ni + 1 (22)

where δ(ζ) = 2 if |ζ| 6= 1 and δ(ζ) = 1 otherwise.

When the sets Zij are chosen following these rules, the constraint (17) is equivalent to

Wi(1/ζ̄)HQWj(ζ) = 0, ζ ∈ Zij , 1 ≤ i ≤ j ≤ m, (23)

and therefore the SDP (11) can be expressed as

minimize cTx
subject to Wi(1/ζ̄)H (X −M(x))Wj(ζ) = 0, ζ ∈ Zij , 1 ≤ i ≤ j ≤ m

X � 0.

(24)

7

2.4 Nullspace representation of L

The preceding discussion is independent of whether the problem data (Q and W) are real. From
now on we assume that Q and W are real and verify that the sampled constraint results in a number
of linearly independent constraints equal to (12).

The function pij(z) = Wi(1/z̄)
HQWj(z) is complex-valued. We use the notation

pij(z) = tr (Fij(z)Q) + i tr (Gij(z)Q)

where i =
√
−1 and Fij(z) and Gij(z) are real symmetric matrices defined as

Fij(z) =
1

2

(
Uj(z)Ui(1/z̄)

T + Ui(1/z̄)Uj(z)
T
)

(25)

Gij(z) =
1

2

(
Uj(z)JUi(1/z̄)

T − Ui(1/z̄)JUj(z)T
)

(26)

with

Ui(z) =
[
<Wi(z) =Wi(z)

]
, J =

[
0 −1
1 0

]
.

Every sampling constraint in (23) corresponds to two equations

tr(Fij(ζ)Q) = 0, tr(Gij(ζ)Q) = 0. (27)

However, not all of these constraints are linearly independent because of symmetries in the definition
of Fij(z) and Gij(z). We have already noted the symmetry property (20). For i = j this implies
that pii(z) is real (Gii(z) = 0) for z on the unit circle. This can also be seen from (26) which gives
Gii(z) = 0 for z = 1/z̄ and i = j. From the fact that the coefficients of pij(z) are real, we also note

that pij(z̄) = pij(z) for all z. In particular, pij(z) is real (Gij(z) = 0) for z on the real axis.
We now count the number of independent equations obtained by replacing each constraint in (23)

by the linear equations (27) to get a nullspace representation L = {Q | tr(AkQ) = 0, k = 1, . . . , r}
with real symmetric Ak. We again distinguish the off-diagonal and the diagonal elements.

• i < j. Recall that Zij is a set of ni + nj + 1 distinct points in C ∪ {∞}.
For each real ζ ∈ Zij (including ζ =∞), we obtain only one nontrivial constraint tr(Fij(ζ)Q) =
0 since pij(z) is real (Gij(ζ) = 0) on the real axis. For each complex ζ ∈ Zij we get two con-
straints. However, without loss of generality we can choose the complex elements in Zij in
complex conjugate pairs. Since pij(ζ) and pij(ζ̄) are complex conjugates we obtain only two
independent equalities (27) for each pair ζ, ζ̄. The interpolation constraints (23) therefore
reduce to a set of

ni + nj + 1

equality constraints with real coefficients.

• i = j. Recall that Zii is a set of distinct points in C ∪ {∞} that satisfies (22). We again
assume that the complex points are chosen in complex conjugate pairs.

8

We can partition Zii in four sets, depending on whether ζ is on the unit circle or not, and
whether it is real or not. Define

kr = #{ζ ∈ Zii | |ζ| = 1,=ζ = 0}
kc = #{ζ ∈ Zii | |ζ| = 1,=ζ > 0}
lr = #{ζ ∈ Zii | |ζ| 6= 1,=ζ = 0}
lc = #{ζ ∈ Zii | |ζ| 6= 1,=ζ > 0}.

If∞ ∈ Zii it is counted as a real point (i.e., included in lr). Since complex points in Zii come
in conjugate pairs, the condition (22) gives

kr + 2kc + 2lr + 4lc = 2ni + 1.

This means that kr = 1, i.e., either 1 ∈ Zii or −1 ∈ Zii, but not both. Therefore kc +lr +2lc =
ni. We now count the number of equality constraints.

For each real point ζ, we obtain one equality constraint in (27). For each pair ζ, ζ̄ with
|ζ| = 1, we also obtain one equality constraint since pii(z) is real on the unit circle and
equal to pii(z̄). For each pair ζ, ζ̄ with |ζ| 6= 1, we obtain two equality constraints. The
interpolation constraint (23) for i = j therefore reduces to

kr + kc + lr + 2lc = ni + 1

equality constraints with real symmetric coefficients.

Adding the constraints for 1 ≤ i ≤ j ≤ m gives a total of

m∑
i=1

i−1∑
j=1

(ni + nj + 1) +

m∑
i=1

(ni + 1) = mn+
m(m+ 1)

2
(28)

equality constraints. This number coincides with (12) and therefore the entire set of equalities is
linearly independent.

2.5 Computational complexity

We now discuss the reduction in complexity obtained from the sampled formulation. To provide
some perspective, we first note the per-iteration-complexity of a general-purpose SDP solver applied
to the KYP-SDP in its common form (8). If the solver does not exploit any structure in the problem
data, then the total count of floating-point operations per iteration includes terms

(p+
n(n+ 1)

2
)(m+ n)3, (p+

n(n+ 1)

2
)2(m+ n)2, (p+

n(n+ 1)

2
)3.

We are interested in applications where the n6 term dominates. In other applications, with n small
compared to m or p, other terms can be dominant and the sampling method may not provide any
advantage over a general-purpose method directly applied to (8). We will therefore assume that
p� n2 and m� n.

We now compare the complexity of solving the SDPs (13) and (15) that result from the sampled
formulation via a general-purpose SDP solver that does not exploit any structure in the coefficients

9

Ak or via a solver that exploits low-rank structure. We exclude from the analysis the cost of
computing and sampling the polynomial matrix W (z) (for algorithms to do this, see [Pat81, BV87]),
and we do not explicitly take into account that the sampling points are chosen in complex conjugated
pairs. These simplifications do not change the overall order of the complexity estimates.

The size of the SDPs (13) depends on the dimensions p, n, m of the original KYP-SDP (3).
The vector variable x has dimension p, the matrix variable X has size m + n, and there are
r = mn + m(m + 1)/2 equality constraints. To make the interpretation of the analysis easier we
will assume p = O(n) and r = O(mn) and express the flop counts in terms of m and n.

We focus on the SDP formulation (13). Alternatively, one can consider the standard form
SDP (15) which has q = r − p equality constraints and no free variables. Under our assumptions
q = O(mn), so the number of equalities of the SDP is of the same order as (13) and the complexity
estimates are rougly the same.

General-purpose solver We first estimate the complexity of a general-purpose solver. Each
matrix Ai is of the form Fij(ζ) or Gij(ζ) as defined in (25)–(26), and therefore can be computed in
order (m+ n)2 operations. The total cost to compute the r coefficients Ai is order r(m+ n)2. The
cost of forming the matrix G and the vector b in (14) is order rp(m+n)2 in general (for dense Mk).
Therefore the total cost of computing the parameters Ai, G, b in the standard form SDP is of order
r(m+ n)2 + rp(m+ n)2. However, if the matrices Mk have low rank and appear in factored form,
which is very common in applications, the cost of computing the coefficients G, b is only rp(m+n),
and the total cost of setting up the problem is reduced to order r(m+ n)2 + rp(m+ n), where the
second term can be neglected since we assume that p = O(n). If the coefficients are very sparse,
the cost of computing of G and b is even less.

The dominating cost in solving SDPs using interior-point (IP) methods is the cost of forming
and solving the equations for the search directions in each iteration (typically for about 20–50
iterations). When a primal or dual algorithm is used, or a primal-dual algorithm based on the
Nesterov-Todd scaling, these equations take the general form

−S−1∆XS−1 + Badj(∆y) = R1

GT∆y = r2

B(∆X) +G∆x = r3

for some right-hand sides R1, r2, r3, and a positive definite S (see [VBW+05, appendix A]). The
equations are usally solved by eliminating ∆X from the first equation and solving a reduced system[

H G
GT 0

] [
∆y
∆x

]
=

[
r3 + B(SR1S)

r2

]
(29)

where H is defined by H∆y = B(SBadj(∆y)S), i.e.,

Hkl = tr(AkSAlS), k, l = 1, . . . , r

The cost of one iteration is dominated by computing the matrix H and solving the system (29).
The assembly of H can be carried out in several different ways with approximately the same

complexity. For example, one can first compute the r matrix products AkS at a cost of r(m+ n)3

10

flops, and then make the inner products of the scaled matrices at a total cost of r2(m+ n)2 flops.
Assuming r = O(mn) this results in a flop count in the order of

m2n2(m+ n)2 (30)

for constructing H. The cost of factoring the coefficient matrix of (29) is order (r+ p)3, i.e., m3n3

if we assume p = O(n) and r = O(mn). The cost (30) of assembling H therefore outweighs the
cost of factoring and solving the reduced system (29).

Solver that exploits low-rank structure A solver that exploits low-rank structure can take
advantage of the fact that the coefficient matrices Ak can be expressed as

Ak = ŨkṼ
T
k + ṼkŨ

T
k

with Ũk and Ṽk column vectors or two-column matrices. This can be seen from (25)–(26). If we
keep Ak in this factored form the calculation of H can be performed more efficiently because

Hkl = tr
(

(ŨkṼ
T
k + ṼkŨ

T
k)S(ŨlṼ

T
l + ṼlŨ

T
l)S

)
= 2 tr

(
(Ṽ T
k SŨl)(Ṽ

T
l SŨk)

)
+ 2 tr

(
Ṽ T
k SṼl)(Ũ

T
l SŨk)

)
.

Hence H can be computed by first forming 2r products SŨk and SṼk at at cost of r(m+n)2, then
computing the r(r+1)/2 matrix products Ṽ T

k (SŨl), Ṽ
T
k (SṼl) and ŨTl (SŨk), at a cost of r2(m+n),

and then computing the coefficients of H via order r2 inner products of 2× 2 matrices. Using this
method, the cost of assembling H is of order

m2n2(m+ n), (31)

again assuming r = O(mn). Hence, compared with a general-purpose implementation (30) the
complexity as a function of m and n is reduced by one order. The cost of factoring H is identical
to the cost for a general-purpose implementations, i.e., O(m3n3). Hence, at this point the cost
of solving the reduced system dominates the cost of assembling H and the overall complexity per
iteration is order

m3n3. (32)

If m = 1, we obtain the same O(n3) complexity per iteration as the algorithms for scalar
nonnegative polynomials published in [AV02, LP04, RV06]. For the special case of a multivariable
finite impulse response system we can also compare the cost of the sampling method with the fast
barrier method for optimization over nonnegative trigonometric matrix polynomials discussed by
Genin et al. [GHNV03]. Consider the optimization problem

minimize cTx

subject to
N∑

k=−N
Ck(x)zk � 0 ∀z ∈ C : |z| = 1,

(33)

11

with m×m coefficients C−k(x) = Ck(x)T that depend linearly on the optimization variable x ∈ Rp.
The function on left-hand side of the constraint is a Popov function with central matrix

M(x) =

0 · · · 0 CN (x)
0 · · · 0 CN−1(x)
...

. . .
...

...
0 · · · 0 C1(x)

C−N (x) · · · C−1(x) C0(x)

 ∈ S(N+1)m

and system matrices

A =

0 I 0 · · · 0 0 0
0 0 I · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 I 0
0 0 0 · · · 0 0 I
0 0 0 · · · 0 0 0

∈ RmN×mN , B =

0
0
0
...
0
0
I

∈ RmN×m.

The optimization problem (33) can be expressed as a standard SDP (15) with D a linear mapping
from Sm(N+1) to Rq and q = m(m+1)/2+m2N−p. If D is chosen so that Dadj(u) is block-Toeplitz
[GHNV03], displacement rank techniques can be used to speed up the calculations in a dual barrier
method and, in particular, the cost of evaluating the Hessian of the barrier function. The complexity
of the fast algorithm for assembling the Hessian includes a term O(q2m2N) = O(m6N3) [GHNV03,
page 75]. Substituting n = mN in (31) and (32) shows that the complexity of the sampling method
is O(m5N3) for forming H and O(m6N3) for solving the system. The overall cost per iteration is
therefore similar to the method in [GHNV03].

3 Orthogonal basis models

In this section we revisit some orthogonal basis models which are suitable when modeling linear
systems. This is motivated by the fact that for these types of basis functions a straightforward
uniform sampling on the unit circle, possibly after a suitable transformation, results in a well-
conditioned system of sampled constraints.

3.1 FIR models

Finite Impulse Response (FIR) models are simple but often give good intuition. A multi-input-
multi-output (MIMO) FIR model transfer function can be expressed as

G(z) =
[
C D

] [(zI −A)−1B
I

]
where C and D are general matrices and

A = diag(A1, . . . , Am), B = diag(B1, . . . , Bm)

12

with

Ai =

[
01×(ni−1) 0

Ini−1 0(ni−1)×1

]
, Bi =

[
1

0(ni−1)×1

]
, i = 1, . . . ,m.

We realize that (zI −A)−1B = Ψ(z)diag(z−n1 , . . . , z−nm), where

Ψ(z) = diag
([
zn1−1 . . . z 1

]T
,
[
zn2−1 . . . z 1

]T
, . . . ,

[
znm−1 . . . z 1

]T)
and hence the MFD description of the FIR model has a very simple structure with controllability
indexes ni. The polynomial Popov function associated with an FIR model has the form[

Ψ(z)
diag(zn1 , . . . , znm)

]
∗
M

[
Ψ(z)

diag(zn1 , . . . , znm)

]
.

After a reordering of columns and rows in M the function may be written

Ψ̃∗(z)MΨ̃(z)

where Ψ̃(z) is defined similarly as Ψ(z) but with diagonal blocks
[
zni · · · 1

]T
. From this we

realize that for the FIR case the interpolation constraints only contain sub-blocks of the M -matrix.
This means that the interpolation constraints will result in a linear system of equations in the
entries of the M -matrix which is sparse and which can be set up in such a way that the associated
coefficient matrix G in (13) is block-diagonal. We now turn our focus to an extension of FIR models
which admits more accurate modeling with fewer terms in the series expansion.

3.2 Laguerre models

A Laguerre transfer function can be written as G(z) = CF (z) where C is a matrix of coefficients
and F (z) is a basis vector of Laguerre functions Fk(z),

F (z) =

F1(z)
F2(z)

...
Fn(z)

 , Fk(z) = V1(z)Gb(z)
k−1,

with

V1(z) =

√
1− a2

z − a
, Gb(z) =

(
1− az
z − a

)
and |a| < 1. The Laguerre functions are just like the FIR basis functions orthogonal with respect
to the inner product on the unit circle. Hence they are well-suited for approximating a discrete
time spectrum. A Popov function associated with the Laguerre model is

F(z) = F∗(z)MF (z)

for a symmetric matrix M . To see this is of the form (1) let (A,B,C) be a realization of F(z) and

write F(z) =
[
C 0

] [(zI −A)−1B
I

]
. In case we are interested in matrix-valued Popov functions

13

we define F (z) to be block-diagonal with as its diagonal blocks basis vectors of Laguerre functions
(possibly of different lengths and with different parameters a).

Let λ and z be related via λ−1 = Gb(z). This defines a bilinear transformation such that the
unit circle is mapped to the unit circle [HdHW05]. We are interested in investigating when F(z) � 0
for all |z| = 1. This is equivalent to

F∗(z)

V1∗(z)
M

F (z)

V1(z)
� 0 ∀z ∈ C : |z| = 1.

Now we use the relation between λ and z to conclude that an equivalent condition is that

F̆(z) = F̆∗(λ)MF̆ (λ) � 0 ∀λ ∈ C : |λ| = 1,

where

F̆ (λ) =

1
λ−1

λ−2

...
λ−n+1

We see that we have transformed the Laguerre Popov function to an FIR Popov function. Notice
that this is not the same transformation as in [HdHW05]. There they divide with λ, but we prefer
to not do that, so that we get a direct term as in the previous subsection. It should be mentioned
that there are other types of orthogonal basis models for which similar transformations to the FIR
case can be done; see [HdHW05].

4 Applications

In this section we discuss different applications that can be formulated as problems of the form (11).
For each application we present results of numerical experiments in which the sampling method
is compared with other approaches. While some solvers exploit low-rank structure, YALMIP does
not currently recognize it in the form we need. Hence in the numerical experiments we do not
exploit the low-rank structure explained in Section 2.5, but we will see that good improvements in
computational complexity are still achieved for the sampling method as compared to other methods.

4.1 Identification of frequency domain power spectra

In the first application we are interested in the identification of MIMO linear systems from measured
power spectra; see e.g. [OMDS97]. For a given transfer function G(z) of dimension m×m the power
spectrum is defined as

S(z) = G(z)G∗(z).

Hence the power spectrum must satisfy

S(z) � 0 ∀z ∈ C : |z| = 1, (34)

a property often referred to as positive-realness. If we assume that G∗(z) = C(zE − A)−1B + D,
then the power spectrum can be written as a Popov function

S(z) =

[
(zE −A)−1B

I

]
∗
M

[
(zE −A)−1B

I

]

14

with central matrix
M =

[
C D

]T [
C D

]
.

From this we see that the positive-real condition is a Popov function constraint and therefore convex
in M for given A, B, and E. In the method described in [OMDS97], the matrices A, B and E are
obtained from a subspace identification algorithm, and hence it is a valid assumption that these
matrices are known. We will later on look at another example where they also are known.

Assume that we are given measurements of the power spectrum Sk, k = 1, 2, . . . , N , and that
we are interested in determining a transfer function G(z) such that

S(ζk) = Sk, k = 1, 2, . . . , N.

This is a convex condition in the center matrix M . If we are given so many measurements of the
power spectrum that we do not expect to find a perfect fit, we may instead minimize an objective
like

max
k
‖S(ζk)− Sk‖2F ,

which is a convex function of M . For practical purposes it makes sense to normalize by dividing with
‖Sk‖2F , and this is the objective function, modulo an equivalent reformulation, that we minimize in
the numerical experiments later on. Other frequency weightings are also possible.

An optimal M which approximates the measured power spectrum and satisfies the positive real
condition can hence be found using the formulation in (11). After this has been done it remains to
compute C and D. To this end let P and L solve

A(P) +M =

[
I 0
L I

]H [
0 0
0 BTPB +M2

] [
I 0
L I

]
(35)

where M =

[
M1 M12

MT
12 M2

]
, which is an algebraic Riccati equation if L is eliminated. Let U(z) =

(zE − A)−1B and V (z) =

[
U(z)
I

]
. By multiplying (35) with V (z) from the right and V∗(z) from

the left and using the fact that [
A B
E 0

]
V (z) =

[
zEU(z)
EU(z)

]
if follows that the following spectral factorization holds:

F(z) = S∗(z)(B
TPB +M2)S(z)

where S(z) = I + LU(z). Hence we may take G∗(z) = (BTPB +M2)1/2S(z) which defines C and
D.

In the experiments we will use a Laguerre basis for the transfer function. This fits into the
above formulation by taking

M =
[
CF 0

]T
MF

[
CF 0

]
and A = AF , B = BF , E = I and considering MF ∈ Sn as the optimization variable. Here
(AF , BF , CF) is a realization of the Laguerre basis vector or basis matrix F (z). The constraints
related to the objective may be defined in the z-domain whereas it is a good idea to transform the
positive-real condition to the λ-domain as has already been described.

15

m = 1 m = 2 m = 3 m = 4 m = 5
tot sol tot sol tot sol tot sol tot sol

n = 2 9.33 3.19 7.29 1.11 9.03 1.71 11.0 2.20 17.1 4.34
n = 5 10.1 1.29 14.5 2.28 27.1 7.01 55.8 14.3 121 37.4
n = 10 23.4 2.13 71.9 14.7 194 49.8 552 192 1170 355

Table 1: Results with the sampling method for the example of Section 4.1. The columns labeled
‘tot’ give the total time in seconds including YALMIP time, solver time, and setup time. The
columns labeled ‘sol’ give the solver time only.

m = 1 m = 2 m = 3 m = 4 m = 5
per iter iter per iter iter per iter iter per iter iter per iter iter

n = 2 0.11 28 0.04 28 0.05 32 0.08 27 0.14 32
n = 5 0.04 35 0.08 29 0.21 34 0.45 32 0.87 43
n = 10 0.07 30 0.44 33 1.42 35 3.83 50 8.66 41

Table 2: Time per iteration in seconds and number of iterations in the sampling method for the
example in Section 4.1.

We now present some computational results. All implementations have been carried out in
MATLAB R2010b using YALMIP [Löf04] and the solver SDPT3 [TTT10] with default settings
unless otherwise specified. The computations have been run on an Intel Core i5 CPU M 250 4 GHz
with 4 GB of RAM.

We generate random m×m transfer functions G using the MATLAB function drss. However,
in case the transfer function has poles with absolute values greater than 0.999, we move the poles
to the nearest point with modulus 0.999. From these transfer functions we compute spectra S, and
we take the number of samples as N = 300. We consider values of n ∈ {2, 5, 10}, which is both
the order of the random transfer function and the order of the Laguerre model, and we consider
dimensions m in the range of 1 to 5. The value of the parameter a in the Laguerre basis has
been taken as 0.3. We compare the sampling method as outlined in Section 4.1 with four other
methods. For the sampling method we have made use of an add-on to YALMIP, [Löf09], which
makes sure that the problem is parsed to SDPT3 in its standard primal form. The other four
methods are all based on solving the KYP-SDP. This has been done with and without performing
the transformation to the λ-domain. For both of these two cases the solver SDPT3 has been used
both as it stands and in conjunction with a pre-processing step with the software STRUL, [FLH11].
This is a software which utilizes the fact that the P -variable stemming from the KYP lemma is a
symmetric matrix variable with a low-rank and sparse basis. This is the same type of structure
which is utilized in LMI Lab of the Robust Control Toolbox.

The resulting optimization problems become quite large, mainly because of the objective func-
tion, which is reformulated using an epigraph formulation resulting in N second order cone in-
equalities and associated variables. We report computational times for the sampling method in
Table 1. We do not include the time for performing the spectral factorization, but only the time
for setting up the optimization problem and solving it. We also separately report the solver time.
All approaches except the sampling method had difficulties to converge for all problems except the
ones of smallest dimension, and we therefore do not report the computational times for the other
methods. In Table 2 we report the number of iterations and the time per iteration in the solver.

16

The YALMIP-time was between 1 and 6 seconds in all cases. The maximum number of iterations
was exceeded for n = 10 and m = 4. It is concluded that only the sampling method is viable for
large scale problems.

4.2 Integral quadratic constraints

Consider a feedback connection given by

v = Gw + e, w = ∆(v)

where G is a causal and bounded linear time-invariant transfer function, and where ∆ is a bounded
and causal operator on an appropriate function space H, e.g. Lm2 [0,∞) or lm2 [0,∞). We assume
that the feedback connection is well-posed. Let Π be a bounded self-adjoint operator. We say that
∆ satisfies the Integral Quadratic Constraint (IQC) defined by Π if

σΠ(v,∆(v)) =

〈[
v

∆(v)

]
,Π

[
v

∆(v)

]〉
≥ 0, ∀v ∈ H (36)

where 〈·, ·〉 is the inner product for the function space H. For the case of H = lm2 [0,∞) we may
take Π as a transfer function satisfying Π(z) = Π∗(z) on the unit circle.

The main result in IQC analysis says that if ∆ satisfies an IQC defined by Π, if a certain
well-posedness assumption is fulfilled and if[

G
I

]
∗

Π

[
G
I

]
� −εI (37)

for some ε > 0, then the feedback connection is stable; see [MR97b] for the continuous time version
and [Kao12] for the discrete-time case. The feasibility problem defined by (37) and (36), modulo an
equivalent reformulation, is the feasibility problem that will be solved in the numerical experiments
later on. Here we have also made the assumption that

Π =

[
Π11 Π12

(Π12)∗ Π22

]
is such that Π11 � 0 and Π22 � 0, which is often the case in applications.

As an example we might consider the case when

∆ = diag (δ1Im1 , . . . , δlIml)

(This is an abuse of notation in the sense that we mean that ∆(v) = ∆v.) We assume that ∆
is a constant such that |δi| ≤ 1, i = 1, . . . , l. It is straightforward to verify that an IQC for this
operator, i.e. that (36) holds, is given by

Π =

[
X Y
Y∗ −X

]
where X = X∗ � 0 and Y = −Y∗, and where X and Y should commute with ∆. Because of this
X and Y are block diagonal, i.e.

X = diag (X1, . . . , Xl) , Y = diag (Y1, . . . , Yl)

17

where Xi and Yi are mi ×mi matrices. Remember that Π, and then also X and Y , are transfer
functions. In order to prove closed loop stability we will have to search for a Π such that the LMI
condition is satisfied for all z on the unit circle, and there are many to search among. There are
two obvious avenues to pursue. Either we sample the unit circle and consider a fine grid as an
approximation to the original problem and hope for the best, or we parameterize Π and use the
KYP lemma or exact sampling of the Popov function constraint. This parametrization can be done
in many ways. One simple parametrization is to take

Xi = φi∗Qiφi, Yi = φi∗Riφi

where Qi = QTi � 0, and Ri = −RTi are real-valued matrices, and where

φi(z) =
[
Imi

1−az
z−a Imi

(
1−az
z−a

)2
Imi · · ·

(
1−az
z−a

)nφ
Imi

]T
is a matrix of Laguerre shifts. This is very close to the ideas in [MKJR98] for the continuous time
case, where continuous time Laguerre shifts are used. Here a is a positive constant. The choice of
this constant is not obvious, and with the proper choice less terms in the series expansion above
are needed. We may then write

Π =

[
Φ 0
0 Φ

]
∗

[
Q R
RT −Q

] [
Φ 0
0 Φ

]
where Q = diag(Q1, . . . , Ql), R = diag(R1, . . . , Rl)), Φ = diag(φ1, . . . , φl). We now see that the
stability criterion (37) can be written as[

ΦG
Φ

]
∗

[
Q R
RT −Q

] [
ΦG
Φ

]
� −εI.

In order to use the KYP lemma we need to transform the left-hand side. To do this we first need
a state-space description (A,B,C,D) such that

C(zI −A)−1B +D =

[
ΦG
Φ

]
.

This is straightforward but tedious. Then we are able to define a Popov function F(z) such that

F(z) = −
[
ΦG
Φ

]
∗

[
Q R
RT −Q

] [
ΦG
Φ

]
=

[
(zI −A)−1B

I

]
∗
M

[
(zI −A)−1B

I

]
by letting the center matrix in the Popov function be

M = −
[
C D

]T [Q R
RT −Q

] [
C D

]
.

In case we are instead given a right MFD of the transfer function G, i.e. G(z) = NG(z)DG(z)−1,
where DG(z) and NG(z) are polynomial matrices we may proceed in a different way. We will
specifically look at the case when G(z) is expressed in terms of a Laguerre basis as

G(z) = ZF (z)

18

where

Z =
[
Z1 Z2 · · ·Zn

]
=

Z11 · · · Z1n
...

. . .
...

Zq1 · · · Zqn

 , F (z) =

F1(z)
...

Fn(z)

with Fk(z) =

√
1−a2
z−a

(
1−az
z−a

)k−1
. To simplify the notation we will introduce a new variable via the

relation λ−1 = 1−az
z−a . In Appendix A we show that we are able to write the Popov function for the

IQC constraint as

F(z) =

[
Ψ(λ)D̃(λ)−1

I

]
∗
M

[
Ψ(λ)D̃(λ)−1

I

]
(38)

where now

M =
[
C0T D0

]T [−Q −R
−RT Q

] [
C0T D0

]
(39)

with suitable definitions of C0, D0, T , and where D̃(λ) = λn+nφIm with m =
∑l

i=1mi. Here Ψ(λ)
is defined similarly as Ψ(z) in Section 3.1. Notice that this is in the form of an FIR Popov function
in the variable λ. The constraints Xi � 0 can be expressed in a similar way. Hence we obtain
several Popov function constraints coupled via the variables Q and R.

We now investigate some numerical examples, where we have considered four different methods
for solving the problem, which in all cases have been formulated in the λ-domain. The first one
is the sampling method based on a uniform sampling on the unit circle. The other three methods
are based on the KYP lemma formulation. For the first one of these the problem is just solved
in a straightforward way using the solver SDPT3. The second one is using the preprocessing of
STRUL in conjunction with SDPT3, and the third one is using the software KYPD, [WHJ09], in
conjunction with SDPT3.

In the first experiment we generate random Laguerre models of degrees n in the range 2 to 16
in steps of 2. This is done by taking all entries of Z ∈ Rm×n from a standard normal distribution
normalized with a factor of 10−5 so that all systems generated are robustly stable. The value of m
has been fixed to 10 and the number of uncertainties l has been 4, with dimensions mi equal to 1,
2, 3, and 4, respectively. The value of nφ has been fixed to 3. Hence the total number of states
m(n+ nφ) for the largest Popov function constraint has been in the range of 50 to 190 with steps
of 20. Notice that there are 4 additional Popov function constraints with nφ = 3 states each in
order to impose the constraints Xi � 0.

We report computational results in tables 3 and 4. For the two methods based on solving the
problem using the plain KYP lemma formulation and in conjunction with STRUL the solver runs
out of memory for values of n greater or equal to 6. However, these methods are the fastest ones
for small problems. When the KYPD solver is used it runs out of memory for values of n greater
than or equal to 8. For the sampling method the solver runs out of memory for values of n greater
than 16. For the value of n = 16 there are for the sampling method 2065 equality constraints, 5
SDP blocks of dimension 240 in total, and there are 480 free variables. For the case of n = 4, which
is the largest value of n for which all methods produce solutions, we can compare the dimensions of
the problems. All of them have 5 SDP blocks of dimension 120. However, SDPT3 and STRUL have
3115 equality constraints, whereas the sampling method and KYPD only have 865 constraints. The
number of free variables are 480 for the sampling method, none for SDPT3, 262 for STRUL and
210 for KYPD. The sampling method is always faster than the KYPD method irrespective of the

19

SAMPLING SDPT3 STRUL KYPD
m(n+ nφ) tot sol tot sol tot sol tot sol

50 30.9 24.6 7.24 3.47 17.5 9.25 41.3 24.2
70 57.5 48.4 21.0 11.5 48.3 30.2 85.2 45.8
90 89.6 75.7 – – – – 164 76.7
110 142 127 – – – – – –
130 226 209 – – – – – –
150 321 298 – – – – – –
170 425 386 – – – – – –
190 563 517 – – – – – –

Table 3: Results with four methods for the example of Section 4.2. Total time in seconds including
YALMIP time, solver time, and setup time, and separately solver time.

SAMPLING SDPT3 STRUL KYPD
m(n+ nφ) per iter iter per iter iter per iter iter per iter iter

50 1.29 19 0.50 7 1.32 7 1.15 21
70 2.42 20 1.43 8 3.77 8 2.08 22
90 3.98 19 – – – – 3.34 23
110 6.32 20 – – – – – –
130 10.4 20 – – – – – –
150 14.9 20 – – – – – –
170 19.3 20 – – – – – –
190 25.8 20 – – – – – –

Table 4: Time per iteration and number of iterations for the example in Section 4.2.

20

SAMPLING SDPT3 STRUL KYPD
m(n+ nφ) tot sol tot sol tot sol tot sol

20 1.34 0.47 1.48 0.52 1.47 0.44 3.52 0.68
40 3.46 1.24 3.62 1.74 4.21 1.94 4.21 1.44
60 6.96 2.37 9.94 6.35 16.8 9.90 9.02 2.85
80 14.0 4.93 28.9 18.9 48.1 33.5 19.4 6.47
100 27.4 10.1 – – – – 42.9 14.2
120 48.9 18.8 – – – – 79.3 28.2
140 80.4 30.8 – – – – 122 46.0
160 134 53.0 – – – – 193 79.8
180 202 77.7 – – – – 316 130
200 – – – – – – 467 195

Table 5: Total time in seconds including YALMIP time, solver time and setup time, and separately
solver time for the second experiment in the example in Section 4.2.

values of n. It is seen that the computational time per iteration for the sampling method grows
very closely to linearly with m(n+ nφ) for values above 100.

In the second experiment we generate random Laguerre models of degrees n in the range of 9
to 99 with steps of 10. This is done by taking all entries of Z ∈ Rm×n from a standard normal
distribution normalized with a factor of 10−5 so that all systems generated are robustly stable. The
value of m has been fixed to 2 and the number of uncertainties δi have been 2, with dimensions 1.
The value of nφ has been fixed to 1. Hence the total number of states has been in the range of 20
to 200 with steps of 20 for the largest Popov function constraint.

We report computational results in tables 5 and 6. When no data are reported for STRUL or
SDPT3 it is because the solvers run out of memory. When no data is reported for SAMPLING it
is because YALMIP runs out of memory when performing dualize. For larger problem sizes than
the ones considered KYPD also fails due to the solver running out of memory. For the case of
n = 39, which is the largest value of n for which all methods produce solutions, we can compare
the dimensions of the problems. All of them have 3 SDP blocks of dimension 86. However, SDPT3
and STRUL have 3250 equality constraints, whereas the sampling method and KYPD only have
167 equality constraints. The number of free variables is 8 for the sampling method, 6 for KYPD,
and none for SDPT3 and STRUL. For the case of n = 89, which is the largest value of n for which
both the sampling method and KYPD produce solutions, both methods have 3 SDP blocks of of
dimension 186 and 367 equality constraints. The number of free variables is 8 for the sampling
method and 6 for KYPD. It is seen that the sampling method is always the fastest method. The
time per iteration for this method grows as m(n+nφ) to the power of 3.55 for values of m(n+nφ)
above 100. For KYPD the corresponding value is 3.97, which is very close to the theoretical value
of 4.

5 Conclusions

In this paper we have shown how to reformulate an infinite-dimensional frequency domain Popov
function constraint as a finite SDP constraint with low-rank coefficient matrices. The low-rank
structure can be exploited to improve the efficiency of interior-point SDP solvers. The key obser-

21

SAMPLING SDPT3 STRUL KYPD
m(n+ nφ) per iter iter per iter iter per iter iter per iter iter

20 0.03 17 0.07 7 0.06 7 0.04 19
40 0.07 19 0.25 7 0.28 7 0.06 23
60 0.12 20 0.79 8 1.24 8 0.12 24
80 0.26 19 2.36 8 4.18 8 0.27 24
100 0.51 20 – – – – 0.55 26
120 0.94 20 – – – – 1.01 28
140 1.62 19 – – – – 1.71 27
160 2.65 20 – – – – 2.75 29
180 3.88 20 – – – – 4.32 30
200 – – – – – – 6.71 29

Table 6: Time per iteration and number of iterations for the second experiment in the example in
Section 4.2.

vation is that rational Popov function constraints can be expressed as polynomial Popov function
constraints using a right MFD description of the associated transfer function, and that sampling
this polynomial constraint results in an equivalent set of constraints with low-rank structure. This
formulation is especially attractive when the transfer functions are parameterized using orthog-
onal basis functions. The sampling formulation also requires less memory than other methods,
such as the ones based on the KYP lemma reformulation. The potential of the method has not
been fully utilized. It is possible to speed up the computations and reduce memory requirements
by making use of the fact that the sampling constraints are of low-rank and in many cases also
sparse. Another important topic for future research is to investigate sampling strategies for general
multi-input transfer functions represented in a non-orthogonal basis.

A Polynomial IQC Popov function

In this appendix we give the details of the expressions (38) and (39) for the Popov function in the
IQC example of Section 4.2.

With the definitions made in Section 4.2 it holds thatG(z) = W0(λ)G̃(λ) = F̃0+ÑG(λ)D̃G(λ)−1,
where

W0(λ) =
1 + aλ√
1− a2

, ÑG(λ) = Z̃

λn−1Im

...
λIm
Im

 , D̃G(λ) = λnIm

and

Z̃ =
1√

1− a2

[
Z1 + aZ2 Z2 + aZ3 · · · Zn−1 + aZn Zn

]
, F̃0 =

a√
1− a2

Z1.

22

With

D̄i =

Imi
0
...
0

 , Ñφi(λ) =

0

λnφ−1Imi
...

λImi
Imi

 , D̃φi(λ) = λnφImi

it holds that φi(z) = φ̃i(λ) = D̄i + Ñφi(λ)D̃φi(λ)−1. Here (Ñφi(z), D̃φi(z)) is a strictly proper right
co-prime and column-reduced MFD. With

D̄ = diag(D̄1, . . . , D̄m), Ñφ = diag(Nφ1 , . . . , Nφm), D̃φ = diag(Dφ1 , . . . Dφm)

we have Φ(z) = Φ̃(λ) = D̄ + Ñφ(λ)D̃φ(λ)−1, where (Ñφ, D̃φ) is strictly proper, right co-prime and
column-reduced. Let X be a matrix such that ÑφF̃0 = XÑφ. Then with

D0 =

[
D̄F̃0

D̄

]
, C0 =

[
D̄ I X
0 0 I

]
, Ñ =

ÑGD̃φ

ÑφÑG

ÑφD̃G

 , D̃ = D̃φD̃G

it holds that [
Φ(z)G(z)

Φ(z)

]
= D0 + C0Ñ(λ)D̃(λ)−1.

It is straightforward to verify that (Ñ , D̃) is a strictly proper, right co-prime and column-reduced
MFD. It only remains to write Ñ(λ) = TΨ(λ) to be able to write

F(z) =

[
Ψ(λ)D̃(λ)−1

I

]
∗
M

[
Ψ(λ)D̃(λ)−1

I

]
where now

M =
[
C0T D0

]T [−Q −R
−RT Q

] [
C0T D0

]
.

Notice that T might not be square, and that it is important to rewrite the function F (z) in terms
of an MFD for which the number of rows of the MFD are equal to the sum of the column degrees.
Otherwise the KYP lemma cannot be applied.

We will look at each of the block rows in Ñ separately. The first one reads

ÑGÑφ = Z̃

λ
n+nφ−1Im

...
λnφIm

 .
The second block row reads

ÑφÑG =

H1
...
Hq

λnφ+n−2Im

...
λIm
Im

where

Hi =

[
0

H̃i

]

23

where H̃i is a block Hankel matrix with first block row equal to
[
Z̃i1 · · · Z̃in 0 · · · 0

]
. Finally,

the third block row of Ñ is given by

ÑφD̃G = diag
i

0

λn+nφ−1Imi
...

λnImi

 .
From this it is straightforward to write down T by reordering columns and padding with zeros. We
see that this results in a FIR Popov function in the variable λ.

The conditions Xi � 0 are Popov function inequalities. We may also rewrite these Popov
functions in terms of MFDs in the variable λ. It is immediate that

Xi =

[
ΨQi(λ)DQi(λ)−1

I

]
∗
Mi

[
ΨQi(λ)DQi(λ)−1

I

]
where

Mi =
[
I D0

Qi

]T
Qi
[
I D0

Qi

]
and

ΨQi(λ) =

0

λnφ−1Imi
...

λImi
Imi

 , D0
Qi =

Imi
0
...
0

 , DQi(λ) = λnφImi .

From this it is straightforward to write down Ti be reordering columns such that ΨQi = Ti diagj

λnφ−1

...
λ
1

.

References

[AV02] B. Alkire and L. Vandenberghe. Convex optimization problems involving finite auto-
correlation sequences. Mathematical Programming Series A, 93:331–359, 2002.

[Bal95] V. Balakrishnan. Linear matrix inequalities in robustness analysis with multipliers.
Syst. Control Letters, 25(4):265–272, 1995.

[BDG+93] G.J. Balas, J.C. Doyle, K. Glover, A. Packard, and R. Smith. µ-Analysis and Synthesis
Toolbox, 1993.

[BEFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities
in System and Control Theory, volume 15 of Studies in Applied Mathematics. SIAM,
Philadelphia, PA, June 1994.

[Bor99] B. Borchers. CSDP, a C library for semidefinite programming. Optimization Methods
and Software, 11(1):613–623, 1999.

24

[BV87] Th. G. J. Beelen and G. W. Veltkamp. Numerical computation of a coprime factoriza-
tion of a transfer function matrix. Systems & Control Letters, 9:281–288, 1987.

[BV03] V. Balakrishnan and L. Vandenberghe. Semidefinite programming duality and linear
time-invariant systems. IEEE Transactions on Automatic Control, 48:30–41, 2003.

[BY05] S. J. Benson and Y. Ye. DSDP5 user guide — software for semidefinite programming.
Technical Report ANL/MCS-TM-277, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, September 2005.

[Dum07] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applica-
tions. Springer, 2007.

[FLH11] R. Falkeborn, J. Löfberg, and A. Hansson. Lowrank exploitation in semidefinite pro-
gramming for control. International Journal of Control, 84(12):1975–1982, 2011.

[GH03] J. Gillberg and A. Hansson. Polynomial complexity for a Nesterov-Todd potential-
reduction method with inexact search directions. In Proceedings of the 42nd IEEE
Conference on Decision and Control, volume 3, pages 3824–3829, 2003.

[GHN+02] Y. Genin, Y. Hachez, Y. Nesterov, R. Stefan, P. Van Dooren, and S. Xu. Positivity
and linear matrix inequalities. European Journal of Control, 8(3):275–298, 2002.

[GHNV03] Y. Genin, Y. Hachez, Yu. Nesterov, and P. Van Dooren. Optimization problems over
positive pseudopolynomial matrices. SIAM Journal on Matrix Analysis and Applica-
tions, 25(1):57–79, 2003.

[Hac03] Y. Hachez. Convex Optimization over Non-Negative Polynomials: Structured Algo-
rithms and Applications. PhD thesis, Université catholique de Louvain, Belgium, 2003.

[HAPS01] D. Henrion, D. Arzelier, D. Peaucelle, and M. Sebek. An LMI condition for robust
stability of polynomial matrix polytopes. Automatica, 37(3):461–468, Mar. 2001.

[HdHW05] P. S. C. Heuberger, P. M. J. Van den Hof, and B. Wahlberg. Modeling and Identification
with Rational Orthogonal Basis Functions. Springer Verlag, London, 2005.

[HSK99] B. Hassibi, A. H. Sayed, and T. Kailath. Indefinite-Quadratic Estimation and Con-
trol. A Unified Approach to H2 and H∞ Theories. Society for Industrial and Applied
Mathematics, 1999.

[HSK03] D. Henrion, M. Sebek, and V. Kucera. Positive polynomials and robust stabilization
with fixed-order controllers. IEEE Transactions on Automatic Control, 48(7):1178–
1186, Jul 2003.

[HV00] A. Hansson and L. Vandenberghe. Efficient solution of linear matrix inequalities for
integral quadratic constraints. In Proc. IEEE Conf. on Decision and Control, pages
5033–5034, 2000.

[HWH06] J. Harju, R. Wallin, and A. Hansson. Utilizing low rank properties when solving KYP-
SDPs. In Proceedings of the 45th IEEE Conference on Decision and Control, pages
5150–5155, 2006.

25

[IOW99] V. Ionescu, C. Oară, and M. Weiss. Generalized Riccati Theory and Robust Control—A
Popov Function Approach. John Wiley & Sons, Chichester, 1999.

[Jön96] U. Jönsson. Robustness Analysis of Uncertain and Nonlinear Systems. PhD thesis,
Lund Institute of Technology, Sweden, 1996.

[Kai80] T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, N.J., 1980.

[Kao12] C.-Y. Kao. On stability of discrete-time LTI systems with varying time delays. IEEE
Transactions on Automatic Control, 57(5):1243–1248, 2012.

[KM01] C.-Y. Kao and A. Megretski. Fast algorithms for solving IQC feasibility and optimiza-
tion problems. In Proceedings of the American Control Conference, volume 4, pages
3019–3024, 2001.

[KM03] C.-Y. Kao and A. Megretski. A new barrier function for IQC optimization problems.
In Proceedings of the American Control Conference, volume 5, pages 4281–4286, 2003.

[KM07] C.-Y. Kao and A. Megretski. On the new barrier function and specialized algorithms
for a class of semidefinite programs. SIAM Journal on Control and Optimization,
46(2):468–495, 2007.

[KMJ00] C.-Y. Kao, A. Megretski, and U. Jönsson. An algorithm for solving optimization prob-
lems involving special frequency dependent LMIs. In Proceedings of the American
Control Conference, volume 1, pages 307–311, 2000.

[KMJ03] C.-Y. Kao, A. Megretski, and U. Jönsson. Specialized fast algorithms for IQC feasibility
and optimization problems. Automatica, 40(2):239–252, 2003.

[Löf04] J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In Pro-
ceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[Löf09] J. Löfberg. Dualize it: software for automatic primal and dual conversions of conic
programs. Optimization Methods and Software, 24:313 – 325, 2009.

[LP04] J. Löfberg and P. A. Parrilo. From coefficients to samples: a new approach to SOS
optimization. In Proceedings of the 43rd IEEE Conference on Decision and Control,
pages 3154–3159, 2004.

[LV07] Z. Liu and L. Vandenberghe. Low-rank structure in semidefinite programs derived from
the KYP lemma. In Proceedings of the 46th IEEE Conference on Decision and Control,
pages 5652–5659, 2007.

[MKJR98] A. Megretski, C.-Y. Kao, U. Jönsson, and A. Rantzer. A Guide To IQCβ: Software
for Robustness Analysis. Massachussetts Institute of Technolgy, 1998.

[MR97a] A. Megretski and A. Rantzer. System analysis via integral quadratic constraints. IEEE
Trans. Aut. Control, 42(6):819–830, June 1997.

[MR97b] A. Megretski and A. Rantzer. Systems analysis via integral quadratic constraints. IEEE
Transactions on Automatic Control, 42(6):819–830, 1997.

26

[Nes00] Y. Nesterov. Squared functional systems and optimization problems. In J. Frenk,
C. Roos, T. Terlaky, and S. Zhang, editors, High Performance Optimization Techniques,
pages 405–440. Kluwer Academic Publishers, 2000.

[OMDS97] P. Van Overschee, B. De Moor, W. Dehandschutter, and J. Swevers. A subspace
algorithm for the identification of discrete time frequency domain power spectra. Au-
tomatica, 33(12):2147–2157, 1997.

[Pag95] F. Paganini. Necessary and sufficient conditions for robust H2 performance. In Proc.
IEEE Conf. on Decision and Control, pages 1970–1975, New Orleans, LA, December
1995.

[Par99] P. A. Parrilo. On the numerical solution of LMIs derived from the KYP lemma. In
Proceedings of the 38th IEEE Conference on Decision and Control, volume 3, pages
2334–2338, 1999.

[Pat81] R. V. Patel. Computation of matrix fraction descriptions of linear time-invariant sys-
tems. IEEE Transactions on Automatic Control, 26(1):148–161, 1981.

[RDV07] T. Roh, B. Dumitrescu, and L. Vandenberghe. Multidimensional FIR filter design via
trigonometric sum-of-squares optimization. IEEE Journal of Selected Topics in Signal
Processing, 1:641–650, 2007.

[RP02] D.C.W. Ramos and P.L.D. Peres. An LMI condition for the robust stability of uncertain
continuous-time linear systems. IEEE Transactions on Automatic Control, 47(4):675–
678, Apr. 2002.

[RV06] T. Roh and L. Vandenberghe. Discrete transforms, semidefinite programming, and sum-
of-squares representations of nonnegative polynomials. SIAM Journal on Optimization,
16(4):939–964, 2006.

[Stu99] J. F. Sturm. Using SEDUMI 1.02, a Matlab toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11-12:625–653, 1999.

[TTT03] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical Programming Series B, 95:189–217, 2003.

[TTT10] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. On the implementation and usage of
SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming,
version 4.0. Technical report, Department of Mathematics, National University of
Singapore, 2010. draft.

[VBW+05] L. Vandenberghe, V. R. Balakrishnan, R. Wallin, A. H. Hanson, and T. Roh. Interior
point algorithms for semidefinite programming problems derived from the KYP lemma.
In D. Henrion and A. Garulli, editors, Positive Polynomials in Control, volume 312 of
Lecture Notes on Control and Information Sciences. Springer Verlag, 2005.

[WBV98] S.-P. Wu, S. Boyd, and L. Vandenberghe. FIR filter design via spectral factorization
and convex optimization. In B. Datta, editor, Applied and Computational Control,
Signals, and Circuits, volume 1, pages 215–245. Birkhauser, 1998.

27

[WHJ09] R. Wallin, A. Hansson, and J. H. Johansson. A structure exploiting preprocessor
for semidefinite programs derived from the Kalman-Yakubovich-Popov lemma. IEEE
Transactions on Automatic Control, 54(4):697–704, 2009.

[WKH08] R. Wallin, C.-Y. Kao, and A. Hansson. A cutting plane method for solving KYP-SDPs.
Automatica, 44(2):418–429, 2008.

[YFK03] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA
6.0 (Semidefinite Programming Algorithm 6.0). Optimization Methods and Software,
18(4):491–505, 2003.

28

