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Abstract. The problem of maximizing the determinant of a matrix subject to linear matrix
inequalities arises in many �elds, including computational geometry, statistics, system identi�cation,
experiment design, and information and communication theory. It can also be considered as a
generalization of the semide�nite programming problem.

We give an overview of the applications of the determinant maximization problem, pointing out
simple cases where specialized algorithms or analytical solutions are known. We then describe an
interior-point method, with a simpli�ed analysis of the worst-case complexity and numerical results
that indicate that the method is very e�cient, both in theory and in practice. Compared to existing
specialized algorithms (where they are available), the interior-point method will generally be slower;
the advantage is that it handles a much wider variety of problems.

1. Introduction. We consider the optimization problem

minimize cTx+ log detG(x)�1

subject to G(x) � 0

F (x) � 0;
(1.1)

where the optimization variable is the vector x 2 Rm
. The functions G : Rm ! Rl�l

and F : Rm ! Rn�n
are a�ne:

G(x) = G0 + x1G1 + � � �+ xmGm;

F (x) = F0 + x1F1 + � � �+ xmFm;

where Gi = GT
i and Fi = F T

i . The inequality signs in (1.1) denote matrix inequalities,

i.e., G(x) � 0 means zTG(x)z > 0 for all nonzero z and F (x) � 0 means zTF (x)z � 0

for all z. We call G(x) � 0 and F (x) � 0 (strict and nonstrict, respectively) linear

matrix inequalities (LMIs) in the variable x. We will refer to problem (1.1) as a max-

det problem, since in many cases the term cTx is absent, so the problem reduces to

maximizing the determinant of G(x) subject to LMI constraints.

The max-det problem is a convex optimization problem, i.e., the objective func-

tion cTx+log detG(x)�1 is convex (on fx j G(x) � 0g), and the constraint set is con-
vex. Indeed, LMI constraints can represent many common convex constraints, includ-

ing linear inequalities, convex quadratic inequalities, and matrix norm and eigenvalue

constraints (see Alizadeh[1], Boyd, El Ghaoui, Feron and Balakrishnan[13], Lewis and

Overton[47], Nesterov and Nemirovsky[51, x6.4], and Vandenberghe and Boyd[69]).

In this paper we describe an interior-point method that solves the max-det prob-

lem very e�ciently, both in worst-case complexity theory and in practice. The method

we describe shares many features of interior-point methods for linear and semide�nite

programming. In particular, our computational experience (which is limited to prob-

lems of moderate size | several hundred variables, with matrices up to 100 � 100)
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indicates that the method we describe solves the max-det problem (1.1) in a number

of iterations that hardly varies with problem size, and typically ranges between 5 and

50; each iteration involves solving a system of linear equations.

Max-det problems arise in many �elds, including computational geometry, statis-

tics, and information and communication theory, so the duality theory and algorithms

we develop have wide application. In some of these applications, and for very simple

forms of the problem, the max-det problems can be solved by specialized algorithms

or, in some cases, analytically. Our interior-point algorithm will generally be slower

than the specialized algorithms (when the specialized algorithms can be used). The

advantage of our approach is that it is much more general; it handles a much wider

variety of problems. The analytical solutions or specialized algorithms, for example,

cannot handle the addition of (convex) constraints; our algorithm for general max-det

problems does.

In the remainder of x1, we describe some interesting special cases of the max-det
problem, such as semide�nite programming and analytic centering. In x2 we describe
examples and applications of max-det problems, pointing out analytical solutions

where they are known, and interesting extensions that can be handled as general

max-det problems. In x3 we describe a duality theory for max-det problems, pointing
out connections to semide�nite programming duality. Our interior-point method for

solving the max-det problem (1.1) is developed in x4{x9. We describe two variations:

a simple `short-step' method, for which we can prove polynomial worst-case complex-

ity, and a `long-step' or adaptive step predictor-corrector method which has the same

worst-case complexity, but is much more e�cient in practice. We �nish with some

numerical experiments. For the sake of brevity, we omit most proofs and some im-

portant numerical details, and refer the interested reader to the technical report [70].

A C implementation of the method described in this paper is also available [76].

Let us now describe some special cases of the max-det problem.

Semide�nite programming. When G(x) = 1, the max-det problem reduces to

minimize cTx
subject to F (x) � 0;

(1.2)

which is known as a semide�nite program (SDP). Semide�nite programming uni�es

a wide variety of convex optimization problems, e.g., linear programming,

minimize cTx
subject to Ax � b

which can be expressed as an SDP with F (x) = diag(b � Ax). For surveys of the

theory and applications of semide�nite programming, see [1], [13], [46], [47], [51, x6.4],
and [69].

Analytic centering. When c = 0 and F (x) = 1, the max-det problem (1.1)

reduces to

minimize log detG(x)�1

subject to G(x) � 0;
(1.3)

which we call the analytic centering problem. We will assume that the feasible set

fx j G(x) � 0g is nonempty and bounded, which implies that the matrices Gi,

i = 1; : : : ;m, are linearly independent, and that the objective �(x) = log detG(x)�1
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is strictly convex (see, e.g., [69] or [12]). Since the objective function grows without

bound as x approaches the boundary of the feasible set, there is a unique solution x?

of (1.3). We call x? the analytic center of the LMI G(x) � 0. The analytic center

of an LMI generalizes the analytic center of a set of linear inequalities, introduced by

Sonnevend[64, 65].

Since the constraint cannot be active at the analytic center, x? is characterized

by the optimality condition r�(x?) = 0:

(r�(x?))i = �TrGiG(x
?
)
�1

= 0; i = 1; : : : ;m(1.4)

(see for example Boyd and El Ghaoui[12]).

The analytic center of an LMI is important for several reasons. We will see in x5
that the analytic center can be computed very e�ciently, so it can be used as an easily

computed robust solution of the LMI. Analytic centering also plays an important role

in interior-point methods for solving the more general max-det problem (1.1). Roughly

speaking, the interior-point methods solve the general problem by solving a sequence

of analytic centering problems.

Parametrization of LMI feasible set. Let us restore the term cTx:

minimize cTx+ log detG(x)�1

subject to G(x) � 0;
(1.5)

retaining our assumption that the feasible set X = fx j G(x) � 0g is nonempty and

bounded, so the matrices Gi are linearly independent and the objective function is

strictly convex. Thus, problem (1.5) has a unique solution x?(c), which satis�es the

optimality conditions c+r�(x?(c)) = 0, i.e.,

TrGiG(x
?
(c))�1 = ci; i = 1; : : : ;m:

Thus for each c 2 Rm
, we have a (readily computed) point x?(c) in the set X.

Conversely, given a point x 2 X, de�ne c 2 Rm
by ci = TrG(x)�1Gi, i =

1; : : : ;m. Evidently we have x = x?(c). In other words, there is a one-to-one corre-

spondence between vectors c 2 Rm
and feasible vectors x 2 X: the mapping c 7! x?(c)

is a parametrization of the feasible set X of the strict LMI G(x) � 0, with parameter

c 2 Rm
. This parametrization of the set X is related to the Legendre transform of

the convex function log detG(x)�1, de�ned by

L(y) = � inff�yTx+ log detG(x)�1 j G(x) � 0g:

Maximal lower bounds in the positive de�nite cone. Here we consider

a simple example of the max-det problem. Let Ai = ATi , i = 1; : : : ; L, be positive

de�nite matrices in Rp�p
. A matrix X is a lower bound of the matrices Ai if X � Ai,

i = 1; : : : ; L; it is a maximal lower bound if there is no lower bound Y with Y 6= X ,

Y � X .

Since the function log detX�1
is monotone decreasing with respect to the positive

semide�nite cone, i.e.,

0 � X � Y =) log detY �1 � log detX�1;

we can compute a maximal lower bound Amlb by solving

minimize log detX�1

subject to X � 0

X � Ai; i = 1; : : : ; L:
(1.6)
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This is a max-det problem with p(p+ 1)=2 variables (the elements of the matrix X),

and L LMI constraints Ai �X � 0, which we can also consider as diagonal blocks of

one single block diagonal LMI

diag(A1 �X;A2 �X; : : : ; AL �X) � 0:

Of course there are other maximal lower bounds; replacing log detX�1
by any

other monotone decreasing matrix function, e.g., �TrX or TrX�1
, will also yield

(other) maximal lower bounds. The maximal lower bound Amlb obtained by solv-

ing (1.6), however, has the property that it is invariant under congruence transfor-

mations, i.e., if the matrices Ai are transformed to TAiT
T
, where T 2 Rp�p

is

nonsingular, then the maximal lower bound obtained from (1.6) is TAmlbT
T
.

2. Examples and applications. In this section we catalog examples and ap-

plications. The reader interested only in duality theory and solution methods for the

max-det problem can skip directly to x3.
2.1. Minimum volume ellipsoid containing given points. Perhaps the ear-

liest and best known application of the max-det problem arises in the problem of de-

termining the minimum volume ellipsoid that contains given points x1, . . . , xK in Rn

(or, equivalently, their convex hull Cofx1; : : : ; xKg). This problem has applications

in cluster analysis (Rosen[58], Barnes[9]), and robust statistics (in ellipsoidal peeling

methods for outlier detection; see Rousseeuw and Leroy[59, x7]).
We describe the ellipsoid as E = fx j kAx + bk � 1g, where A = AT � 0, so the

volume of E is proportional to detA�1. Hence the minimum volume ellipsoid that

contains the points xi can be computed by solving the convex problem

minimize log detA�1

subject to kAxi + bk � 1; i = 1; : : : ;K
A = AT � 0;

(2.1)

where the variables are A = AT 2 Rn�n
and b 2 Rn

. The norm constraints kAxi +
bk � 1, which are just convex quadratic inequalities in the variables A and b, can be

expressed as LMIs �
I Axi + b

(Axi + b)T 1

�
� 0:

These LMIs can in turn be expressed as one large block diagonal LMI, so (2.1) is a

max-det problem in the variables A and b.
Nesterov and Nemirovsky[51, x6.5], and Khachiyan and Todd[43] describe interior-

point algorithms for computing the maximum-volume ellipsoid in a polyhedron de-

scribed by linear inequalities (as well as the minimum-volume ellipsoid covering a

polytope described by its vertices).

Many other geometrical problems involving ellipsoidal approximations can be

formulated as max-det problems. References [13, x3.7], [16] and [68] give several

examples, including the maximum volume ellipsoid contained in the intersection or in

the sum of given ellipsoids, and the minimum volume ellipsoid containing the sum of

given ellipsoids. For other ellipsoidal approximation problems, suboptimal solutions

can be computed via max-det problems.

Ellipsoidal approximations of convex sets are used in control theory and signal

processing in bounded-noise or set-membership techniques. These techniques were
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�rst introduced for state estimation (see, e.g., Schweppe[62, 63], Witsenhausen[75],

Bertsekas and Rhodes[11], Chernousko[16, 17]), and later applied to system identi�-

cation (Fogel and Huang[35, 36], Norton[52, 53, x8.6], Walter and Piet-Lahanier[71],

Cheung, Yurkovich and Passino[18]), and signal processing Deller[23]. (For a survey

emphasizing signal processing applications, see Deller et al. [24]).

Other applications include themethod of inscribed ellipsoids developed by Tarasov,

Khachiyan, and Erlikh[66], and design centering (Sapatnekar[60]).

2.2. Matrix completion problems.

Positive de�nite matrix completion. In a positive de�nite matrix completion

problem we are given a symmetric matrix Af 2 Rn�n
, some entries of which are �xed;

the remaining entries are to be chosen so that the resulting matrix is positive de�nite.

Let the positions of the free (unspeci�ed) entries be given by the index pairs

(ik; jk), (jk; ik), k = 1; : : : ;m. We can assume that the diagonal elements are �xed,

i.e., ik 6= jk for all k. (If a diagonal element, say the (l; l)th, is free, we take it to
be very large, which makes the lth row and column of Af irrelevant.) The positive

de�nite completion problem can be cast as an SDP feasibility problem:

�nd x 2 Rm

such that A(x)
�
= Af +

mX
k=1

xk (Eikjk +Ejkik ) � 0;

where Eij denotes the matrix with all elements zero except the (i; j) element, which is
equal to one. Note that the set fx j A(x) � 0g is bounded since the diagonal elements
of A(x) are �xed.

Maximum entropy completion. The analytic center of the LMI A(x) � 0

is sometimes called the maximum entropy completion of Af . From the optimality

conditions (1.4), we see that the maximum entropy completion x? satis�es

2TrEikjkA(x
?
)
�1

= 2

�
A(x?)�1

�
ikjk

= 0; k = 1; : : : ;m;

i.e., the matrix A(x�)�1 has a zero entry in every location corresponding to an unspec-
i�ed entry in the original matrix. This is a very useful property in many applications;

see, for example, Dempster[27], or Dewilde and Ning[30].

Parametrization of all positive de�nite completions. As an extension of

the maximum entropy completion problem, consider

minimize TrCA(x) + log detA(x)�1

subject to A(x) � 0;
(2.2)

where C = CT
is given. This problem is of the form (1.5); the optimality conditions

are

A(x�) � 0;
�
A(x�)�1

�
ikjk

= Cikjk ; k = 1; : : : ;m;(2.3)

i.e., the inverse of the optimal completion matches the given matrix C in every free

entry. Indeed, this gives a parametrization of all positive de�nite completions: a

positive de�nite completion A(x) is uniquely characterized by specifying the elements
of its inverse in the free locations, i.e.,

�
A(x)�1

�
ikjk

. Problem (2.2) has been studied

by Bakonyi and Woerdeman[8].
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Contractive completion. A related problem is the contractive completion prob-

lem: given a (possibly nonsymmetric) matrix Af and m index pairs (ik; jk), k =

1; : : : ;m, �nd a matrix

A(x) = Af +

mX
k=1

xkEik;jk :

with spectral norm (maximum singular value) less than one.

This can be cast as a semide�nite programming feasibility problem [69]: �nd x
such that �

I A(x)
A(x)T I

�
� 0:(2.4)

One can de�ne a maximum entropy solution as the solution that maximizes the de-

terminant of (2.4), i.e., solves the max-det problem

maximize log det(I �A(x)TA(x))

subject to

�
I A(x)

A(x)T I

�
� 0:

(2.5)

See N�vdal and Woerdeman[50], Helton and Woerdeman[38]. For a statistical inter-

pretation of (2.5), see x2.3.
Specialized algorithms and references. Very e�cient algorithms have been

developed for certain specialized types of completion problems. A well known ex-

ample is the maximum entropy completion of a positive de�nite banded Toeplitz

matrix (Dym and Gohberg[31], Dewilde and Deprettere[29]). Davis, Kahan, and

Weinberger[22] discuss an analytic solution for a contractive completion problem with

a special (block matrix) form. The methods discussed in this paper solve the general

problem e�ciently, although they are slower than the specialized algorithms where

they are applicable. Moreover they have the advantage that other convex constraints,

e.g., upper and lower bounds on certain entries, are readily incorporated.

Completion problems, and specialized algorithms for computing completions, have

been discussed by many authors, see, e.g., Dym and Gohberg[31], Grone, Johnson, S�a

and Wolkowicz[37], Barrett, Johnson and Lundquist[10], Lundquist and Johnson[49],

Dewilde and Deprettere[29], Dembo, Mallows, and Shepp[26]. Johnson gives a survey

in [41]. An interior-point method for an approximate completion problem is discussed

in Johnson, Kroschel, and Wolkowicz[42].

We refer to Boyd et al. [13, x3.5], and El Ghaoui[32], for further discussion and

additional references.

2.3. Risk-averse linear estimation. Let y = Ax + w with w � N (0; I) and
A 2 Rq�p

. Here x is an unknown quantity that we wish to estimate, y is the mea-

surement, and w is the measurement noise. We assume that p � q and that A has

full column rank.

A linear estimator bx =My, withM 2 Rp�q
, is unbiased if Ebx = x where Emeans

expected value, i.e., the estimator is unbiased if MA = I . The minimum-variance

unbiased estimator is the unbiased estimator that minimizes the error variance

EkMy � xk2 = TrMMT
=

pX
i=1

�2i (M);
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where �i(M) is the ith largest singular value of M . It is given by M = A+
, where

A+
= (ATA)�1AT is the pseudo-inverse of A. In fact the minimum-variance estimator

is optimal in a stronger sense: it not only minimizes

P
i �

2
i (M), but each singular value

�i(M) separately:

MA = I =) �i(A
+
) � �i(M); i = 1; : : : ; p:(2.6)

In some applications estimation errors larger than the mean value are more costly,

or less desirable, than errors less than the mean value. To capture this idea of risk

aversion we can consider the objective or cost function

22 logE exp

�
1

22
kMy � xk2

�
(2.7)

where the parameter  is called the risk-sensitivity parameter. This cost function was

introduced by Whittle in the more sophisticated setting of stochastic optimal control;

see [72, x19]. Note that as  ! 1, the risk-sensitive cost (2.7) converges to the cost

EkMy� xk2, and is always larger (by convexity of exp). We can gain further insight

from the �rst terms of the series expansion in 1=2:

22 logE exp

�
1

22
kbx� xk2

�
' Ekbx� xk2 + 1

42

�
Ekbx� xk4 �

�
Ekbx� xk2

�2�

= Ez +
1

42
var z;

where z = kbx � xk2 is the squared error. Thus for large , the risk-averse cost (2.7)
augments the mean-square error with a term proportional to the variance of the

squared error.

The unbiased, risk-averse optimal estimator can be found by solving

minimize 22 logE exp

�
1
22

kMy � xk2
�

subject to MA = I;

which can be expressed as a max-det problem. The objective function can be written

as

22 logE exp

�
1

22
kMy � xk2

�

= 22 logE exp

�
1

22
wTMTMw

�

=

�
22 log det(I � (1=2)MTM)

�1=2
if MTM � 2I

1 otherwise

=

8<
: 2 log det

�
I �1MT

�1M I

��1
if

�
I �1MT

�1M I

�
� 0

1 otherwise
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so the unbiased risk-averse optimal estimator solves the max-det problem

minimize 2 log det

�
I �1MT

�1M I

��1

subject to

�
I �1MT

�1M I

�
� 0

MA = I:

(2.8)

This is in fact an analytic centering problem, and has a simple analytic solution: the

least squares estimatorM = A+
. To see this we express the objective in terms of the

singular values of M :

2 log det

�
I �1MT

�1M I

��1
=

8><
>:

�2
pX
i=1

log(1� �2i (M)=2)�1 if �1(M) < 

1 otherwise.

It follows from property (2.6) that the solution is M = A+
if kA+k < , and that the

problem is infeasible otherwise. (Whittle refers to the infeasible case, in which the

risk-averse cost is always in�nite, as `neurotic breakdown'.)

In the simple case discussed above, the optimal risk-averse and the minimum-

variance estimators coincide (so there is certainly no advantage in a max-det problem

formulation). When additional convex constraints on the matrix M are added, e.g.,

a given sparsity pattern, or triangular or Toeplitz structure, the optimal risk-averse

estimator can be found by including these constraints in the max-det problem (2.8)

(and will not, in general, coincide with the constrained minimum-variance estimator).

2.4. Experiment design.

Optimal experiment design. As in the previous section, we consider the prob-

lem of estimating a vector x from a measurement y = Ax + w, where w � N (0; I) is
measurement noise. The error covariance of the minimum-variance estimator is equal

to A+
(A+

)
T
= (ATA)�1. We suppose that the rows of the matrix A = [a1 : : : aq ]

T

can be chosen among M possible test vectors v(i) 2 Rp
, i = 1; : : : ;M :

ai 2 fv(1); : : : ; v(M)g; i = 1; : : : ; q:

The goal of experiment design is to choose the vectors ai so that the error covariance
(ATA)�1 is `small'. We can interpret each component of y as the result of an experi-

ment or measurement that can be chosen from a �xed menu of possible experiments;

our job is to �nd a set of measurements that (together) are maximally informative.

We can write ATA = q
PM

i=1 �iv
(i)v(i)

T
, where �i is the fraction of rows ak equal

to the vector v(i). We ignore the fact that the numbers �i are integer multiples of 1=q,
and instead treat them as continuous variables, which is justi�ed in practice when q
is large. (Alternatively, we can imagine that we are designing a random experiment:

each experiment ai has the form v(k) with probability �k.)

Many di�erent criteria for measuring the size of the matrix (ATA)�1 have been
proposed. For example, in E-optimal design, we minimize the norm of the error

covariance, �max((A
TA)�1), which is equivalent to maximizing the smallest eigenvalue
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of ATA. This is readily cast as the SDP

maximize t

subject to

MX
i=1

�iv
(i)v(i)

T � tI

MX
i=1

�i = 1

�i � 0; i = 1; : : : ;M

in the variables �1; : : : ; �M , and t. Another criterion is A-optimality, in which we

minimize Tr(ATA)�1. This can be cast as an SDP:

minimize

pX
i=1

ti

subject to

" PM
i=1 �iv

(i)v(i)
T

ei

eTi ti

#
� 0; i = 1; : : : ; p;

�i � 0; i = 1; : : : ;M;

MX
i=1

�i = 1;

where ei is the ith unit vector in Rp
, and the variables are �i, i = 1; : : : ;M , and ti,

i = 1; : : : ; p.
InD-optimal design, we minimize the determinant of the error covariance (ATA)�1,

which leads to the max-det problem

minimize log det

 
MX
i=1

�iv
(i)v(i)

T

!�1
subject to �i � 0; i = 1; : : : ;M

MX
i=1

�i = 1:

(2.9)

In x3 we will derive an interesting geometrical interpretation of the D-optimal matrix
A, and show that ATA determines the minimum volume ellipsoid, centered at the

origin, that contains v(1), . . . , v(M)
.

Fedorov[33], Atkinson and Donev[7], Pukelsheim[55], and Cook and Fedorov[19]

give surveys and additional references on optimal experiment design. Wilhelm[74, 73]

discusses nondi�erentiable optimization methods for experiment design. J�avorzky et

al. [40] describe an application in frequency domain system identi�cation, and compare

the interior-point method discussed later in this paper with conventional algorithms.

Lee et al. [45, 5] discuss a non-convex experiment design problem and a relaxation

solved by an interior-point method.

Extensions of D-optimal experiment design. The formulation of D-optimal
design as an max-det problem has the advantage that one can easily incorporate

additional useful convex constraints. For example, one can add linear inequalities

cTi � � �i, which can reect bounds on the total cost of, or time required to carry out,
the experiments.
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Without 90-10 constraint With 90-10 constraint

Fig. 2.1. A D-optimal experiment design involving 50 test vectors in R
2, with and without

the 90-10 constraint. The circle is the origin; the dots are the test vectors that are not used in the
experiment (i.e., have a weight �i = 0); the crosses are the test vectors that are used (i.e., have a
weight �i > 0). Without the 90-10 constraint, the optimal design allocates all measurements to only
two test vectors. With the constraint, the measurements are spread over ten vectors, with no more
than 90% of the measurements allocated to any group of �ve vectors. See also Figure 2.2.

We can also consider the case where each experiment yields several measurements,

i.e., the vectors ai and v
(k)

become matrices. The max-det problem formulation (2.9)

remains the same, except that the terms v(k)v(k)T can now have rank larger than one.

This extension is useful in conjunction with additional linear inequalities represent-

ing limits on cost or time: we can model discounts or time savings associated with

performing groups of measurements simultaneously. Suppose, for example, that the

cost of simultaneously making measurements v(1) and v(2) is less than the sum of the

costs of making them separately. We can take v(3) to be the matrix

v(3) =
�
v(1) v(2)

�
and assign costs c1, c2, and c3 associated with making the �rst measurement alone,

the second measurement alone, and the two simultaneously, respectively.

Let us describe in more detail another useful additional constraint that can be

imposed: that no more than a certain fraction of the total number of experiments,

say 90%, is concentrated in less than a given fraction, say 10%, of the possible mea-

surements. Thus we require

bM=10cX
i=1

�[i] � 0:9;(2.10)

where �[i] denotes the ith largest component of �. The e�ect on the experiment design
will be to spread out the measurements over more points (at the cost of increasing

the determinant of the error covariance). (See Figures 2.1 and 2.2.)

The constraint (2.10) is convex; it is satis�ed if and only if there exists x 2 RM

and t such that

bM=10c t+
MX
i=1

xi � 0:9

t+ xi � �i; i = 1; : : : ;M
x � 0

(2.11)
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0:0

0:9

1:0

k

kX
i=1

�[i]

@
@

@I

with 90-10 constraint

�
�	

without 90-10 constraint

Fig. 2.2. Experiment design of Figure 2.1. The curves show the sum of the largest k components
of � as a function of k, without the 90-10 constraint (`�'), and with the constraint (`�'). The
constraint speci�es that the sum of the largest �ve components should be less than 0.9, i.e., the curve
should avoid the area inside the dashed rectangle.

(see [14, p.318]). One can therefore compute the D-optimal design subject to the 90-

10 constraint (2.10) by adding the linear inequalities (2.11) to the constraints in (2.9)

and solving the resulting max-det problem in the variables �, x, t.

2.5. Maximum likelihood estimation of structured covariance matrices.

The next example is the maximum likelihood (ML) estimation of structured covari-

ance matrices of a normal distribution. This problem has a long history; see e.g.,

Anderson[2, 3].

Let y(1), . . . , y(M)
be M samples from a normal distribution N (0;�). The ML

estimate for � is the positive de�nite matrix that maximizes the log-likelihood function

log

QM
i=1 p(y

(i)
), where

p(x) = ((2�)p det�)
�1=2

exp

�
�1

2

xT��1x

�
:

In other words, � can be found by solving

maximize log det �
�1 � 1

M

NX
i=1

y(i)
T
�
�1y(i)

subject to � � 0:

(2.12)

This can be expressed as a max-det problem in the inverse R = �
�1
:

minimize TrSR+ log detR�1

subject to R � 0;
(2.13)

where S =
1
M

Pn
i=1 y

(i)y(i)
T
. Problem (2.13) has the straightforward analytical solu-

tion R = S�1 (provided S is nonsingular).

It is often useful to impose additional structure on the covariance matrix �

or its inverse R (Anderson[2, 3], Burg, Luenberger, Wenger[15], Scharf[61, x6.13],
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Dembo[25]). In some special cases (e.g., � is circulant) analytical solutions are known;

in other cases where the constraints can be expressed as LMIs in R, the ML estimate

can be obtained from a max-det problem. To give a simple illustration, bounds on

the variances �ii can be expressed as LMIs in R:

�ii = eTi R
�1ei � �()

�
R ei
eTi �

�
� 0:

The formulation as a max-det problem is also useful when the matrix S is singular

(for example, because the number of samples is too small) and, as a consequence, the

max-det problem (2.13) is unbounded below. In this case we can impose constraints

(i.e., prior information) on �, for example lower and upper bounds on the diagonal

elements of R.

2.6. Gaussian channel capacity.

The Gaussian channel and the water-�lling algorithm. The entropy of a

normal distribution N (�;�) is, up to a constant, equal to
1
2 log det� (see Cover and

Thomas[21, Chapter 9]). It is therefore not surprising that max-det problems arise

naturally in information theory and communications. One example is the computation

of channel capacity.

Consider a simple Gaussian communication channel: y = x+v, where y, x, and v
are random vectors in Rn

; x � N (0; X) is the input; y is the output, and v � N (0; R)
is additive noise, independent of x. This model can represent n parallel channels, or

one single channel at n di�erent time instants or n di�erent frequencies.

We assume the noise covariance R is known and given; the input covariance X is

the variable to be determined, subject to constraints (such as power limits) that we

will describe below. Our goal is to maximize the mutual information between input

and output, given by

1

2

(log det(X +R)� log detR) =
1

2

log det(I +R�1=2XR�1=2
)

(see [21]). The channel capacity is de�ned as the maximum mutual information over

all input covariances X that satisfy the constraints. (Thus, the channel capacity

depends on R and the constraints.)

The simplest and most common constraint is a limit on the average total power

in the input, i.e.,

ExTx=n = TrX=n � P:(2.14)

The information capacity subject to this average power constraint is the optimal value

of

maximize
1
2 log det(I +R�1=2XR�1=2

)

subject to TrX � nP
X � 0

(2.15)

(see [21, x10]). This is a max-det problem in the variable X = XT
.

There is a straightforward solution to (2.15), known in information theory as

the water-�lling algorithm (see [21, x10], [20]). Let R = V �V T
be the eigenvalue
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decomposition of R. By introducing a new variable eX = V TXV , we can rewrite the

problem as

maximize
1
2
log det(I +�

�1=2 eX�
�1=2

)

subject to Tr eX � nPeX � 0:

Since the o�-diagonal elements of eX do not appear in the constraints, but decrease

the objective, the optimal eX is diagonal. Using Lagrange multipliers one can show

that the solution is eXii = max(� � �i; 0), i = 1; : : : ; n, where the Lagrange multiplier

� is to be determined from

P eXii = nP . The term `water-�lling' refers to a visual

description of this procedure (see [21, x10], [20]).
Average power constraints on each channel. Problem (2.15) can be ex-

tended and modi�ed in many ways. For example, we can replace the average total

power constraint by an average power constraint on the individual channels, i.e., we

can replace (2.14) by Ex2k = Xkk � P , k = 1; : : : ; n. The capacity subject to this

constraint can be determined by solving the max-det problem

maximize
1
2
log det

�
I +R�1=2XR�1=2

�
subject to X � 0

Xkk � P; k = 1; : : : ; n:

The water-�lling algorithm does not apply here, but the capacity is readily computed

by solving this max-det problem in X . Moreover, we can easily add other constraints,

such as power limits on subsets of individual channels, or an upper bound on the

correlation coe�cient between two components of x:

jXij jp
XiiXjj

� �max ()
� p

�maxXii Xij

Xij
p
�maxXjj

�
� 0:

Gaussian channel capacity with feedback. Suppose that the n components

of x, y, and v are consecutive values in a time series. The question whether knowledge
of the past values vk helps in increasing the capacity of the channel is of great interest
in information theory [21, x10.6]). In the Gaussian channel with feedback one uses,

instead of x, the vector ~x = Bv + x as input to the channel, where B is a strictly

lower triangular matrix. The output of the channel is y = ~x+ v = x+ (B + I)v. We

assume there is an average total power constraint: E~xT ~x=n � P .
The mutual information between ~x and y is

1

2

�
log det((B + I)R(B + I)T +X)� log detR

�
;

so we maximize the mutual information by solving

maximize
1
2

�
log det((B + I)R(B + I)T +X)� log detR

�
subject to Tr(BRBT

+X) � nP
X � 0

B strictly lower triangular

over the matrix variables B and X . To cast this problem as a max-det problem, we

introduce a new variable Y = (B + I)R(B + I)T +X (i.e., the covariance of y), and
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obtain

maximize log detY
subject to Tr(Y �RBT �BR�R) � nP

Y � (B + I)R(B + I)T � 0

B strictly lower triangular.

(2.16)

The second constraint can be expressed as an LMI in B and Y ,�
Y B + I

(B + I)T R�1

�
� 0;

so (2.16) is a max-det problem in B and Y .

Capacity of channel with cross-talk. Suppose the n channels are indepen-

dent, i.e., all covariances are diagonal, and that the noise covariance depends on X :

Rii = ri + aiXii, with ai > 0. This has been used as a model of near-end cross-talk

(see [6]). The capacity (with the total average power constraint) is the optimal value

of

maximize

1

2

nX
i=1

log

�
1 +

Xii

ri + aiXii

�
subject to Xii � 0; i = 1; : : : ; n

nX
i=1

Xii � nP;

which can be cast as a max-det problem

maximize
1
2

nX
i=1

log(1 + ti)

subject to Xii � 0; ti � 0; i = 1; : : : ; n;�
1� aiti

p
rip

ri aiXii + ri

�
� 0; i = 1; : : : ; n;

nX
i=1

Xii � nP:

The LMI is equivalent to ti � Xii=(ri + aiXii). This problem can be solved using

standard methods; the advantage of a max-det problem formulation is that we can add

other (LMI) constraints on X , e.g., individual power limits. As another interesting

possibility, we could impose constraints that distribute the power across the channels

more uniformly, e.g., a 90-10 type constraint (see x2.4).

3. The dual problem. We associate with (1.1) the dual problem

maximize log detW �TrG0W �TrF0Z + l
subject to TrGiW +TrFiZ = ci; i = 1; :::;m;

W =W T � 0; Z = ZT � 0:
(3.1)

The variables areW 2 Rl�l
and Z 2 Rn�n

. Problem (3.1) is also a max-det problem,

and can be converted into a problem of the form (1.1) by elimination of the equality

constraints.
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We say W and Z are dual feasible if they satisfy the constraints in (3.1), and

strictly dual feasible if in addition Z � 0. We also refer to the max-det problem (1.1)

as the primal problem and say x is primal feasible if F (x) � 0 and G(x) � 0, and

strictly primal feasible if F (x) � 0 and G(x) � 0.

Let p� and d� be the optimal values of problem (1.1) and (3.1), respectively (with

the convention that p� = +1 if the primal problem is infeasible, and d� = �1 if the

dual problem is infeasible).

The optimization problem (3.1) is the Lagrange dual of problem (1.1), rewritten

as

minimize cTx+ log detX�1

subject to X = G(x)
F (x) � 0; X � 0:

(We introduce a new variable X = XT 2 Rl�l
and add an equality constraint.) To

derive the dual problem, we associate a Lagrange mulitiplier Z = ZT � 0 with the

LMI F (x) � 0, and a multiplier W = W T
with the equality constraint X = G(x).

The optimal value can then be expressed as

p� = inf
x;X

sup

Z�0;W

�
cTx+ log detX�1 �TrZF (x) +TrW (X �G(x))

�
:

Changing the order of the supremum and the in�mum, and solving the inner uncon-

strained minimization over x and X analytically, yields a lower bound on p�:

p� � sup

Z�0;W
inf
x;X

�
cTx+ log detX�1 �TrZF (x) +TrW (X �G(x))

�
= sup

Z�0;W�0; ci=TrZFi+TrWGi

(log detW �TrZF0 �TrWG0 + l)

= d�:

The inequality p� � d� holds with equality if a constraint quali�cation holds, as stated
in the following theorem.

Theorem 3.1. p� � d�. If (1.1) is strictly feasible, the dual optimum is achieved;

if (3.1) is strictly feasible, the primal optimum is achieved. In both cases, p� = d�.
The theorem follows from standard results in convex optimization (Luenberger[48,

Chapter 8], Rockafellar[57, x29,30], Hiriart-Urruty and Lemar�echal[39, Chapter XII]),
so we will not prove it here. See also Lewis[46] for a more general discussion of convex

analysis of functions of symmetric matrices.

The di�erence between the primal and dual objective, i.e., the expression

cTx+ log detG(x)�1 + log detW�1
+TrG0W +TrF0Z � l

=

mX
i=1

xiTrGiW +TrG0W +

mX
i=1

xiTrFiZ +TrF0Z � log detG(x)W � l

= TrG(x)W � log detG(x)W � l +TrF (x)Z;(3.2)

is called the duality gap associated with x, W and Z. Theorem 3.1 states that the

duality gap is always nonnegative, and zero only if x, W and Z are optimal.

Note that zero duality gap (3.2) implies G(x)W = I and F (x)Z = 0. This gives

the optimality condition for the max-det problem (1.1): a primal feasible x is optimal
if there exists a Z � 0, such that F (x)Z = 0 and

TrGiG(x)
�1

+TrFiZ = ci; i = 1; : : : ;m:
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This optimality condition is always su�cient; it is also necessary if the primal problem

is strictly feasible.

In the remainder of the paper we will assume that the max-det problem is strictly

primal and dual feasible. By Theorem 3.1, this assumption implies that the primal

problem is bounded below and the dual problem is bounded above, with equality at

the optimum, and that the primal and dual optimal sets are nonempty.

Example: semide�nite programming dual. As an illustration, we derive

from (3.1) the dual problem for the SDP (1.2). Substituting G0 = 1, Gi = 0, l = 1,

in (3.1) yields

maximize logW �W �TrF0Z + 1

subject to TrFiZ = ci; i = 1; : : : ;m;
W � 0; Z � 0:

The optimal value of W is one, so the dual problem reduces to

maximize �TrF0Z
subject to TrFiZ = ci; i = 1; : : : ;m;

Z � 0;

which is the dual SDP (in the notation used in [69]).

Example: D-optimal experiment design. As a second example we derive the
dual of the experiment design problem (2.9). After a few simpli�cations we obtain

maximize log detW + p� z
subject to W =W T � 0

v(i)
T
Wv(i) � z; i = 1; : : : ;M;

(3.3)

where the variables are the matrix W and the scalar variable z. Problem (3.3) can

be further simpli�ed. The constraints are homogeneous in W and z, so for each dual

feasible W , z we have a ray of dual feasible solutions tW , tz, t > 0. It turns out

that we can analytically optimize over t: replacing W by tW and z by tz changes the
objective to log detW + p log t + p � tz, which is maximized for t = p=z. After this

simpli�cation, and with a new variable fW = (p=z)W , problem (3.3) becomes

maximize log detfW
subject to fW � 0

v(i)
TfWv(i) � p; i = 1; : : : ;M:

(3.4)

Problem (3.4) has an interesting geometrical meaning: the constraints state that fW
determines an ellipsoid fx j xTfWx � pg, centered at the origin, that contains the

points v(i), i = 1; : : : ;M ; the objective is to maximize detfW , i.e., to minimize the

volume of the ellipsoid.

There is an interesting connection between the optimal primal variables �i and
the points v(i) that lie on the boundary of the optimal ellipsoid E . First note that the
duality gap associated with a primal feasible � and a dual feasible fW is equal to

log det

 
MX
i=1

�iv
(i)v(i)

T

!�1
� log detfW;
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Fig. 3.1. In the dual of the D-optimal experiment design problem we compute the minimum-
volume ellipsoid, centered at the origin, that contains the test vectors. The test vectors with a nonzero
weight lie on the boundary of the optimal ellipsoid. Same data and notation as in Figure 2.1.

and is zero (hence, � is optimal) if and only if fW =

�PM
i=1 �iv

(i)v(i)
T
��1

. Hence, �

is optimal if

E =

8<
:x 2 Rp

������ xT
 

MX
i=1

�iv
(i)v(i)

T

!�1

x � p

9=
;

is the minimum-volume ellipsoid, centered at the origin, that contains the points v(j),
j = 1; : : : ;M . We also have (in fact, for any feasible �):

MX
j=1

�j

0
@p� v(j)

T

 
MX
i=1

�iv
(i)v(i)

T

!�1
v(j)

1
A

= p�Tr

0
@ MX
j=1

�jv
(j)v(j)

T

1
A
 

MX
i=1

�iv
(i)v(i)

T

!�1

= 0:

If � is optimal, then each term in the sum on the left hand side is positive (since E
contains all vectors v(j)), and therefore the sum can only be zero if each term is zero:

�j > 0 =) v(j)
T

 
MX
i=1

�iv
(i)v(i)

T

!�1
v(j) = p;

Geometrically, �j is nonzero only if v
(j)

lies on the boundary of the minimum volume

ellipsoid. This makes more precise the intuitive idea that an optimal experiment only

uses `extreme' test vectors. Figure 3.1 shows the optimal ellipsoid for the experiment

design example of Figure 2.1.

The duality between D-optimal experiment designs and minimum-volume el-

lipsoids also extends to non-�nite compacts sets (Titterington[67], Pronzato and

Walter[54]). The D-optimal experiment design problem on a compact set C � Rp
is

maximize log detEvvT(3.5)
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over all probability measures on C. This is a convex but semi-in�nite optimization

problem, with dual ([67])

maximize log detfW
subject to fW � 0

vTfWv � p; v 2 C:
(3.6)

Again, we see that the dual is the problem of computing the minimum volume ellip-

soid, centered at the origin, and covering the set C.

General methods for solving the semi-in�nite optimization problems (3.5) and (3.6)

fall outside the scope of this paper. In particular cases, however, these problems can

be solved as max-det problems. One interesting example arises when C is the union

of a �nite number of ellipsoids. In this case, the dual (3.6) can be cast as a max-det

problem (see [70]) and hence e�ciently solved; by duality, we can recover from the

dual solution the probability distribution that solves (3.5).

4. The central path. In this section we describe the central path of the max-

det problem (1.1), and give some of its properties. The central path plays a key role

in interior point methods for the max-det problem.

The primal central path. For strictly feasible x and t � 1, we de�ne

'p(t; x)
�
= t
�
cTx+ log detG(x)�1

�
+ log detF (x)�1:(4.1)

This function is the sum of two convex functions: the �rst term is a positive multiple

of the objective function in (1.1); the second term, log detF (x)�1, is a barrier function
for the set fx j F (x) � 0g. For future use, we note that the gradient and Hessian of

'p(x; t) are given by the expressions

(r'p(t; x))i = t
�
ci �TrG(x)�1Gi

�
�TrF (x)�1Fi;(4.2) �

r2'p(t; x)
�
ij
= tTrG(x)�1GiG(x)

�1Gj +TrF (x)�1FiF (x)
�1Fj ;(4.3)

for i; j = 1; : : : ;m.

It can be shown that 'p(t; x) is a strictly convex function of x if the m matrices

diag(Gi; Fi), i = 1; : : : ;m, are linearly independent, and that it is bounded below

(since we assume the problem is strictly dual feasible). We de�ne x?(t) as the unique
minimizer of 'p(t; x):

x?(t) = argmin f'p(t; x) j G(x) � 0; F (x) � 0g :

The curve x?(t), parametrized by t � 1, is called the central path.

The dual central path. Points x?(t) on the central path are characterized by

the optimality conditions r'p(t; x?(t)) = 0, i.e., using the expression (4.2),

TrG(x?(t))�1Gi +
1

t
TrF (x?(t))�1Fi = ci; i = 1; : : : ;m:

From this we see that the matrices

W ?
(t) = G(x?(t))�1; Z?

(t) =
1

t
F (x?(t))�1(4.4)
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are strictly dual feasible. The duality gap associated with x?(t), W ?
(t) and Z?

(t) is,
from expression (3.2),

TrF (x?(t))Z?
(t) +TrG(x?(t))W ?

(t)� log detG(x?(t))W ?
(t)� l =

n

t
;

which shows that x?(t) converges to the solution of the max-det problem as t!1.

It can be shown that the pair (W ?
(t); Z?

(t)) actually lies on the dual central

path, de�ned as

(W ?
(t); Z?

(t)) = argmin

�
'd(t;W;Z)

���� W =W T � 0; Z = ZT � 0;
TrGiW +TrFiZ = ci; i = 1; : : : ;m

�
where

'd(t;W;Z)
�
= t
�
log detW�1

+TrG0W +TrF0Z � l
�
+ log detZ�1:

The close connections between primal and dual central path are summarized in the

following theorem.

Theorem 4.1. If x is strictly primal feasible, and W , Z are strictly dual feasible,

then

'p(t; x) + 'd(t;W;Z) � n(1 + log t)(4.5)

with equality if and only if x = x?(t), W =W ?
(t), Z = Z?

(t).
Proof. If A = AT 2 Rp�p

and A � 0, then � log detA � �TrA+ p (by convexity of

� log detA on the cone of positive semide�nite matrices). Applying this inequality,

we �nd

'p(t; x) + 'd(t;W;Z) = t (TrG(x)W +TrF (x)Z � log detG(x)W � l)� log detF (x)Z

= t
�
� log detW 1=2G(x)W 1=2

+TrW 1=2G(x)W 1=2
�

� log det tZ1=2F (x)Z1=2
+TrtZ1=2F (x)Z1=2

+ n log t� tl

� tl + n+ n log t� tl = n(1 + log t):

The equality for x = x?(t), W =W ?
(t), Z = Z?

(t) can be veri�ed by substitution.

Tangent to the central path. We conclude this section by describing how the

tangent direction to the central path can be computed. Let �1(x) = � log detG(x)
and �2(x) = � log detF (x). A point x?(t) on the central path is characterized by

t (c+r�1(x?(t))) +r�2(x?(t)) = 0:

The tangent direction
@x?(t)
@t

can be found by di�erentiating with respect to t:

c+r�1(x?(t)) +
�
tr2�1(x

?
(t)) +r2�2(x

?
(t))
� @x?(t)

@t
= 0;

so that

@x?(t)

@t
= �

�
tr2�1(x

?
(t)) +r2�2(x

?
(t))
��1

(c+r�1(x?(t))):(4.6)

By di�erentiating (4.4), we obtain the tangent to the dual central path,

@W ?
(t)

@t
= �G(x?(t))�1

 
mX
i=1

@x?i(t)

@t
Gi

!
G(x?(t))�1;(4.7)

@Z?
(t)

@t
= � 1

t2
F (x?(t))�1 � 1

t
F (x?(t))�1

 
mX
i=1

@x?i(t)

@t
Fi

!
F (x?(t))�1:(4.8)
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5. Newton's method. In this section we consider the problem of minimizing

'p(t; x) for �xed t, i.e., computing x
?
(t), given a strictly feasible initial point:

minimize 'p(t; x)
subject to G(x) � 0

F (x) � 0:
(5.1)

This includes, as a special case, the analytic centering problem (t = 1 and F (x) =
1). Our main motivation for studying (5.1) will become clear in next section, when

we discuss an interior-point method based on minimizing 'p(t; x) for a sequence of

values t.
Newton's method with line search can be used to solve problem (5.1) e�ciently.

Newton method for minimizing 'p(t; x)

given strictly feasible x, tolerance � (0 < � � 0:5)

repeat

1. Compute the Newton direction �xN = �
�
r2'p(t; x)

��1r'p(t; x)
2. Compute � = (�xNr2'p(t; x)�x

N
)
1=2

3. if (� > 0:5), compute bh = argmin 'p(t; x+ h�xN )

else bh = 1

4. Update: x := x+ bh�xN
until � � �

The quantity

� = (�xNr2'p(t; x)�x
N
)
1=2

(5.2)

is called the Newton decrement at x. The cost of Step 3 (the line search) is very

small, usually negligible compared with the cost of computing the Newton direction;

see x8 for details.
It is well known that the asymptotic convergence of Newton's method is quadratic.

Nesterov and Nemirovsky in [51, x2.2] give a complete analysis of the global speed of

convergence. The main result of their convergence analysis applied to problem (5.1)

is the following theorem.

Theorem 5.1. The algorithm terminates in fewer than

11('p(t; x
(0)
)� 'p(t; x

?
(t))) + log2 log2(1=�)(5.3)

iterations, and when it terminates, 'p(t; x)� 'p(t; x
?
(t)) � �.

A self-contained proof is given in Ref.[70].

Note that the right-hand side of (5.3) does not depend on the problem size (i.e.,

m, n, or l) at all, and only depends on the problem data through the di�erence

between the value of the function 'p(t; �) at the initial point x(0) and at the central

point x?(t).

The term log2 log2(1=�), which is characteristic of quadratic convergence, grows

extremely slowly with required accuracy �. For all practical purposes it can be consid-
ered a constant, say, �ve (which guarantees an accuracy of � = 2:33 �10�10). Not quite
precisely, then, the theorem says we can compute x?(t) in at most 11('p(t; x

(0)
) �

'p(t; x
?
(t))) + 5 Newton steps. The precise statement is that within this number of
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Fig. 5.1. Number of Newton iterations to minimize log detA(x)�1 versus log detA(x(0))�1 �

log detA(x?)�1 (with � = 2:33�10�10, i.e., log2 log2(1=�) = 5). Random matrix completion problems
of three sizes (`+': m = 20; l = 20, `�': m = 100, l = 20, `�': m = 20, l = 100). The dotted line
is a least-squares �t of the data and is given by 5 + 0:59(log detA(x(0))�1 � log detA(x?)�1). The
dashed line is the upper bound of Theorem 5.1 (5 + 11(log detA(x(0))�1 � log detA(x?)�1)).

iterations we can compute an extremely good approximation of x?(t). In the sequel,

we will speak of `computing the central point x?(t)' when we really mean computing

an extremely good approximation. We can justify this on several grounds. It is pos-

sible to adapt our exposition to account for the extremely small approximation error

incurred by terminating the Newton process after 11('p(t; x
(0)
) � 'p(t; x

?
(t))) + 5

steps. Indeed, the errors involved are certainly on the same scale as computer arith-

metic (roundo�) errors, so if a complexity analysis is to be carried out with such

precision, it should also account for roundo� error.

Theorem 5.1 holds for an `implementable' version of the algorithm as well, in

which an appropriate approximate line search is used instead of the exact line search.

Numerical experiment. The bound provided by Theorem 5.1 on the number

of Newton steps required to compute x?(t), starting from x(0), will play an important
role in our path-following method. It is therefore useful to examine how the bound

compares to the actual number of Newton steps required in practice to compute x?(t).

Figure 5.1 shows the results of a numerical experiment that compares the actual

convergence of Newton's method with the bound (5.3). The test problem is a matrix

completion problem

minimize log detA(x)�1

subject to A(x) = Af +

mX
k=1

xk (Eikjk + Ejkik) � 0;

which is a particular case of (5.1) with c = 0, G(x) = A(x), F (x) = 1, and 'p(t; x) =
log detA(x)�1. We considered problems of three di�erent sizes: m = 20, l = 20

(indicated by `+'); m = 100, l = 20 (indicated by `�'); m = 20, l = 100 (indicated by

`�'). Each point on the �gure corresponds to a di�erent problem instance, generated

as follows.
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� The matrices Af were constructed as Af = UUT
with the elements of U

drawn from a normal distribution N (0; 1). This guarantees that x = 0 is

strictly feasible. The m index pairs (ik; jk), ik 6= jk, were chosen randomly

with a uniform distribution over the o�-diagonal index pairs. For each of the

three problem sizes, 50 instances were generated.

� For each problem instance, we �rst computed x? using x = 0 as starting point.

We then selected a value  (uniformly in the interval (0; 30)), generated a

random bx 2 Rm
(with distribution N (0; I)), and then computed x(0) =

x? + t(bx� x?) such that

log det(A(x(0)))�1 � log det(A(x�))�1 = :

This point x(0) was used as starting point for the Newton algorithm.

Our experience with other problems shows that the results for this family of random

problems are quite typical.

From the results we can draw two important conclusions.

� The quantity log det(A(x(0)))�1�log det(A(x?))�1 not only provides an upper
bound on the number of Newton iterations via Theorem 5.1; it is also a very

good predictor of the number of iterations in practice. The dimensions m
and l on the other hand have much less inuence (except of course, through

log det(A(x(0)))�1 � log det(A(x?))�1).
� The average number of Newton iterations seems to grow as

�+ �
�
log det(A(x(0)))�1 � log det(A(x?))�1

�
;

with � ' 5, � ' 0:6. This is signi�cantly smaller than the upper bound of

Theorem 5.1 (� = 5, � = 11).

In summary, we conclude that the di�erence 'p(t; x
(0)
)�'p(t; x?(t)) is a good measure,

in theory and in practice, of the e�ort required to compute x?(t) using Newton's

method, starting at x(0).

A computable upper bound on the number of Newton steps. Note that

'p(t; x
?
(t)) is not known explicitly as a function of t. To evaluate the bound (5.3)

one has to compute x?(t), i.e., carry out the Newton algorithm. (Which, at the very

least, would seem to defeat the purpose of trying to estimate or bound the number of

Newton steps required to compute x?(t).) Therefore the bound of Theorem 5.1 is not

(directly) useful in practice. From Theorem 4.1, however, it follows that every dual

feasible point W ,Z provides a lower bound for 'p(t; x
?
(t)):

'p(t; x
?
(t)) � �'d(t;W;Z) + n(1 + log t):

and that the bound is exact if W =W ?
(t) and Z = Z?

(t).
We can therefore replace the bound (5.3) by a weaker, but more easily computed

bound, provided we have a dual feasible pair W , Z:

11('p(t; x
(0)
)� 'p(t; x

?
(t))) + log2 log2(1=�)

� 11 ub(t; x
(0);W;Z) + log2 log2(1=�);(5.4)

where

 ub(t; x;W;Z) = 'p(t; x) + 'd(t;W;Z)� n(1 + log t):(5.5)

This is the bound we will use in practice (and in our complexity analysis): it gives a

readily computed bound on the number of Newton steps required to compute x?(t),
starting from x(0), given any dual feasible W , Z.
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6. Path-following algorithms. Path-following methods for convex optimiza-

tion have a long history. In their 1968 book [34], Fiacco and McCormick work out

many general properties, e.g., convergence to an optimal point, connections with du-

ality, etc. No attempt was made to give a worst-case convergence analysis, until

Renegar[56] proved polynomial convergence of a path-following algorithm for linear

programming. Nesterov and Nemirovsky[51, x3] studied the convergence for nonlinear
convex problems and provided proofs of polynomial worst-case complexity. See [51,

pp.379{386] and Den Hertog[28] for a historical overview.

We will present two variants of a path-following method for the max-det problem.

The short-step version of x6.2 is basically the path-following method of [34, 51], with

a simpli�ed, self-contained complexity analysis (see also Anstreicher and Fampa[4] for

a very related analysis of an interior-point method for semide�nite programming). In

the long-step verion of x6.3 we combine the method with predictor steps to accelerate

convergence. This, too, is a well known technique, originally proposed by Fiacco and

McCormick; our addition is a new step selection rule.

6.1. General idea. One iteration proceeds as follows. The algorithm starts at

a point x?(t) on the central path. As we have seen above, the duality gap associated

with x?(t) is n=t. We then select a new value t+ > t, and choose a strictly feasible

starting point bx (which may or may not be equal to x?(t)). The point bx serves as

an approximation of x?(t+) and is called the predictor of x?(t+). Starting at the

predictor bx, the algorithm computes x?(t+) using Newton's method. This reduces

the duality gap by a factor t+=t. The step from x?(t) to x?(t+) is called an outer

iteration.

The choice of t+ and bx involves a tradeo�. A large value of t+=t means fast
duality gap reduction, and hence fewer outer iterations. On the other hand it makes

it more di�cult to �nd a good predictor bx, and hence more Newton iterations may

be needed to compute x?(t+).
In the method discussed below, we impose a bound on the maximum number of

Newton iterations per outer iteration, by requiring that the predictor bx and the new

value of t+ satisfy

'p(t
+; bx)� 'p(t

+; x?(t+)) � :(6.1)

This implies that no more than 5 + 11 Newton iterations are required to compute

x?(t+) starting at bx. Of course, the exact value of the left hand side is not known,

unless we carry out the Newton minimization, but as we have seen above, we can

replace the condition by

 ub(t
+; bx;cW; bZ) = ;(6.2)

where cW and bZ are conveniently chosen dual feasible points.

The parameters in the algorithm are  > 0 and the desired accuracy �.

Path-following algorithm

given  > 0, t � 1, x := x?(t)
repeat

1. Select t+, bx, cW , bZ such that t+ > t and  ub(t
+; bx;cW; bZ) = 

2. Compute x?(t+) starting at bx, using the Newton algorithm of x5
3. t := t+, x := x?(t+)

until n=t � �
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Step 1 in this outline is not completely speci�ed. In the next sections we will

discuss in detail di�erent choices. We will show that one can always �nd bx, cW , bZ and

t+ that satisfy

t+

t
� 1 +

r
2

n
:(6.3)

This fact allows us to estimate the total complexity of the method, i.e., to derive a

bound on the total number of Newton iterations required to reduce the duality gap

to �. The algorithm starts on the central path, at x?(t(0)), with initial duality gap

�(0) = n=t(0). Each iteration reduces the duality gap by t+=t. Therefore the total

number of outer iterations required to reduce the initial gap of �(0) to a �nal value

below � is at most &
log(�(0)=�)

log(1 +

p
2=n)

'
�
�p

n
log(�(0)=�)

log(1 +

p
2)

�
:

(The inequality follows from the concavity of log(1+x).) The total number of Newton
steps can therefore be bounded as

Total #Newton iterations � d5 + 11e
�p

n
log(�(0)=�)

log(1 +

p
2)

�

= O
�p

n log(�(0)=�)
�
:(6.4)

This upper bound increases slowly with the problem dimensions: it grows as

p
n, and

is independent of l and m. We will see later that the performance in practice is even

better.

Note that we assume that the minimization in Step 2 of the algorithm is exact.

The justi�cation of this assumption lies in the very fast local convergence of Newton's

method: we have seen in x5 that it takes only a few iterations to improve a solution

with Newton decrement � � 0:5 to one with a very high accuracy.

Nevertheless, in a practical implementation (as well as in a rigorous theoretical

analysis), one has to take into account the fact that x?(t) can only be computed ap-

proximately. For example, the stopping criterion n=t � � is based on the duality gap

associated with exactly central points x?(t), W ?
(t), and Z?

(t), and is therefore not

quite accurate if x?(t) is only known approximately. We give a suitably modi�ed cri-

terion in Ref.[70], where we show that dual feasible points are easily computed during

the centering step (Step 2) once the Newton decrement is less than one. Using the

associated duality gap yields a completely rigorous stopping criterion. We will briey

point out some other modi�cations, as we develop di�erent variants of the algorithm

in the next sections; full details are described in [70]. With these modi�cations, the

algorithm works well even when x?(t) is computed approximately. (We often use a

value � = 10
�3

in the Newton algorithm.)

It is also possible to extend the simple worst-case complexity analysis to take into

account incomplete centering, but we will not attempt such an analysis here. For the

�xed reduction algorithm (described immediately below), such a complete analysis

can be found in Nesterov and Nemirovsky [51, x3.2].

6.2. Fixed-reduction algorithm. The simplest variant uses bx = x?(t), cW =

W ?
(t), and bZ = Z?

(t) in Step 1 of the algorithm. Substitution in condition (6.2)
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gives

 ub(t
+; bx;cW; bZ)

= t+(TrG(x?(t))W ?
(t) +TrF (x?(t))Z?

(t)� log detG(x?(t))W ?
(t)� l)

� log detF (x?(t))Z?
(t)� n(1 + log t+)

= n(t+=t� 1� log(t+=t)) = ;(6.5)

which is a simple nonlinear equation in one variable, with a unique solution t+ > t.
We call this variant of the algorithm the �xed-reduction algorithm because it uses the

same value of t+=t | and hence achieves a �xed duality gap reduction factor | in

each outer iteration. The outline of the �xed-reduction algorithm is as follows.

Fixed-reduction algorithm

given  > 0, t � 1, x := x?(t)
Find � such that n(�� 1� log�) = 
repeat

1. t+ := �t
2. Compute x?(t+) starting at x, using the Newton algorithm of x5
3. t := t+, x := x?(t+)

until n=t � �

We can be brief in the convergence analysis of the method. Each outer iteration

reduces the duality gap by a factor �, so the number of outer iterations is exactly

�
log(�(0)=�)

log�

�
:

The inequality (6.3), which was used in the complexity analysis of the previous section,

follows from the fact that for y � 1

n(y � 1� log y) � n

2

(y � 1)
2;

and hence � � 1 +

p
2=n.

This convergence analysis also reveals the limitation of the �xed reduction method:

the number of outer iterations is never better than the number predicted by the the-

oretical analysis. The upper bound on the total number of Newton iterations (6.4) is

also a good estimate in practice, provided we replace the constant 5 + 11 with an

empirically determined estimate such as 3 + 0:7 (see Figure 5.1). The purpose of

the next section is to develop a method with the same worst-case complexity as the

�xed-reduction algorithm, but a much better performance in practice.

6.3. Primal-dual long-step algorithm. It is possible to use much larger val-

ues of t+=t, and hence achieve larger gap reduction per outer iteration, by using a

better choice for bx, cW , and bZ in Step 1 of the path-following algorithm.

A natural choice for bx is to take a point along the tangent to the central path,

i.e.,

bx = x?(t) + p
@x?(t)

@t
;
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for some p > 0, where the tangent direction is given by (4.6). Substitution in (6.2)

gives a nonlinear equation from which t+ and p can be determined. Taking the idea

one step further, one can allow cW and bZ to vary along the tangent to the dual central

path, i.e., take

cW =W ?
(t) + q

@W ?
(t)

@t
; bZ = Z?

(t) + q
@Z?

(t)

@t

for some q > 0, with the tangent directions given by (4.7) and (4.8). Equation (6.2)

then has three unknowns: t+, the primal step length p, and the dual step length q.
The �xed-reduction update of previous section uses the solution t+ = �t, p = q = 0;

an e�cient method for �nding a solution with larger t+ is described below.

The outline of the long-step algorithm is as follows.

Primal-dual long-step algorithm

given  > 0, t � 1, x := x?(t), W :=W ?
(t), Z := Z?

(t)
Find � such that n(�� 1� log�) = 
repeat

1. Compute tangent to central path. �x := @x?(t)
@t

, �W :=
@W?(t)

@t
, �Z :=

@Z?(t)
@t

2. Parameter selection and predictor step.

2a. t+ := �t
repeat f
2b. bp; bq = argminp;q  ub(t

+; x+ p�x;W + q�W;Z + q�Z)

2c. Compute t+ from  ub(t
+; x+ bp�x;W + bq�W;Z + bq�Z) = 

g
2d. bx = x+ bp�x

3. Centering step. Compute x?(t+) starting at bx, using the Newton algorithm of x5
4. Update. t := t+, x := x?(t+), W :=W ?

(t+), Z := Z?
(t+)

until n=t � �

Again we assume exact centering in Step 3. In practice, approximate minimiza-

tion works, provided one includes a small correction to the formulas of the tangent

directions; see Ref.[70].

Step 2 computes a solution to (6.2), using a technique illustrated in Figure 6.1.

The �gure shows four iterations of the inner loop of Step 2 (for an instance of the

problem family described in x9). With a slight abuse of notation, we write  ub(t
+; p; q)

instead of

 ub(t
+; x?(t) + p�x;W ?

(t) + q�W;Z?
(t) + q�Z):(6.6)

We start at the value t(0) = t, at the left end of the horizontal axis. The �rst

curve (marked  ub(t
+; 0; 0)) shows (6.6) as a function of t+, with p = q = 0, which

simpli�es to

 ub(t
+; x?(t);W ?

(t); Z?
(t)) = n(t+=t� 1� log(t+=t))

(see x6.2). This function is equal to zero for t+ = t, and equal to  for the short-step

update t+ = �t. We then do the �rst iteration of the inner loop of Step 2. Keeping

t+ �xed at its value t(1), we minimize the function (6.6) over p and q (Step 2b). This

produces new values bp = p(1) and bq = q(1) with a value of  ub < . This allows us to
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Fig. 6.1. Parameter selection and predictor step in long-step algorithm alternates between
minimizing  ub(t

+; p; q) over primal step length p and dual step length q, and then increasing t+

until  ub(t
+; p; q) = .

increase t+ again (Step 2c). The second curve in the �gure (labeled  ub(t
+; p(1); q(1)))

shows the function (6.6) as a function of t+ with �xed values p = p(1), q = q(1). The
intersection with  ub =  gives the next value t+ = t(2).

These two steps (2b, 2c) are repeated either for a �xed number of iterations or

until t+ converges (which in the example of Figure 6.1 happens after four or �ve

iterations). Note that in each step 2c, we increase t+, so that in particular, the �nal

value of t+ will be at least as large as its initial (short-step) value, t+ = �t. Thus,

the complexity analysis for the short-step method still applies.

In practice, the inner loop (2b, 2c) often yields a value of t+ considerably larger

than the short-step value �t, while maintaining the same upper bound on the number
of Newton step required to compute the next iterate x?(t+). In the example shown

in the �gure, the �nal value of t+ is about a factor of 2:5 larger than the short-step

value; in general, a factor of 10 is not uncommon.

Using some preprocessing we will describe in x8, the cost of the inner loop (2b,

2c) is very small, in most cases negligible compared with the cost of computing the

tangent vectors.

Finally, note that the dual variables Z and W are not used in the �xed-reduction

algorithm. In the primal-dual long-step algorithm they are used only in the predictor

step to allow a larger step size p.

7. Preliminary phases. The algorithm starts at a central point x?(t), for some
t � 1. In this section we discuss how to select the initial t, and how to compute such

a point.

Feasibility. If no strictly primal feasible point is known, one has to precede

the algorithm with a �rst phase to solve the (SDP) feasibility problem: Find x that

satis�es G(x) > 0, F (x) > 0. More details can be found in [69].

Choice of initial t. We now consider the situation where a strictly primal fea-

sible point x(0) is known, but x(0) is not on the central path. In that case one has

to select an appropriate initial value of t and compute a central point by Newton's
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method starting at x(0). In theory (and often in practice) the simple choice t = 1

works.

It is not hard, however, to imagine cases where the choice t = 1 would be ine�cient

in practice. Suppose, for example, that the initial x(0) is very near x?(100), so a

reasonable initial value of t is 100 (but we don't know this). If we set t = 1, we

expend many Newton iterations `going backwards' up the central path towards the

point x?(1). Several outer iterations, and many Newton steps later, we �nd ourselves

back near where we started, around x?(100).

If strictly dual feasible points W (0)
, Z(0)

are known, then we start with a known

duality gap � associated with x(0), W (0)
and Z(0)

. A very reasonable initial choice

for t is then t = maxf1; n=�g, since when t = n=�, the centering stage computes

central points with the same duality gap as the initial primal and dual solutions. In

particular, the preliminary centering stage does not increase the duality gap (as it

would in the scenario sketched above).

We can also interpret and motivate the initial value t = n=� in terms of the

function  ub(t; x
(0);W (0); Z(0)

), which provides an upper bound on the number of

Newton steps required to compute x?(t) starting at x(0). From the de�nition (5.5) we

have

 ub(t; x
(0);W (0); Z(0)

) = t�+ log detF (x(0))�1 + log detZ(0)�1 � n(1 + log t);

which shows that the value t = n=� minimizes  ub(t; x
(0);W (0); Z(0)

). Thus, the value

t = n=� is the value which minimizes the upper bound on the number of Newton steps

required in the preliminary centering stage.

A heuristic preliminary stage. When no initial dual feasible Z,W (and hence

duality gap) are known, choosing an appropriate initial value of t can be di�cult. We

have had practical success with a variation on Newton's method that adapts the value

of t at each step based on the (square of) the Newton decrement �(x; t),

�(x; t)2 = r'p(t; x)T
�
r2'p(t; x)

��1r'p(t; x);
which serves as a measure of proximity to the central path. It is a convex function of

t, and is readily minimized in t for �xed x. Our heuristic preliminary phase is:

Preliminary centering phase

given strictly feasible x
t := 1

repeat f
1. t := maxf1; argmin�(x; t)g
2. �x = �

�
r2'p(t; x)

��1r'p(t; x)
3. bh = argmin 'p(t; x + h�xN )

g until � � �

Thus, we adjust t each iteration to make the Newton decrement for the current

x as small as possible (subject to the condition that t remains greater than 1).

8. E�cient line and plane searches. In this section we describe some simple

preprocessing that allows us to implement the line search in the Newton method of

x5 and the plane search of x6.3 very e�ciently.
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Line search in Newton's method. We �rst consider the line search in New-

ton's method of x5. Let �k, k = 1; : : : ; l, be the generalized eigenvalues of the pairPm
i=1 �x

N
i Gi, G(x), and �k , k = l + 1; : : : ; l + n, be the generalized eigenvalues of

the pair

Pm
i=1 �x

N
i Fi, F (x), where �x

N
is the Newton direction at x. We can write

'p(t; x+ h�xN ) in terms of these eigenvalues as

f(h) = 'p(t; x+ h�xN ) = 'p(t; x) + hcT �xN + t

lX
k=1

log

1

1 + h�k
+

l+nX
k=l+1

log

1

1 + h�k
:

Evaluating the �rst and second derivatives f 0(h), f 00(h) of this (convex) function

of h 2 R requires only O(n + l) operations (once the generalized eigenvalues �i
have been computed). In most cases, the cost of the preprocessing, i.e., computing

the generalized eigenvalues �i, exceeds the cost of minimizing over h, but is small
compared with the cost of computing the Newton direction. The function 'p(t; x +
h�xN ) can therefore be e�ciently minimized using standard line search techniques.

Plane search in long-step path-following method. A similar idea applies

to the plane search of x6.3. In Step 2c of the primal-dual long-step algorithm we

minimize the function  ub(t; x+p�x;W +q�W;Z+q�Z) over p and q, where �x, �W ,

�Z are tangent directions to the central path. We can again reduce the function to a

convenient form

 ub(t; x+ p�x;W + q�W;Z + q�Z)

=  ub(t; x;W;Z) + p�1 + q�2 + t

lX
k=1

log

1

1 + p�k
+

l+nX
k=l+1

log

1

1 + p�k

+ t

lX
k=1

log

1

1 + q�k
+

l+nX
k=l+1

log

1

1 + q�k
;(8.1)

where �k , k = 1; : : : ; l, are the generalized eigenvalues of the pair

Pm
i=1 �xiGi, G(x)

and �k, k = l + 1; : : : ; l + n, are the generalized eigenvalues of the pair

Pm
i=1 �xiFi,

F (x); �k, k = 1; : : : ; l, are the generalized eigenvalues of the pair �W , W , and �k,
k = l+1; : : : ; l+n, are the generalized eigenvalues of the pair �Z, Z. The coe�cients
�1 and �2 are

�1 = cT �x; �2 = TrG0�W +TrF0�Z:

The �rst and second derivatives of the function (8.1) with respect to p and q can

again be computed at a low cost of O(l+ n), and therefore the minimum of  ub over
the plane can be determined very cheaply, once the generalized eigenvalues have been

computed.

In summary, the cost of line or plane search is basically the cost of preprocessing

(computing certain generalized eigenvalues), which is usually negligible compared to

the rest of algorithm (e.g., determining a Newton or tangent direction).

One implication of e�cient line and plane searches is that the total number of

Newton steps serves as a good measure of the overall computing e�ort.

9. Numerical examples.
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Fig. 9.1. Duality gap versus number of Newton steps for randomly generated max-det problems
of dimension l = 10, n = 10, m = 10. Left:  = 10. Right:  = 50. The crosses are the results for
the �xed-reduction method; the circles are the results for the long-step method. Every cross/circle
represents the gap at the end of an outer iteration.

Typical convergence. The �rst experiment (Figure 9.1) compares the conver-

gence of the �xed-reduction method and the long-step method. The lefthand plot

shows the convergence of both methods for  = 10; the righthand plot shows the con-

vergence for  = 50. Duality gap is shown vertically on a logarithmic scale ranging

from 10
0
at the top to 10

�9
at the bottom; the horizontal axis is the total number of

Newton steps. Each outer iteration is shown as a symbol on the plot (`�' for the long-
step and `�' for the short-step method). Thus, the horizontal distance between two

consecutive symbols shows directly the number of Newton steps required for that par-

ticular outer iteration; the vertical distance shows directly the duality gap reduction

factor t+=t.

Problem instances were generated as follows: G0 2 Rl�l
, F0 2 Rn�n

were chosen

random positive de�nite (constructed as UTU with the elements of U drawn from a

normal distribution N (0; 1)); the matrices Gi, Fi, i = 1; : : : ;m, were random sym-

metric matrices, with elements drawn from N (0; 1); ci = TrGi +TrFi, i = 1; : : : ;m.

This procedure ensures that the problem is primal and dual feasible (x = 0 is primal

feasible; Z = I , W = I is dual feasible), and hence bounded below. We start on the

central path, with initial duality gap one.

We can make the following observations.

� The convergence is very similar over all problem instances. The number of

iterations required to reduce the duality gap by a factor 1000 ranges between

5 and 50. As expected, the long-step method performs much better than the

�xed-reduction method, and typically converges in less than 15 iterations.

� The �xed-reduction method converges almost linearly. The duality gap re-

duction t+=t per outer iteration can be computed from equation (6.5): t+=t =
3:14 for  = 10, and t+=t = 8:0 for  = 50. The number of Newton iterations

per outer iteration is less than �ve in almost all cases, which is much less than

the upper bound 5 + 11. (Remember that this bound is a combination of

two conservative estimates: Theorem 5.1 is conservative; see Figure 5.1. In

addition we have replaced (6.1) with the weaker condition (6.2).)

� The long-step method takes a few more Newton iterations per centering step,

but achieves a much larger duality gap reduction. Moreover the convergence

accelerates near the optimum.

� Increasing  has a large e�ect on the �xed-reduction method, but only little



DETERMINANT MAXIMIZATION 31

n

N
e
w
t
o
n

it
e
r
a
t
io
n
s

0 20 40 60 80 100
0

10

20

30

40

50

l
0 20 40 60 80 100
0

10

20

30

40

50

m
0 20 40 60 80 100
0

10

20

30

40

50

Fig. 9.2. Newton iterations versus problem size for family of random problems. Fixed reduction
method (top curve) and long-step method (lower curve).  = 10. Left. l = 10, n = 10{100, m = 10.
Middle. l = 10{100, n = 10, m = 10. Right. l = 10, n = 10, m = 10{100. The curves give the
average over 10 problem instances. The error bars indicate the standard deviation.
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Fig. 9.3. Newton iterations versus problem size for family of experiment design problems of x2.4
including 90-10 rule. Fixed reduction method (top curve) and long-step method (lower curve).
 = 10, p = 10, M = 15{50. The curves show the average over 10 problem instances. The error
bars indicate the standard deviation.

e�ect on the long-step method.

Complexity versus problem size. Figure 9.2 shows the inuence of the prob-

lem dimension on the convergence. For each triplet (m, n, l) we generated 10 problem
instances as above. We plot the number of Newton iterations to reduce the duality

gap by a factor 1000, starting with duality gap 1. The plot shows the average number

of Newton steps and the standard deviation. The top curve shows the results for the

�xed-reduction method, the lower curve is for the long-step method.

� The number of Newton iterations in the short-step method depends on n as

O(
p
n). This is easily explained from the convergence analysis of x6.2: We

have seen that the number of outer iterations grows as

p
n, in theory and in

practice, and hence the practical behavior of the �xed-reduction method is

very close to the worst case behavior.

� We see that the number of iterations for the long-step method lies between 5

and 20, and is very weakly dependent on problem size.

Figure 9.3 shows similar results for a family of experiment design problems (2.9)

in R10
, including a 90-10 constraint (2.10). The points v(i), i = 1; : : : ;M , were

generated from a normal distribution N (0; I) on Rp
. Note that the dimensions of

the corresponding max-det problem are m = 2M , n = 3M + 1, l = p. Figure 9.3

con�rms the conclusions of the previous experiment: It shows that the complexity

of the �xed-reduction method grows as

p
n, while the complexity of the long-step

method is almost independent of problem size.

10. Conclusion. The max-det problem (1.1) is a (quite speci�c) convex exten-

sion of the semide�nite programming problem, and hence includes a wide variety of
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convex optimization problems as special cases. Perhaps more importantly, max-det

problems arise naturally in many areas, including computational geometry, linear

algebra, experiment design, linear estimation, and information and communication

theory. We have described several of these applications.

Some of the applications have been studied extensively in the literature, and in

some cases analytic solutions or e�cient specialized algorithms have been developed.

We have presented an interior-point algorithm that solves general max-det problems

e�ciently. The method can be applied to solve max-det problems for which no special-

ized algorithm is known; in cases where such a method exists, it opens the possibility

of adding useful LMI constraints, which is an important advantage in practice.

We have proved a worst-case complexity of O(
p
n) Newton iterations. Numerical

experiments indicate that the behavior is much better in practice: the method typi-

cally requires a number of iterations that lies between 5 and 50, almost independently

of problem dimension. The total computational e�ort is therefore determined by the

amount of work per iteration, i.e., the computation of the Newton directions, and

therefore depends heavily on the problem structure. When no structure is exploited,

the Newton directions can be computed from the least-squares formulas in [70], which

requires O((n2 + l2)m2
) operations, but important savings are possible whenever we

specialize the general method of this paper to a speci�c problem class.
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