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ABSTRACT
We introduce mean excess delay as a statistical measure of
circuit delay in the presence of parameter variations. The
β-mean excess delay is defined as the expected delay of the
circuits that exceed the β-quantile of the delay, so it is always
an upper bound on the β-quantile. However, in contrast to
the β-quantile, it preserves the convexity properties of the
underlying delay distribution. We apply the β-mean excess
delay to the circuit sizing problem, and use it to minimize
the delay quantile over the gate sizes. We use the Analytic
Centering Cutting Plane Method to perform the minimiza-
tion and apply this sizing to the ISCAS ‘85 benchmarks.
Depending on the structure of the circuit, it can make sig-
nificant improvements on the 95%-quantile.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms;
B.8 [Performance and Reliability]: General

General Terms
Algorithms, Design

Keywords
robust gate sizing, process variation, geometric program-
ming, conditional value-at-risk

1. INTRODUCTION
As transistors become smaller, the increasing effect of pro-

cess variations may cause many circuits to fail [16]. The
random variations in the gate lengths, oxide thicknesses and
doping will increase the variations in the delay to a size too
large to be ignored. In this context it becomes necessary to
make designs with robustness in mind.

To increase robustness of the design, the gate sizes, thresh-
old voltages and other circuit parameters can be strategically
assigned to improve the distribution of the circuit delay, sub-
ject to power and area constraints. After the main design is
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completed, redundancy and regularity can also be added to
improve the yield of the circuit [7].

In this paper we use circuit sizing to improve the timing
robustness of a design. This is not a new area, and several
approaches to this problem already exist. In [6] the bin-

yield loss function, defined as the expected loss or penalty
for circuits that exceed a given delay threshold, is minimized
using stochastic optimization. Other groups have used slack
redistribution to reallocate the statistical slack of each of the
paths [15]. The most popular method in literature estimates
a worst-case scenario for each gate, and then sizes the circuit
according to this estimate [9, 14, 11]. These methods add a
“padding” that is proportional to the standard deviation of
the gate delay. For the sake of simplicity, these methods will
be referred to as “padded delay methods.” The deficiency
of the padded delay methods is that it uses a conservative
estimate and it cannot distinguish between correlated and
uncorrelated variations.

In this paper we propose the Mean Excess Delay (MED)
as a statistical measure of the delay in the presence of param-
eter variations. This measure is used in the finance industry
to minimize the risk associated with the value of an invest-
ment portfolio [13]. In the context of circuits, we show that
MED is a convex function of the logarithm of the gate sizes,
and therefore well-suited for minimization. We also discuss
a numerical algorithm for mean excess delay gate sizing, and
present some encouraging numerical results.

In summary there are two main contributions in the paper:

1. The introduction of the Mean Excess Delay as a statis-
tical measure of circuit delay. The mean excess delay
preserves the convexity of the underlying delay model,
and is therefore well-suited for minimization.

2. Numerical results that compare the padded delay method
with the mean-excess delay method for gate sizing.

The remainder of the paper is organized as follows. Sec-
tion II gives a background on the circuit sizing problem in
its nominal and statistical forms. In Section III we introduce
the Mean Excess Delay function, and explain its mathemat-
ical properties. Section IV briefly outlines the minimization
algorithm we use. Results are shown in Section V.

2. CIRCUIT SIZING WITH VARIATIONS
In the circuit sizing problem, the sizes of each gate are

selected to minimize the delay of a circuit with constraints
on the power and area.



2.1 The Nominal Case
In the nominal case, the variations in delay are ignored,

resulting in the following problem

minimize T nom(x)
subject to A(x) ≤ Amax

P (x) ≤ Pmax

x ≥ 0.

(1)

Here, the optimization variable x is a vector of the log-gate
sizes (or more accurately, the log of the normalized gate
scaling factors). The functions T nom(x), A(x) and P (x) rep-
resent the nominal delay, area and power of the circuit as
a function of the log of the gate sizes x. We assume the
functions A(x), P (x) and T nom(x) are posynomials in con-
vex form [3]. This problem has been studied extensively,
and can be solved efficiently via geometric programming [5,
8]. For a good tutorial on circuit optimization via geometric
programming, see [2].

2.2 The Statistical Delay
The effects of the process variations on the delay are often

modeled as follows [6]:

dk(x, v) = (1 + vk) d
nom
k (x). (2)

In the above, dnom
k (x) is the nominal delay, dk(x, v) is the

gate delay with the process variations, and v is a vector of
zero-mean random variables with the same dimension as x

(vk denotes the kth element of the vector v). The random
variables vi are not restricted to be independent or Gaus-
sian, and may have correlations that are “gate by gate”, “die-
to-die”, or by location. This model preserves convexity of
dnom

k (x). That is, if dnom
k (x) is convex, then dk(x, v) will be

convex as well for fixed v.
Note that the distribution and the correlations of the ran-

dom variable are unrestricted, making this model general
enough to handle a large class of variations. For example,
correlations between the gate length or doping can be in-
cluded in the random variable vi. The only restriction is
that the effect on the delay is multiplicative, and the stan-
dard deviation of the variations is independent of the size of
the gate. This last restriction is discussed below.

A modification of this model makes the variance of the
random variables vi a function of the corresponding gate
size:

dk(x, v) = (1 + vke
−αxk) d

nom
k (x) (3)

where vk is a random variable that is scaled by the function
e−αxk . Here α is a modeling parameter that is 0.5 in Pel-
grom’s model [12] or 0.3 according to recent work in [18].
The intuition behind this model is that the saturation cur-
rent Isat is better controlled as gate is made larger. Note
that if vk ≥ 0 then this dk(x, v) is convex for fixed v. How-
ever, if vk < 0, the expression is not convex, and does not
have a posynomial representation.

To distinguish between the two models, we will call model
(2) the size independent variation model, and model (3) the
size dependent variation model. The net effect of both mod-
els above is to make the total delay of the circuit a function
of the gate-scaling factors and the random variables. This
turns the total delay itself into a random variable.

2.3 The Statistical Sizing Problem
To convert the nominal problem (1) into one that mini-

mizes the statistical delay, we need to decide what it means
to minimize a random variable. One obvious definition is to
focus on the β-quantile qβ(x), defined as:

qβ(x) = inf {t | P(T (x, v) ≤ t) ≥ β}.

In the context of circuits, the β-quantile is the delay speci-
fication that will give a yield of β-percent.

Reformulating the deterministic problem with a β-percent
yield gives the following problem

minimize qβ(x)
subject to A(x) ≤ Amax

P (x) ≤ Pmax

x ≥ 0.

(4)

This problem, however, is difficult to solve. First, the cost
function qβ is difficult to evaluate, because in practice there
is no closed-form expression for the distribution of T (x, v),
although there are many ways of approximating it [17, 4, 19,
20]. A further difficulty is that the problem (4) is generally
not convex, even when the nominal problem (1) is convex.

3. THE MEAN EXCESS DELAY
The β-Mean Excess Delay (β-MED) is a measure that is

closely related to the β-quantile. For continuous distribu-
tions, it is the expected value of the tail of the delay, when
the tail is measured past the β-quantile.

mβ(x) = E [T (x, v) |T (x, v) ≥ qβ(x)] . (5)

A graphical interpretation of the mean excess delay is shown
in Fig. 1. In this graph, we plot the probability density
function (pdf) of T (x, v). q0.95(x) is the 95% quantile, and
the shaded area to the right is the tail of T (x, v). The center
of mass of this shaded region is the mean excess delay of the
distribution, m0.95(x).

This measure is used in the finance industry to manage
risk. In this context, T (x, v) is the loss of a portfolio, qβ

is the value-at-risk, and mβ is the conditional value-at-risk
[13].

3.1 Properties of the Mean-Excess Delay
By definition, mβ(x) ≥ qβ(x), i.e., the β-mean excess de-

lay is an upper bound on the β-quantile. Thus, minimizing
mean excess delay will indirectly minimize the β-quantile,
and it makes sense to consider the problem

minimize mβ(x)
subject to A(x) ≤ Amax

P (x) ≤ Pmax

x ≥ 0.

(6)

The important feature of this measure is that it can be min-
imized via convex optimization, if T (x, v) is convex in x for
fixed v [13].

To show this, we define the function

gβ(x, t) = t +
1

1 − β
Ev[T (x, v) − t]+ (7)

where

[u]+ =



u

0
if u ≥ 0
otherwise



and Ev is expectation with respect to v, i.e., if v is a con-
tinuous random vector in R

n with pdf p(v),

Ev[T (x, v) − t]+ =

Z

v∈Rn

[T (x, v) − t]+p(v)dv. (8)

It follows from standard properties of convex functions that
gβ(x, t) is convex in x and t if T (x, v) is convex in x for fixed
v [3]. We can also note that for fixed t, the function (8) is the
binning yield-loss discussed in [6], i.e., a linear penalty on
delays that exceed a timing budget. However, although the
mean-excess delay and the binning yield-loss acheive differ-
ent goals, they can be implemented using similar algorithms.

The following theorem, due to Rockafellar and Uryasev [13],
relates (7) to the mean-excess delay.

Theorem 3.1. If v is a continuous random vector, then

the minimum value of gβ(x, t) over t is equal to the mean-

excess delay:

mβ(x) = inf
t∈R

gβ(x, t).

In effect, this theorem states that the mean-excess delay can
be minimized by minimizing the function gβ(x, t) over the
design variables x and the additional variable t.

Another interesting fact is that the minimizer of (7) over
t is the β-quantile of the distribution T (x, v):

qβ(x) = inf {t | gβ(x, t) = mβ(x)}

This gives us the resulting quantile for free as a by-product
of the optimization.

In summary, for continuous distributions, we have the fol-
lowing properties:

1. qβ(x) ≤ mβ(x)

2. mβ(x) = inf
t

gβ(x, t)

3. qβ(x) = inf
˘

t | gβ(x, t) = mβ(x)
¯

4. gβ(x, t) is jointly convex in t and x if T (x, v) is convex in
x.

These properties are illustrated in Fig. 1. Here, the mini-
mum of g0.95(x, t) is m0.95(x) with a minimizer q0.95(x).

In the case of a discrete distribution, properties 1, 3 and 4
hold. However in this case, the mean-excess delay is defined
to be inft gβ(x, t), and it can still be used as an upper bound
on the quantile.

Using the properties above, we can now reformulate (6)
as:

minimize gβ(x, t)
subject to A(x) ≤ Amax

P (x) ≤ Pmax

x ≥ 0

(9)

with variables x and t.
Because the preceding discussion is not unique to circuit

sizing, the mean-excess delay can be applied to other prob-
lems where the delay is a convex function of the design vari-
ables, for a fixed variation. Furthermore, the same type of
analysis can be used to combine power and delay minimiza-
tion.

4. MINIMIZATION ALGORITHM
In the case of a discrete probability distribution and model

(2), problem (9) can be expressed as a geometric program.
This can be solved using a general purpose solver such as

t

4p(t)

g0.95(t)

q0.95 m0.95

Figure 1: The pdf of the delay T (x, v) for a Gaus-
sian distribution is plotted above. q0.95(x) is the 95%
quantile, and m0.95(x) is the 95% mean excess de-
lay. The function g0.95(t) is plotted to illustrate the
properties in Section IIIA. The minimizer of g0.95(t)
is q0.95, and the minimum value, which is reflected
across the diagonal line, is m0.95.

Mosek [10], but for large problems and a large set of discrete
variations, a specialized algorithm must be used. The case of
continuous distributions can be approximated as a discrete
case by taking a fixed number of samples. This is referred to
as a Sample Average Approximation (SAA) of the problem.

We solve the sample average approximation of the prob-
lem (9) using the Analytic-Centering Cutting Plane Method
(ACCPM) [1]. In this method, we start with a polyhedral
set S0 that contains the optimum gate size. At each step
of this method, the approximate “center” of the polyhedron
is found, and the set of possible solutions Sk is reduced by
adding a cutting plane through this center. The cutting
plane cuts away the part of the region where the optimum
cannot lie, reducing the set of possible solutions. In the
ACCPM, this is achieved as follows.

1. Find the analytic center xc
k

of the current set of possible
solutions Sk using Newton’s method

2. Evaluate the gradient ∇gβ(x, t) of the Mean-Excess Delay
at the point xc

k

3. Use the cutting plane to reduce the set of possible solutions:

Sk+1 = Sk ∩
˘

x | ∇gβ(x, t)(x − xc
k) ≤ 0

¯

.

The analytic center of a set of linear inequalities is defined
as the minimizer of the log-barrier function:

xc = argmin
x

(

−
m

X

i=1

log(bi − a
T
i x)

)

where the vectors ai and scalars bi define the cutting planes.
This centering process is done in an effort to maximize the
region that will be cut away by the cutting plane.

5. RESULTS
We sized the ISCAS ‘85 benchmark circuits using 3 dif-

ferent sizing methods:



Table 1: Sizing Results - Size independent variations

c432 c499 c1355 c1908

Method q0.95 dnom q0.95 dnom q0.95 dnom q0.95 dnom

Nominal 3.9ns 2.9ns .73ns .50ns .79ns .57ns 1.9ns 1.3ns

Padded 3.9ns 2.9ns .73ns .50ns .79ns .57ns 1.9ns 1.3ns

MED 3.9ns 2.9ns .68ns .51ns .72ns .58ns 1.8ns 1.3ns

c2670 c3540 c5315 c7552

Method q0.95 dnom q0.95 dnom q0.95 dnom q0.95 dnom

Nominal .82ns .63ns 1.5ns 1.0ns 1.1ns .89ns .96ns .77ns

Padded 1.3ns 1.1ns 1.5ns 1.0ns 1.1ns .89ns .95ns .77ns

MED .79ns .69ns 1.4ns 1.0ns 1.0ns .93ns .93ns .83ns

Figure 2: The delay pdfs of benchmark c1355 are
plotted for each of the three sizing methods. The
MED sizing gives the best pdf, followed by the
padded delay sizing and the nominal sizing, which
are nearly identical.

1. Nominal Sizing: variations are ignored

2. Padded Delay Sizing: a conservative robust sizing method
[11]

3. Mean Excess Delay Sizing.

The standard deviations of each random variable were
set to 0.25 and are split evenly between the “die-to-die”
and “gate-by-gate” variations. These variations are made to
be independent of each other, and they are assumed to be
Gaussian. The nominal and padded delay sizing problems
were solved using the general purpose commercial solver
MOSEK [10], and the mean-excess delay sizing was done
using the ACCPM with 2000 samples of the distribution.

With the size independent variations in (2), the Mean-
Excess Delay Sizing always results in a better quantile than
the nominal or padded delay sizings, but the magnitude of
this difference depends on the structure of the circuit. This is
summarized in Table 1. Here, q0.95 denotes the 95% quantile
and dnom denotes the delay associated with the nominal case,
where the variations are ignored. In the case of c432, the
numbers were nearly identical for each of the three sizings,
however in the case of the larger c1355, the difference was
approximately 10%.

With the gate-size dependent variations in (3) the prob-
lem is no longer convex, and it loses the tractability that
is associated with convex problems. However, a few runs
were made to compare these methods under this model. We

Table 2: Sizing Results - Size Dependent Variations

c880 c1355 c2670 c3540

Method q0.95 dnom q0.95 dnom q0.95 dnom q0.95 dnom

Nominal .86ns .49ns .73ns .56ns .70ns .64ns 1.2ns 1.1ns

Padded .73ns .50ns .62ns .58ns .67ns .66ns 1.1ns 1.1ns

MED .73ns .50ns .61ns .58ns .66ns .64ns 1.1ns 1.1ns

Figure 3: The delay pdfs of benchmark c2670 with
size dependent variations are plotted for each of the
three sizing methods. The MED gives the best de-
lay distribution, followed by the padded delay siz-
ings. These methods give very good results with
significant gains over the nominal.

use the setting α = .3 and the variations were set to be the
same as above. In this case, the MED sizing can still give
better results (see Table 2), however the improvements on
the quantile are not as large, dropping to 2%. A closer look
at the pdfs in Fig. 3 shows that although the 95% quantiles
are competitve, the pdf of the MED sizing has a significantly
faster average delay than the padded delay sizing.

There are three conclusions that can be drawn from these
results. First, there is a significant gain when the statistical
problem is solved over the nominal problem. With size in-
dependent variations, this can be up to 10% and with size
dependent variations, the difference grows to 15%. Secondly,
the padded delays usually give results that are similar to the
nominal sizing, and in our experieince, we find this approx-
imation to be useful when there is a large spread in path
delays, such as large adder circuits. In contrast, the padded
delay method does an excellent job when a size-dependent
variation model is used, but there is still some improvement
that can be made by using the MED sizing.

The runtime of this method scales similarly to the interior
point solver used to perform the nominal and padded delay
sizings when the number of samples is fixed. This is be-
cause both methods use Newton’s method at each iteration
to solve the subproblems. Furthermore, the same techniques
that are used to improve scalability in the nominal sizing,
as in [8], might apply to MED sizing with SAA sampling.

6. CONCLUSION
In this paper we introduced the mean excess delay as a sta-

tistical measure for circuit delay in the presence of random
parameter variations. The β-mean excess delay is defined



as the expected delay of the circuits whose delay exceed
the β-quantile. Thus, minimizing mean excess delay indi-
rectly reduces the β-quantile. This technique is known in
finance as conditional value-at-risk optimization [13]. Com-
pared with other popular methods (such as the padded delay
sizing method [11]), MED sizing has the important advan-
tage that it takes into account the type of correlation in
the gate delay variations. The results show a significant im-
provement can be made by using the mean-excess delay over
the padded and nominal methods. Future work will aim to
improve the scalability of the algorithm and to study the
problem with the model (3).
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