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DISCRETE TRANSFORMS, SEMIDEFINITE PROGRAMMING,
AND SUM-OF-SQUARES REPRESENTATIONS

OF NONNEGATIVE POLYNOMIALS∗

TAE ROH† AND LIEVEN VANDENBERGHE†

Abstract. We present a new semidefinite programming formulation of sum-of-squares repre-
sentations of nonnegative polynomials, cosine polynomials, and trigonometric polynomials of one
variable. The parametrization is based on discrete transforms (specifically, the discrete Fourier, co-
sine, and polynomial transforms) and has a simple structure that can be exploited by straightforward
modifications of standard interior-point algorithms.
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1. Introduction. We discuss fast algorithms for semidefinite programs (SDPs)
derived from weighted sum-of-squares representations of polynomials, cosine polyno-
mials, and trigonometric polynomials of one variable.

Several well-known theorems state that a (generalized) polynomial f : R → R is
nonnegative on an interval or a union of intervals I,

f(t) ≥ 0, t ∈ I,(1)

if and only if it can be expressed as a weighted sum of squares

f(t) =
r∑

k=1

wk(t)(y
T
k q(t))

2,(2)

where wk(t) ≥ 0 on I. (For trigonometric polynomials, q and yk are complex-valued,
and we replace (yT

k q)
2 with |yH

k q|2, where yH
k denotes the complex conjugate transpose

of yk.) The weight functions wk, the required number of terms r, and the vector of
basis functions q depend on I and the class of functions f under consideration. Specific
examples of sum-of-squares theorems are given in sections 3.1, 4.1, and 5.1.

It is also well known that the weighted sum-of-squares property (2) can be ex-
pressed as a set of linear equations and linear matrix inequalities (LMIs) in the co-
efficients of f and a number of auxiliary matrix variables. In other words, (2) is
equivalent to a convex constraint of the form

x =

s∑
i=1

Hi(Xi), Xi � 0, i = 1, . . . , s,(3)

where x is the vector of coefficients of f with respect to some basis, Hi is a linear map-
ping, and s ≤ r [24, 25, 21]. Combining these results, we can cast the constraint (1),
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which is an infinite number of linear inequalities in the coefficients x, as a finite num-
ber of linear equations and linear matrix inequalities. Thus, we can solve a wide
variety of optimization problems over polynomials, subject to piecewise-polynomial
upper and lower bounds, as SDPs. Numerous applications of this idea can be found
in signal processing and control [26, 23, 27, 11, 34, 4, 8, 9, 18].

In this paper we propose a specific choice for the mappings Hi in (3). We show
that the weighted sum-of-squares property can be expressed in the following common
form or its complex-valued counterpart:

x =

s∑
i=1

Ai diag
(
CiXiC

T
i

)
, Xi � 0, i = 1, . . . , s,(4)

where diag(CiXiC
T
i ) denotes the vector of diagonal elements of CiXiC

T
i , and the

matrices Ai and Ci are defined in terms of discrete orthogonal transforms and their
inverses. This unified parametrization offers several advantages. First, we will see
that SDPs with constraints of the form (4), in which x and the matrices Xi are
variables, can be solved very efficiently by taking advantage of some simple prop-
erties of the diag operator. This allows one to develop a single solver that solves
SDPs derived from weighted sum-of-squares representations much more quickly than
general-purpose codes. Second, in many cases additional savings are possible by using
fast discrete transform algorithms for the multiplications with Ai and Ci. Third, the
matrices Ci can be chosen to be orthogonal, while Ai is generally a product of an
orthogonal and a diagonal matrix. These orthogonality properties are attractive from
a numerical stability viewpoint.

Our interest in numerical methods for SDPs derived from sum-of-squares represen-
tations is motivated by several recent papers. Nesterov in [24] pointed out the connec-
tions between sum-of-squares representations, semidefinite programming, and classical
results in moment theory. He also described a straightforward method for convert-
ing weighted sum-of-squares representations (2) into constraints of the form (3). We
explain the method for the case with wi(t) = 1. Let q : R → Rm+1. Suppose pi(t),
i = 0, . . . , n, are basis functions whose span contains all products qk(t)ql(t), so there
exist matrices Fi ∈ Sm+1 such that

q(t)q(t)T =

n∑
i=0

pi(t)Fi.

A function f can be expressed as a sum of squares f(t) =
∑r

k=1(y
T
k q(t))

2 for some r
and yk if and only if

f(t) =

r∑
k=1

(yT
k q(t))

2 = tr(q(t)q(t)TX) =

n∑
i=0

tr(FiX)pi(t),

where X =
∑r

k=1 yky
T
k . We see that f is a sum of squares if and only if f(t) =

x0p0(t) + · · · + xnpn(t), where

xi = tr(FiX), i = 0, . . . , n, X � 0,(5)

for some X ∈ Sm+1. Therefore, (3) holds with H1(X) = (tr(F0X), . . . , tr(FnX)),
and s = 1.
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As an example, it is well known that a nonnegative polynomial of even degree

f(t) = x0 + x1t + · · · + x2mt2m

can be expressed as a sum of squares of two polynomials of degree m or less. To derive
equivalent LMI conditions, we take q(t) = (1, t, . . . , tm), and note that

q(t)q(t)T =

2m∑
i=0

tiFi, Fi,kl =

{
1, k + l = i,
0, otherwise.

For this choice of Fi, (5) reduces to

xi =
∑

k+l=i

Xkl, i = 0, . . . , 2m, X � 0.(6)

We can conclude that f(t) is nonnegative if and only if there exists an X ∈ Sm+1 such
that (6) holds. We refer to Nesterov [24] and Faybusovich [12, 13] for more examples
and extensions of Nesterov’s approach.

SDPs derived from sum-of-squares representations involve auxiliary matrix vari-
ables and are often large scale and difficult to solve using general-purpose solvers. This
has spurred research into specialized implementations of interior-point methods. The
most successful approaches have been based on dual barrier methods [14, 16, 4] and ex-
ploit properties of the logarithmic barrier function for the dual constraints associated
with (3). Genin et al. [14] consider problems involving matrix-valued polynomials
that are nonnegative on the unit circle, the real axis, or the imaginary axis. They
note that the dual variables have low displacement rank (for example, due to Toeplitz
or Hankel structure) and use this property to reduce the cost of computing the gradi-
ent and Hessian of the dual barrier function. This results in a substantial reduction of
the complexity per iteration, as compared to a general-purpose solver. In [4] similar
gains are achieved for a more specific class of problems, involving nonnegative scalar
trigonometric polynomials. As in the method of [14], the basic idea is to evaluate
the gradient and Hessian of the dual barrier function fast. In [4] this is accomplished
by using the discrete Fourier transform (DFT) of triangular factors of the inverses of
the dual variables. The techniques discussed in this paper can be interpreted as an
extension of the DFT method of [4] to a much wider class of problems and to gen-
eral interior-point methods (primal, dual, or primal-dual). Several of the key ideas
in this paper also extend to SDPs derived from sum-of-squares characterizations of
multivariate polynomials. In this context, our techniques are related to recent work
by Löfberg and Parrilo on improving the efficiency of SDP solvers for sum-of-squares
programming (see [22], which appeared after the first submission of this paper).

Notation. The set of real symmetric n × n matrices is denoted Sn; the set of
Hermitian n × n matrices is denoted Hn. A � 0 means A is positive semidefinite;
A � 0 means A is positive definite. tr(A) is the trace of A. For a square matrix
A, diag(A) is the vector of diagonal elements of A. For an n-vector a, diag(a) is
the diagonal matrix with the elements of a on its diagonal. AT is the transpose of
the matrix A, Ā is the complex conjugate, and AH = (Ā)T is the complex conju-
gate transpose. A ◦ B denotes the Hadamard product of two matrices A and B of
the same dimensions, i.e., the matrix with elements (A ◦ B)ik = AikBik. The same
notation is used for vectors: (x ◦ y)i = xiyi. For real matrices, sqr(A) = A ◦ A;
for complex matrices, sqr(A) = A ◦ Ā. We use the notation (x0, x1, . . . , xn) for
the (column) vector [x0 x1 · · · xn]T. 1 is the vector with all components one with
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dimension determined from the context. Throughout the paper the symbol j is re-
served for the number

√
−1. We use deg(f) to denote the degree of a polynomial,

cosine polynomial, or trigonometric polynomial f . For a trigonometric polynomial
f(ω) = x0 + 2
(x1e

−jω + · · · + xne
−jnω), we define deg(f) = n if xn �= 0.

2. A class of structured SDPs. Suppose the matrices Fi in the standard form
SDP

minimize tr(DX)
subject to tr(FiX) = bi, i = 1, . . . ,m,

X � 0
(7)

can be factored as

Fi = CT diag(ai)C, i = 1, . . . ,m,(8)

where C ∈ Rq×n and ai ∈ Rq. In other words, the matrices Fi can be written as
different linear combinations of q rank-one matrices cic

T
i , where cTi is the ith row of

C. Substituting (8) in (7) we obtain

minimize tr(DX)
subject to Adiag(CXCT) = b,

X � 0,
(9)

where A ∈ Rm×q has rows aT
i . In this section we will see that if q � mn, the SDP (9)

can be solved very efficiently by taking advantage of the structure in the constraints.
In sections 3–5 we will then show that this type of structure arises in SDPs derived
from sum-of-squares representations of nonnegative polynomials.

Note that a factorization of the form (8) always exists. For example, one can use
the eigenvalue decomposition to factor Fi as Fi = Vi diag(λi)V

T
i with Vi ∈ Rn×ri ,

λi ∈ Rri , where ri = rank(Fi), and then take q =
∑

i ri,

C =

⎡
⎢⎢⎢⎣
V T

1

V T
2
...

V T
m

⎤
⎥⎥⎥⎦ , a1 =

⎡
⎢⎢⎢⎣
λ1

0
...
0

⎤
⎥⎥⎥⎦ , a2 =

⎡
⎢⎢⎢⎣

0
λ2

...
0

⎤
⎥⎥⎥⎦ , . . . , am =

⎡
⎢⎢⎢⎣

0
0
...

λm

⎤
⎥⎥⎥⎦ .(10)

For general dense matrices, with ri = n and q = mn, there is no advantage in
expressing the SDP as (9). If the matrices Fi are all low rank (ri � n), then (10)
provides a factorization (8) with q � mn. In this case our techniques are similar to
known methods for exploiting low-rank structure [6]. Our focus in this paper, however,
is on more general types of structure in which the matrices Fi are not low-rank.

2.1. Solution via interior-point methods. It will be convenient in later sec-
tions to use the problem format

minimize tr(DX) + cTy
subject to Adiag(CXCT) + By = b,

X � 0,
(11)

which includes a vector variable y ∈ Rp. The problem parameters are c ∈ Rp, D ∈ Sn,
b ∈ Rm, A ∈ Rm×q, B ∈ Rm×p, and C ∈ Rq×n. The corresponding dual SDP is

maximize bTz
subject to CT diag(ATz)C 
 D,

BTz = c
(12)
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with variable z ∈ Rm.
Interior-point methods for solving the pair of SDPs (11) and (12) typically require

the solution of one or two sets of linear equations of the form

−T−1ΔXT−1 + CT diag(ATΔz)C = R,(13)

Adiag(CΔXCT) + BΔy = r1,(14)

BTΔz = r2(15)

at each iteration. The variables are Δy, Δz, ΔX; the matrix T � 0 and the right-
hand sides R ∈ Sn, r1 ∈ Rm, and r2 ∈ Rp are given. We refer to these equations as
Newton equations, because they can be obtained by linearizing nonlinear equations
that characterize the central path. The matrices T and the right-hand sides R, r1, r2
change at each iteration and depend on the particular method used. In some methods
(for example, dual barrier methods) the matrix T may have additional structure that
can be exploited [5, 14, 4]. In this paper, however, we will make no assumption about
T , other than positive definiteness. The technique outlined below, therefore, applies
to a wide variety of interior-point methods, including primal methods, dual methods,
and primal-dual methods based on the Nesterov–Todd scaling [30]. Other primal-dual
methods (in particular, the methods in [3, 17, 19]) involve Newton equations with a
closely related structure.

It is well known that the number of iterations in an interior-point method is
typically in the range 10–50, almost independent of the problem dimensions, and that
the overall cost is dominated by the cost of solving the Newton equations. An efficient
method that takes advantage of the structure in the Newton equations (13)–(15) is
as follows. We first eliminate ΔX from the first equation to get

Adiag(CTCT diag(ATΔz)CTCT) + BΔy = r3,(16)

BTΔz = r2,(17)

where r3 = r1 + Adiag(CTRTCT). The 1,1-block can be written in matrix-vector
form by using the identity diag(P diag(u)QT) = (P ◦Q)u:

Adiag
(
CTCT diag(ATΔz)CTCT

)
= A

(
(CTCT) ◦ (CTCT)

)
ATΔz

= A sqr(CTCT)ATΔz.

Equations (16) and (17), therefore, reduce to m + p equations in m + p variables:[
A sqr(CTCT)AT B

BT 0

] [
Δz
Δy

]
=

[
r3
r2

]
.(18)

From the solution Δz, Δy, we find ΔX by solving (13).
To justify this approach, we can contrast it with the calculations used in common

general-purpose implementations (such as Sedumi [28] or SDPT3 [31]). In a general-
purpose code the Newton equations are also solved by eliminating ΔX and solving
the reduced Newton equations (18). The difference lies in the way the 1, 1-block
H = A sqr(CTCT)AT is assembled. In a general-purpose algorithm the linear map-
ping CT diag(ATz)C is represented in the canonical form

CT diag(ATz)C =

m∑
i=1

ziFi,
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where Fi = CT diag(ai)C and aT
i is the ith row of A. The matrix H is computed as

Hik = tr(TFiTFk), i, k = 1, . . . ,m.

These computations can be arranged in different ways, for example, by first computing
the m matrices TFi and then forming the m(m+1)/2 inner products tr(TFiTFk). If
we assume that the matrices Fi are dense and full-rank and that the problem dimen-
sions m, n, p are of the same order, this yields an O(n4) method for constructing the
coefficient matrix in (18), which can then be solved in O(n3) operations. The direct
formula H = A sqr(CTCT)AT is faster, because it requires O(n3) operations (again
assuming that all problem dimensions are of the same order). Moreover, in the appli-
cations that we describe below, the matrices A and C represent discrete transforms
or inverse discrete transforms, so fast methods often exist for multiplications with A
and C.

2.2. Extension to complex data and variables. In applications involving
trigonometric polynomials we will encounter SDPs in which some of the data and
variables are complex numbers. It is, therefore, of interest to consider the complex
counterpart of (11) and (12),

minimize tr(DX) + cTy
subject to Adiag(CXCH) + By = b,

X � 0,
(19)

maximize 
(bHz)
subject to CH diag

(

(AHz)

)
C 
 D,


(BHz) = c.

The primal variables are X ∈ Hn and y ∈ Rp. The dual variable is z ∈ Cm. The
problem parameters are D ∈ Hn, c ∈ Rp, A ∈ Cm×q, C ∈ Cq×n, B ∈ Cm×p, and
b ∈ Cm.

The Newton equations for (19) can be written as

−T−1ΔXT−1 + CH diag
(

(AHΔz)

)
C = R,

Adiag(CΔXCH) + BΔy = r1,


(BHΔz) = r2.

Eliminating ΔX from the first equation gives

Adiag
(
CTCH diag(
(AHΔz))CTCH

)
+ BΔy = r3,(20)


(BHΔz) = r2,(21)

where r3 = r1 + Adiag(CTRTCH). Again using the identity diag(P diag(u)QT) =
(P ◦Q)u, we can write the 1,1-block as

Adiag
(
CTCH diag(
(AHΔz))CTCH

)
= A

(
(CTCH) ◦ (CTCH)T

)

(AHΔz)

= A sqr(CTCH)
(AHΔz).

Plugging this in (20) and (21) and expanding complex data and variables in their real
and imaginary parts (A = Ar + jAi, etc.), we obtain⎡

⎣Ar sqr(CTCH)AT
r Ar sqr(CTCH)AT

i Br

Ai sqr(CTCH)AT
r Ai sqr(CTCH)AT

i Bi

BT
r BT

i 0

⎤
⎦
⎡
⎣Δzr

Δzi

Δy

⎤
⎦ =

⎡
⎣r3,rr3,i
r2

⎤
⎦ .(22)
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The extension to the case where only some of the rows of A and B (and the corre-
sponding elements of Δz) in (20) and (21) are complex is straightforward: in (22) we
simply delete the equations and variables corresponding to the zero rows in Ai and
Δzi.

3. Trigonometric polynomials. Let f be a trigonometric polynomial of degree
n or less, i.e., a function of the form

f(ω) = x̄ne
jnω + · · · + x̄1e

jω + x0 + x1e
−jω + · · · + xne

−jnω(23)

= x0 + 2
(x1e
−jω + · · · + xne

−jnω),

where x = (x0, . . . , xn) ∈ R × Cn. In this section we show that f is nonnegative on
a subinterval of [0, 2π] if and only if it satisfies an SDP constraint of the form

x =

r∑
k=1

Ak diag
(
CkXkC

H
k

)
, Xk � 0, k = 1, . . . , r,

with r = 1 or r = 2. This result follows by reformulating classical sum-of-squares
characterizations of nonnegative trigonometric polynomials via the discrete Fourier
transform.

3.1. Sum-of-squares characterizations. If the trigonometric polynomial (23)
is nonnegative and of degree n (i.e., xn �= 0), then it can be expressed as

f(ω) = |g(e−jω)|2,

where g(s) = u0 +u1s+ · · · +uns
n is a polynomial of degree n with (in general)

complex coefficients uk. This is known as the Riesz–Fejér theorem or the spectral fac-
torization theorem [29, p. 3], [20, p. 60]. Several efficient methods exist for computing
g from x; see, for example, [32, Appendix D].

The following generalization of the Riesz–Fejér theorem can be found in [2, p. 133],
[20, p. 294], [8, Theorem 2], [16, p. 44], [12, 13]. If f is nonnegative on [α− β, α+ β],
where 0 < β < π, then it can be expressed as

f(ω) = |g(e−jω)|2 + (cos(ω − α) − cosβ) |h(e−jω)|2,

where g and h are polynomials with deg(g) ≤ n and deg(h) ≤ n− 1. In other words,
f is the sum of two nonnegative trigonometric polynomials. The first trigonometric
polynomial |g(e−jω)|2 is nonnegative everywhere; the second term is the product of a
nonnegative trigonometric polynomial |h(e−jω)|2 with the trigonometric polynomial
cos(ω − α) − cosβ, which is nonnegative on [α− β, α + β].

3.2. Discrete Fourier transform. The discrete Fourier transform (DFT) offers
a convenient way to map the coefficients of a pseudopolynomial

F (s) = x−ns
−n + · · · + x−1s

−1 + x0 + x1s + · · · + xns
n(24)

to its values at equidistant points on the unit circle, and vice versa. Let WDFT ∈
CN×N be the length-N DFT matrix with N ≥ 2n + 1:

WDFT =
[
w0 w1 · · · wN−1

]
,

where

wk = (1, e−jkωN , e−j2kωN , . . . , e−j(N−1)kωN ), ωN = 2π/N.
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For the pseudopolynomial F given by (24), define

x̃ = (x0, x1, . . . , xn, 0, . . . , 0, x−n, . . . , x−1) ∈ CN ,

y =
(
F (1), F (e−jωN ), . . . , F

(
e−j(N−1)ωN

))
∈ CN .

Then it is easily verified that

y = WDFTx̃, x̃ =
1

N
WH

DFTy.

In other words, the DFT maps the coefficients of F to the values of F at N equidistant
points on the unit circle; the inverse DFT maps these sample values back to the
coefficients.

If x−k = x̄k, then F (e−jω) is the trigonometric polynomial

F (e−jω) = f(ω) = x0 + 2
(x1e
−jω + · · · + xne

−jnω)

and the relation between x = (x0, x1, . . . , xn) and y = (f(0), f(ωN ), . . . , f((N−1)ωN ))
simplifies to

x =
1

N
WHy,

where the columns of W are the first n + 1 columns of WDFT:

W =
[
w0 w1 · · · wn

]
∈ CN×(n+1).(25)

3.3. Semidefinite representations. We now combine the observations in the
previous two paragraphs to obtain SDP characterizations of nonnegative trigonometric
polynomials. Let f be the trigonometric polynomial (23). Suppose N ≥ 2n + 1, W
is defined as in (25), and W1 ∈ CN×n is the matrix formed by the first n columns of
WDFT.

Theorem 1. f is nonnegative everywhere if and only if there exists an X ∈ Hn+1

such that

x = WH diag(WXWH), X � 0.(26)

The result follows directly from the following fact: two vectors x ∈ R × Cn and
u ∈ Cn+1 satisfy

x0 + 2
(x1e
−jω + · · · + xne

−jnω) = |u0 + u1e
−jω + · · · + une

−jnω|2(27)

for all ω if and only if

x =
1

N
WH diag(WuuHWH).(28)

To see this, we simply note that the elements of diag(WuuHWH) are the right-hand
side of (27) evaluated at ω = 2πk/N for k = 0, 1, . . . , N − 1. As we observed in sec-
tion 3.2, the inverse DFT of this vector gives the (unique) coefficients of the trigono-
metric polynomial that assumes those specified values. Therefore, the coefficients x
defined in (27) are given by (28). Since every nonnegative trigonometric polynomial
can be expressed as (27), (26) holds with X = (1/N)uuH.
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Conversely, if (26) holds, then by factoring X as X = (1/N)
∑n

k=0 uku
H
k , with

uk = (uk0, uk1, . . . , ukn), we express f in the form

f(ω) =

n∑
k=0

|uk0 + uk1e
−jω + · · · + ukne

−jnω|2,

which shows f(ω) ≥ 0. This completes the proof of Theorem 1.
Theorem 2. f is nonnegative on [α− β, α + β], where 0 < β < π if and only if

there exist X1 ∈ Hn+1, X2 ∈ Hn such that

x = WH
(
diag

(
WX1W

H
)

+ d ◦ diag
(
W1X2W

H
1

))
, X1 � 0, X2 � 0,(29)

where d ∈ RN has elements dk = cos(2πk/N − α) − cosβ for k = 0, . . . , N − 1.
The proof of this theorem is similar to the proof of Theorem 1. We have

x0 + 2
(x1e
−jω + · · · + xne

−jnω)

=

∣∣∣∣∣
n∑

k=0

uke
−jkω

∣∣∣∣∣
2

+ (cos(ω − α) − cosβ)

∣∣∣∣∣
n−1∑
k=0

vke
−jkω

∣∣∣∣∣
2

(30)

for all ω if and only if

x =
1

N
WH

(
diag(WuuHWH) + d ◦ diag

(
W1vv

HWH
1

))
.

According to the extension of the Riesz–Fejér theorem mentioned in section 3.1, if f
is nonnegative on [α−β, α+β], then it can be represented as (30), so (29) holds with
X1 = (1/N)uuH, X2 = (1/N)vvH. Conversely, if (29) holds, then f can be expressed
as a sum of functions of the form (30), so it is clearly nonnegative on [α− β, α + β].
This proves Theorem 2.

The constraint (26) is better known in a different form [14, 4, 11]. Let Ei be the

ith “shift” matrix, i.e., Ei ∈ R(n+1)×(n+1) with elements

Ei,kl =

{
1, k − l = i,
0, otherwise.

It is easily seen that Ei = (1/N)WH diag(wi)W , where W and wi are defined in (25)
with N ≥ 2n + 1. Therefore, (26) holds if and only if

xi = wH
i diag(WXWH) = tr

(
diag(wi)

HWXWH
)

= N tr
(
ET

i X
)

= N
∑

k−l=i

Xkl.

Hence the linear mapping H : Hn+1 → R × Cn defined by

H(X) =
1

N
WH diag(WXWH)(31)

can also be expressed as

H(X) =
(
tr

(
ET

0 X
)
, tr

(
ET

1 X
)
, . . . , tr

(
ET

nX
))
.(32)

We obtain the well-known result that f(ω) ≥ 0 if and only if there exists an X � 0
such that xi =

∑
k−l=i Xkl for i = 0, . . . , n.
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The adjoint of H (with respect to the inner products 
(xHz) on R × Cn and
tr(XZ) on Hn+1) can be derived using either one of the two expressions for H.
From (32),

Hadj(z) =
1

2

⎡
⎢⎢⎢⎣

2z0 z̄1 · · · z̄n
z1 2z0 · · · z̄n−1

...
...

. . .
...

zn zn−1 · · · 2z0

⎤
⎥⎥⎥⎦ ,(33)

the Hermitian Toeplitz matrix with first column (z0, z1/2, . . . , zn/2). From (31),


(zHH(X)) =
1

N

(zHWH diag(WXWH))

=
1

N


(
tr

(
diag(Wz)HWXWH

))
=

1

N
tr((WH diag(
(Wz))W )X),

so

Hadj(z) =
1

N
WH diag(
(Wz))W.

Although it is not immediately clear that this is equal to the Toeplitz matrix (33), it
is sufficient to note that the convolution of z with an arbitrary y ∈ Cn+1 is given by

1

N
WH((Wz) ◦ (Wy)) =

1

N
WH diag(Wz)Wy.

The matrix (1/N)WH diag(Wz)W is, therefore, the lower triangular Toeplitz matrix
with (z0, z1, . . . , zn) as its first column. Adding the complex conjugate transpose and
dividing by 2 gives

1

2N
WH

(
diag(Wz) + diag(Wz)H

)
W =

1

N
WH diag(
(Wz))W,

so this is indeed the Hermitian Toeplitz matrix with first column (z0, z1/2, . . . , zn/2).

4. Cosine polynomials. In this section we consider semidefinite formulations
of the constraint

f(ω) = x0 + x1 cosω + · · · + xn cosnω ≥ 0, ω ∈ [α, β],

where x ∈ Rn+1 and 0 ≤ α < β ≤ π. This is in fact a special case of the constraints
considered in the previous section, since f is a trigonometric polynomial with real
coefficients. For example, using Theorem 1, we can say that f(ω) ≥ 0 for all ω if and
only if

(x0, x1/2, . . . , xn/2) = WH diag(WXWH)

for some X � 0, where N ≥ 2n+ 1 and W is formed by the first n+ 1 columns of the
length-N DFT matrix. The purpose of this section is to show that simpler semidefinite
parametrizations, using smaller matrices, can be obtained for cosine polynomials.
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4.1. Sum-of-squares characterizations. Let f be a cosine polynomial of de-
gree n, i.e.,

f(ω) = x0 + x1 cosω + · · · + xn cosnω,(34)

with x ∈ Rn+1 and xn �= 0. If f is nonnegative on [α, β], where 0 ≤ α < β ≤ π, then
it can be expressed as

f(ω) =

{
g(ω)2 + (cosω − cosβ)(cosα− cosω)h(ω)2, n even,
(cosω − cosβ)g(ω)2 + (cosα− cosω)h(ω)2, n odd,

where g and h are cosine polynomials with deg(g) ≤ �n/2�, deg(h) ≤ �(n − 1)/2�.
This result can be derived from the characterization of nonnegative polynomials on
[−1, 1] (see section 5.1) by making a change of variables t = cosω.

If α = 0, β = π, i.e., f is nonnegative everywhere, these expressions can be
simplified. If n = 2m, we have

f(ω) = g(ω)2 + (1 − cos2 ω)h(ω)2

= g(ω)2 + (sinω)2h(ω)2

= g(ω)2 + h̃(ω)2,(35)

where h̃ is of the form h̃(ω) = v1 sinω+ v2 sin 2ω+ · · ·+ vm sinmω. This follows from
the fact that the function sin kω/ sinω is a cosine polynomial of degree k − 1.

If n = 2m + 1, we have

f(ω) = (cosω + 1)g(ω)2 + (1 − cosω)h(ω)2

= 2(cos(ω/2))2g(ω)2 + 2(sin(ω/2))2h(ω)2

= g̃(ω)2 + h̃(ω)2,(36)

where g̃ and h̃ have the form

g̃(ω) =

m∑
k=0

uk cos((k + 1/2)ω), h̃(ω) =

m∑
k=0

vk sin((k + 1/2)ω).

This follows from the fact that cos((k+1/2)ω)/ cos(ω/2) and sin((k+1/2)ω)/ sin(ω/2)
are cosine polynomials of degree k.

4.2. Discrete cosine transform. The matrices

VDCT =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1
1 cos(π/N) · · · cos((N − 1)π/N) cos(π)
1 cos(2π/N) · · · cos(2(N − 1)π/N) cos(2π)
...

...
...

...
1 cos(π) · · · cos((N − 1)π) cos(Nπ)

⎤
⎥⎥⎥⎥⎥⎦ ∈ SN+1

and

WDCT =
2

N
DVDCTD,

where D = diag(1/2, 1, 1, . . . , 1, 1, 1/2), are inverses:

WDCTVDCT = I(37)
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(see, for example, [7, p. 124]). The mapping VDCTDu is sometimes referred as the
discrete cosine transform (DCT) of u.

Suppose N ≥ n, and let W and V be the matrices formed by taking the first
n + 1 columns of WDCT and VDCT, respectively. These matrices satisfy WTV = I as
a consequence of (37) and the symmetry of WDCT. The matrix V maps the coefficients
x0, . . . , xn of the cosine polynomial (34) to its values at ω = kπ/N , k = 0, . . . , N .
Multiplying with WT maps these sample values to the coefficients. In other words, if
y = (f(0), f(π/N), . . . , f((N − 1)π/N), f(π)), then

y = V x, x = WTy.

4.3. Semidefinite representations. We now use the DCT and the sum-of-
squares theorems in section 4.1 to express constraints on a cosine polynomial

f(ω) = x0 + x1 cosω + · · · + xn cosnω

in semidefinite form. Assume N ≥ n and define ωN = π/N . As in section 4.2,

W ∈ R(N+1)×(n+1) denotes the matrix formed with the first n+ 1 columns of WDCT.
Theorem 3. f(ω) ≥ 0 on [α, β] if and only if there exist X1 ∈ Sm1+1 and

X2 ∈ Sm2+1 such that

x = WT
(
d1 ◦ diag

(
V1X1V

T
1

)
+ d2 ◦ diag

(
V2X2V

T
2

))
, X1 � 0, X2 � 0,(38)

where m1 = �n/2�, m2 = �(n− 1)/2�, and d1, d2 ∈ RN+1 are defined as

d1,k =

{
1, n even,
cos kωN − cosβ, n odd,

d2,k =

{
(cos kωN − cosβ)(cosα− cos kωN ), n even,
cosα− cos kωN , n odd

for k = 0, . . . , N . The columns of V1 ∈ R(N+1)×(m1+1) and V2 ∈ R(N+1)×(m2+1) are
the first m1 + 1, respectively, m2 + 1, columns of VDCT.

We prove the theorem for n even (n = 2m). By the sum-of-squares characteriza-
tion in section 4.1, if f is nonnegative on [α, β], then it can be expressed as

f(ω) = g(ω)2 + (cosω − cosβ)(cosα− cosω)h(ω)2(39)

for some cosine polynomials

g(ω) =

m∑
k=0

uk cos kω, h(ω) =

m−1∑
k=0

vk cos kω.

From section 4.2, we can express the right-hand side of (39) as a cosine polynomial
by computing the values at ω = kπ/N , k = 0, . . . , N , which gives the vectors

d1 ◦ diag
(
V1uu

TV T
1

)
+ d2 ◦ diag

(
V2vv

TV T
2

)
,

and then multiplying on the left with WT. In other words, (39) is equivalent to

x = WT
(
d1 ◦ diag

(
V1uu

TV T
1

)
+ d2 ◦ diag

(
V2vv

TV T
2

))
.
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Therefore, (38) holds with X1 = uuT and X2 = vvT. Conversely, if (38) holds, with
X1 and X2 of rank greater than 2, then f is a sum of cosine polynomials that are
nonnegative on [α, β], so it is also nonnegative.

If α = 0 and β = π, we can start from (35) and (36) and express the semidefinite
constraints in a slightly simpler form.

Theorem 4. f(ω) ≥ 0 everywhere if and only if there exist X1 ∈ Sm1+1, X2 ∈
Sm2+1 such that

x = WT
(
diag

(
V1X1V

T
1

)
+ diag

(
V2X2V

T
2

))
, X1 � 0, X2 � 0,(40)

where m1 = �n/2�, m2 = �(n− 1)/2�. If n is even, we define V1 ∈ R(N+1)×(m1+1) as
the matrix formed by the first m1 + 1 columns of VDCT and

V2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
sin(ωN ) sin(2ωN ) · · · sin(mωN )
sin(2ωN ) sin(4ωN ) · · · sin(2mωN )

...
...

...
sin(NωN ) sin(2NωN ) · · · sin(mNωN )

⎤
⎥⎥⎥⎥⎥⎦ ∈ R(N+1)×(m2+1).

If n is odd, we define V1 and V2 as

V1 =

⎡
⎢⎢⎢⎢⎢⎣

1 · · · 1
cos(ωN/2) · · · cos((m + 1/2)ωN )
cos(ωN ) · · · cos(2(m + 1/2)ωN )

...
...

cos(NωN/2) · · · cos(N(m + 1/2)ωN )

⎤
⎥⎥⎥⎥⎥⎦ ∈ R(N+1)×(m1+1),

V2 =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0
sin(ωN/2) · · · sin((m + 1/2)ωN )
sin(ωN ) · · · sin(2(m + 1/2)ωN )

...
...

sin(NωN/2) · · · sin(N(m + 1/2)ωN )

⎤
⎥⎥⎥⎥⎥⎦ ∈ R(N+1)×(m2+1).

Note that the matrices X1 and X2 in the constraints (38) and (40) have dimension
roughly n/2, as opposed to the constraints for general trigonometric polynomials
of degree n given in section 3, which involve matrix variables of size n. It is also
interesting to note that the matrices V1, V2, and W are orthogonal or nearly orthogonal
(i.e., have a condition number close to 1).

4.4. Example: Linear-phase Nyquist filter. We consider the lowpass filter
design problem

minimize t
subject to −t ≤ H(ω) ≤ t, ωs ≤ ω ≤ π,

(41)

in which H is the frequency response of a linear-phase Nyquist-M filter [32, sec-
tion 4.6]:

H(ω) = h0 + h1 cosω + · · · + hn cosnω

with

h0 = 1/M, hkM = 0, k = 1, 2, . . . , �n/M�.(42)
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Fig. 1. Frequency response of a linear-phase Nyquist-5 filter of length 51 and stopband edge
ωs = 1.1π/5 = 0.69.

The variables in (41) are t and the n−�n/M� coefficients hi that are not determined
by (42). Since H is a cosine polynomial, we can apply Theorem 3 to formulate this
problem as an SDP,

minimize t
subject to h + te0 = WT

(
d1 ◦ diag

(
V1X1V

T
1

)
+ d2 ◦ diag

(
V2X2V

T
2

))
,

−h + te0 = WT
(
d1 ◦ diag 1

(
V1X3V

T
1

)
+ d2 ◦ diag

(
V2X4V

T
2

))
,

X1 � 0, X2 � 0, X3 � 0, X4 � 0,

(43)

where e0 = (1, 0, . . . , 0) ∈ Rn+1 and W , d1, d2, V1, V2 are defined as in Theorem 3
with α = ωs, β = π. The variables are t, the n − �n/M� unknown entries of h =
(h0, h1, . . . , hn), and four symmetric matrices Xi, which have dimension roughly n/2.
Figure 1 shows an example with n = 50, M = 5, ωs = 1.1π/M .

5. Real polynomials.

5.1. Sum-of-squares characterizations. Let f be a polynomial of degree n
with real coefficients. If f is nonnegative on R, then n is even and f can be expressed
as

f(t) = g(t)2 + h(t)2,(44)

where deg(g) ≤ n/2 and deg(h) ≤ n/2. If f is nonnegative on [a,∞), then f can be
expressed as

f(t) = g(t)2 + (t− a)h(t)2,

where deg(g) ≤ �n/2� and deg(h) ≤ �(n− 1)/2�. Finally, if f is nonnegative on [a, b],
where a < b, then it can be expressed as

f(t) =

{
g(t)2 + (t− a)(b− t)h(t)2, n even,
(t− a)g(t)2 + (b− t)h(t)2, n odd,

(45)

where g and h are polynomials with deg(g) ≤ �n/2� and deg(h) ≤ �(n− 1)/2�. This
last result is known as the Markov–Lukács theorem [29, section 1.21], [20, section 3.2].
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5.2. Discrete polynomial transforms. Let pk(t), k = 0, 1, . . ., be a system of
orthogonal and normalized polynomials on a bounded or unbounded interval I ⊆ R
with respect to a nonnegative weight function w(t):∫

I

pk(t)pl(t)w(t) dt =

{
0, k �= l,
1, k = l.

The kth polynomial pk has degree k with a positive leading coefficient ak. It is well
known that orthogonal polynomials satisfy a three-term recursion

pk+1(t) = (αkt− βk)pk(t) − γkpk−1(t),(46)

where we define p−1(t) = 0. The coefficients αk, γk are positive and satisfy

αk =
ak+1

ak
> 0,

αkγk+1

αk+1
= 1.(47)

The recursion (46) for k = 0, . . . , N can be written in matrix-vector form as

tp(t) = Jp(t) + (1/αN )pN+1(t)eN ,(48)

where p(t) = (p0(t), p1(t), . . . , pN (t)), eN = (0, 0, . . . , 0, 1) ∈ RN+1, and

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β0/α0 1/α0 0 · · · 0 0
γ1/α1 β1/α1 1/α1 · · · 0 0

0 γ2/α2 β2/α2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · βN−1/αN−1 1/αN−1

0 0 0 · · · γN/αN βN/αN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

It follows from (47) that J is symmetric. Another well-known property of orthogonal
polynomials is that pk has exactly k distinct roots in the interior of I [10, p. 236].
From (48) we see that this implies

λip(λi) = Jp(λi), i = 0, . . . , N,

where λ0, λ1, . . . , λN are the roots of pN+1. In other words p(λi) is an eigenvector
of J with eigenvalue λi [15].

These properties provide an efficient method for computing the matrix

VDPT =

⎡
⎢⎢⎢⎣
p0(λ0) p1(λ0) · · · pN (λ0)
p0(λ1) p1(λ1) · · · pN (λ1)

...
...

...
p0(λN ) p1(λN ) · · · pN (λN )

⎤
⎥⎥⎥⎦ ∈ R(N+1)×(N+1)

directly from the coefficients αk, βk, γk in the recursion (46). Let

J = Qdiag(λ)QT

be the eigenvalue decomposition of J with normalized eigenvectors (QQT = QTQ = I)
and the signs in the first row of Q chosen to be positive. The ith column of Q is then
a positive multiple of p(λi), and therefore

VDPT = DQT
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with D positive diagonal. The matrix D is easily determined by dividing the first
column of VDPT, which is a constant p0(t) = (

∫
w(t) dt)−1/2, by the elements in the

first row qT
1 of Q: D = p0(t)diag(q1)

−1. It follows that

V T
DPTD

−2VDPT = I,

so the matrix

WDPT = D−1QT = D−2VDPT(49)

satisfies WT
DPTVDPT = I. The matrices VDPT and WDPT thus define a pair of forward

and inverse “discrete polynomial transforms” [7, section 8.5].
Now suppose N ≥ n, and let W and V be the matrices formed by the first n + 1

columns of WDPT and VDPT. Since VDPT and WT
DPT are inverses, we have WTV = I.

The linear transformations V x and WTy map the coefficients of the polynomial

f(t) = x0p0(t) + x1p1(t) + · · · + xnpn(t)

to N + 1 values at λ0, . . . , λN and vice versa: If

y = (f(λ0), f(λ1), . . . , f(λN )),

then y = V x and x = WTy.

5.3. Semidefinite representations. We can apply the discrete transform asso-
ciated with the orthogonal polynomials pk, combined with the sum-of-squares results
in section 5.1, to derive LMI conditions for nonnegativity of the polynomial

f(t) = x0p0(t) + x1p1(t) + · · · + xnpn(t).

Assume N ≥ n. Let W ∈ R(N+1)×(n+1) be the matrix formed by the first n + 1
columns of WDPT in (49), and let λ = (λ0, λ1, . . . , λN ) be the vector of zeros of pN+1.

Theorem 5. f(t) ≥ 0 for t ∈ R if and only if n is even and there exists an

X ∈ Sn/2+1 such that

x = WT diag
(
V1XV T

1

)
, X � 0.

Here V1 is the matrix formed by the first n/2 + 1 columns of VDPT.
Theorem 6. f(t) ≥ 0 on [a,∞) if and only if there exist X1 ∈ Sm1+1 and

X2 ∈ Sm2+1 such that

x = WT
(
diag

(
V1X1V

T
1

)
+ (λ− a) ◦ diag

(
V2X2V

T
2

))
, X1 � 0, X2 � 0.

Here m1 = �n/2�, m2 = �(n − 1)/2�, and V1 and V2 are the matrices formed by the
first m1 + 1, respectively, m2 + 1, columns of VDPT.

Theorem 7. f(t) ≥ 0 on [a, b] if and only if there exist X1 ∈ Sm1+1, X2 ∈ Sm2+1

such that

x = WT
(
d1 ◦ diag(V1X1V

T
1 ) + d2 ◦ diag(V2X2V

T
2 )

)
, X1 � 0, X2 � 0.

Here m1 = �n/2�, m2 = �(n − 1)/2�, and V1 and V2 are the matrices formed by the
first m1 + 1, respectively, m2 + 1, columns of VDPT. The vectors d1, d2 ∈ RN+1 are
defined as

d1 =

{
1, n even,
λ− a1, n odd,

d2 =

{
(λ− a1) ◦ (b1 − λ), n even,
b1 − λ, n odd.
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Fig. 2. Minimax magnitude fit of a rational transfer function to 25 data points.

The proofs follow exactly the same pattern as in sections 3.3 and 4.3, and are
omitted.

There exist several other interesting choices for the matrices V1, V2, and W . First,
we can define V1 and V2 as the first columns of the matrix QT (instead of the first
columns of VDPT = DQT) if we change the definition of W accordingly and construct
W from the first columns of DQT. With this choice, V1 and V2 are orthogonal.
Alternatively, we can define W to be the first columns of the matrix QT, and redefine
V1 and V2 as the first columns of D1/2QT. With this choice W is orthogonal.

Second, we can note that the basis polynomials used in the definitions of V1 and
V2 need not be the same as in the definition of W . This follows from the fact that
in (44)–(45), we can use a different basis to represent the polynomials f , g, and h.
We could, therefore, define V1 and V2 as generalized Vandermonde matrices with k, l
elements ql(tk), where tk are the zeros of pN , and q0, q1, . . . is any polynomial basis.
This is equivalent to replacing the matrices Vk by VkTk, where Tk is nonsingular. In
particular, we can replace V1 and V2 with orthogonal matrices that have the same
column spaces.

5.4. Example: Minimax magnitude fit of rational transfer function. We
consider the problem of fitting the magnitude of a rational transfer function

G(s) =
a0 + a1s + · · · + ans

n

b0 + b1s + · · · + bmsm

to data points, i.e., choosing the (real) coefficients ai, bi so that |G(jωk)|2 ≈ γk for
k = 1, . . . ,K, where ωk and γk are given. Using a minimax criterion and introducing
an auxiliary variable δ we can formulate this problem as

minimize δ
subject to −δ ≤ |G(jωk)|2 − γk ≤ δ, k = 1, . . . ,K.

Figure 2 shows an example with n = 6, m = 8, and K = 25.
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This problem can be posed as a quasi-convex optimization problem. We first
express the magnitude squared of the transfer function as

|G(jω)|2 =
f1(ω

2)

f2(ω2)
,

where f1 and f2 are the real polynomials,

f1(t) = ae(t)
2 + tao(t)

2, f2(t) = be(t)
2 + tbo(t)

2(50)

with

ae(t) =

�n/2�∑
k=0

a2k(−t)k, ao(t) =

�(n−1)/2�∑
k=0

a2k+1(−t)k,

be(t) =

�m/2�∑
k=0

b2k(−t)k, bo(t) =

�(m−1)/2�∑
k=0

b2k+1(−t)k.

Clearly f1(t) ≥ 0 and f2(t) ≥ 0 for t ≥ 0. Conversely, if f1 and f2 are nonnegative
on the nonnegative real axis, then by the result mentioned in section 5.1, they can be
expressed as (50). The fitting problem is therefore equivalent to

minimize δ
subject to (γk − δ)f2(ω

2
k) ≤ f1(ω

2
k) ≤ (γk + δ)f2(ω

2
k), k = 1, . . . ,K,

f1(t) ≥ 0, f2(t) ≥ 0 for t ≥ 0.
(51)

The variables are δ and the coefficients of the polynomials

f1(t) = x0p0(t) + x1p1(t) + · · ·+ xnpn(t), f2(t) = p0(t) + y1p1(t) + · · ·+ ympm(t)

for some choice of orthogonal basis polynomials pk(t). We normalize the first coeffi-
cient of f2 to rule out the trivial solution f1(t) = f2(t) = 0. (Alternatively, one might
prefer to replace f2(t) ≥ 0 with f2(t) ≥ ε for some small positive ε, which would also
ensure that there are no poles on the imaginary axis.)

Problem (51) can be solved via bisection on δ. In each bisection step we fix δ and
determine whether the constraints are feasible or not. This feasibility problem can be
cast as an SDP feasibility problem,

(γk − δ)f2(ω
2
k) ≤ f1(ω

2
k) ≤ (γk + δ)f2(ωk)

2, k = 1, . . . ,K,

x = WT
(
diag

(
V1X1V

T
1

)
+ λ ◦ diag

(
V2X2V

T
2

))
,

y = W̃T
(
diag

(
Ṽ1X̃1Ṽ

T
1

)
+ λ̃ ◦ diag

(
Ṽ2X̃2Ṽ

T
2

))
,

X1 � 0, X2 � 0, X̃1 � 0, X̃2 � 0,

(52)

where x = (x0, x1, . . . , xn) and y = (1, y1, . . . , ym). The variables are xk, yk and the
matrices Xi and X̃i. The matrices W , V1, V2 and the vector λ are defined as in
Theorem 6 with a = 0. The matrices W̃ , Ṽ1, Ṽ2 and λ̃ are defined similarly but with
n replaced by m.
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6. Numerical examples. The SDP characterizations of nonnegative polynomi-
als derived in the previous sections can be expressed in the following common form. A
(trigonometric, cosine, real) polynomial with coefficients x is nonnegative on a given
interval if and only if there exist Hermitian matrices Xk such that

x =

s∑
k=1

Ak diag(CkXkC
H
k ), Xk � 0, k = 1, . . . , s.

In the case of cosine polynomials or real polynomials, the matrices Ak, Ck and the
variables x and Xk are real. This representation allows us to formulate a wide variety
of optimization problems involving polynomials as SDPs of the form

minimize cTy

subject to

si∑
k=1

Aik diag(CikXikC
H
ik) + Biy = bi, i = 1, . . . , L,

Xik � 0, k = 1, . . . , si, i = 1, . . . , L.

(53)

The variables are y ∈ Rp and the Hermitian matrices Xik. Each of the L constraints
expresses a nonnegativity condition on a polynomial with coefficients bi −Biy.

The SDP (53) is a special case of (11) or (19) if we interpret X as a block-diagonal
matrix with diagonal blocks Xik, and define A, C, and B as block matrices constructed
from Aik, Cik, and Bi. In this section we present numerical results for a primal-dual
interior-point method that uses the fast method for solving the Newton equations
described in section 2.1. We first provide some details of the implementation.

6.1. Implementation. All examples are instances of the SDP (53) with real
data and variables. Applying the method of section 2.1 to an SDP with block-diagonal
structure (53) leads to a reduced Newton system (18),⎡

⎢⎢⎢⎢⎢⎣

H1 0 · · · 0 B1

0 H2 · · · 0 B2

...
...

. . .
...

...
0 0 · · · HL BL

BT
1 BT

2 · · · BT
L 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Δz1

Δz2

...
ΔzL
Δy

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

r3,1
r3,2
...

r3,L
r2

⎤
⎥⎥⎥⎥⎥⎦ ,(54)

where

Hi =

si∑
k=1

Aik sqr
(
CikTikC

T
ik

)
AT

ik.

When solving (54), we can exploit the “block-arrow” structure by first eliminating
the variables Δzi and then solving a positive definite set of linear equations in the
variables Δy: (

L∑
i=1

BT
i H

−1
i Bi

)
Δy =

L∑
i=1

BT
i H

−1
i r3,i − r2.(55)

From the solution Δy we obtain Δzi by solving HiΔzi = r3,i −BiΔy.
In the numerical experiments described below we implemented this idea as follows.

We compute the Hadamard products sqr(CikTikC
T
ik) and factor them as

sqr
(
CikTikC

T
ik

)
= VikV

T
ik .
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The eigenvalue decomposition is used for this purpose, since the matrix sqr(CikTikC
T
ik)

is often rank-deficient. We then factor the matrices

Hi =

si∑
k=1

AikVikV
T
ikA

T
ik

as Hi = RT
i Ri via QR factorizations of the matrices

[
Ai1Vi1 Ai2Vi2 · · · AiriViri

]T
= QiRi.

This is more stable than using a Cholesky factorization of Hi, since it allows us to
compute the triangular factors Ri without explicitly forming Hi. Equation (55) now
reduces to (

L∑
i=1

BT
i R

−1
i R−T

i Bi

)
Δy =

L∑
i=1

BT
i R

−1
i R−T

i r3,i − r2.

To improve the numerical stability, we again avoid forming the coefficient matrix and
use a QR factorization[

BT
1 R

−1
1 BT

2 R
−1
2 · · · BT

LR
−1
L

]T
= QR

instead. Given Q and R we can find Δy by solving

RΔy = QTr̃3 −R−T r2,

where

r̃3 =
[(
R−T

1 r3,1
)T (

R−T
2 r3,2

)T · · ·
(
R−T

L r3,L
)T]T

.

Except for the algorithm used for solving the Newton equations, the code is
a rudimentary implementation of an SDPT3-style path-following method [30, 31],
following the outline given in the appendix of [33]. Infeasible starting points are used:
we take y = 0, Xik = I in the primal problem; in the dual problem

maximize
L∑

i=1

bTi zi

subject to CT
ik diag

(
AT

ikzi
)
Cik + Zik = 0, Zi � 0, k = 1, . . . , si, i = 1, . . . , L,

L∑
i=1

BT
i zi = c

we take Zik = I and for zi the least-norm solution of the last equality constraint. The
stopping criterion is based on the following quantities.

• The duality gap

ηabs =

L∑
i=1

si∑
k=1

tr(XikZik).

(This is only truly the duality gap when the primal and dual iterates are
feasible.)
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Fig. 3. Progress of the primal-dual method for the design of a lowpass Nyquist-5 filter. The left
plot shows the duality gap versus iteration number. The right plot shows the primal residual (solid
line) and the dual residual (dashed line).

• The relative duality gap

ηrel =

⎧⎪⎨
⎪⎩
−ηabs/c

Ty, cTy < 0,

ηabs/
∑

i b
T
i zi,

∑
i b

T
i zi > 0,

∞, otherwise.

• The primal residual

rpri = max
i=1,...,L

‖bi −Biy −
∑si

k=1 Aik diag
(
CikXikC

T
ik

)
‖2

max{1, ‖bi‖2}
.

• The dual residual

rdu = max

{
‖c−

∑L
i=1 B

T
i zi‖2

max{1, ‖c‖2}
, max

i,k
‖Sik + CT

ik diag
(
AT

ikzi
)
Cik‖2

}
.

In these expressions, ‖ · ‖2 denotes the Euclidean norm for vectors and the matrix
norm (maximum singular value norm) for matrices. The algorithm terminates if

rpri ≤ εfeas and rdu ≤ εfeas and (ηabs ≤ εgap or ηrel ≤ εgap) ,

where εfeas = 10−7 and εgap = 10−8. The code was implemented in MATLAB ver-
sion 6.5.1 on a 2.4 GHz Pentium IV PC with 1 GB of memory.

6.2. Linear-phase FIR filter design. We first illustrate the behavior of the
algorithm with the example problem of section 4.4. Figure 3 shows the progress of
the algorithm applied to the SDP (43) with the same parameters as used for Figure 1.
The algorithm terminates after 19 iterations with a CPU time of 0.05 s per iteration.

6.3. Minimax magnitude fit of transfer function. The example in sec-
tion 5.4 was solved by bisection on δ. The optimal value of δ was computed with an
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Fig. 4. Progress of the primal-dual method applied to the phase-I problem in the last bisection
step for computing the function in Figure 2. The left plot shows the duality gap versus iteration
number. The right plot shows the primal residual (solid line) and the dual residual (dashed line).

absolute accuracy of 10−5. We used the basis of Laguerre polynomials to construct the
SDP constraints (52). The feasibility problems (for fixed δ) were solved by applying
the interior-point method to the “phase-I” problem

minimize u
subject to (γk − δ)f2

(
ω2
k

)
− u ≤ f1(ω

2
k) ≤ (γk + δ)f2(ωk)

2 + u, k = 1, . . . ,K,

x = WT
(
diag(V1X1V

T
1 ) + λ ◦ diag

(
V2X2V

T
2

))
,

y = W̃T
(
diag

(
Ṽ1X̃1Ṽ

T
1

)
+ λ̃ ◦ diag

(
Ṽ2X̃2Ṽ

T
2

))
,

X1 � 0, X2 � 0, X̃1 � 0, X̃2 � 0

(56)

with variables u, x, y, Xi, and X̃i.

Figure 4 shows the convergence of the primal-dual path-following method applied
to the SDP (56) in the final bisection step. Although a primal feasible point for
problem (56) is known, the algorithm was started at the default infeasible starting
points. Instead of using the stopping criterion based on the duality gap described
in section 6.1, we terminated the interior-point algorithm as soon as the sign of the
optimal value of (56) was known.

We observed that the convergence of the algorithm for this example problem was
much more sensitive to the choice of problem parameters than for the other numerical
examples. Although the stability of our interior-point implementation certainly leaves
room for improvement, optimization problems over real polynomials on unbounded
intervals appear to be much more difficult to solve than problems with cosine poly-
nomials.

6.4. Magnitude FIR filter design. The next example is a family of a lowpass
filter design problem similar to examples described in [1] and [8]. The design variables
are the (real) filter coefficients hi of an FIR filter of length n+1 with transfer function

H(ω) = h0 +

n∑
k=0

hke
−jkω.
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Fig. 5. Frequency response of lowpass filter with length 102. The filter minimizes the stopband
energy subject to the upper and lower bounds shown in dashed lines.

The objective is to minimize the stopband energy∫ π

ωs

|H(ω)|2 dω.

The constraints include upper and lower bounds on the filter magnitude |H(ω)| in the
passband, and an upper bound on the magnitude in the stopband:

1/δp ≤ |H(ω)|2 ≤ δp, 0 ≤ ω ≤ ωp, |H(ω)|2 ≤ δs, ωs ≤ ω ≤ π.

This problem can be formulated as a convex problem by expressing the constraints in
terms of Y (ω) = |H(ω)|2, which is a cosine polynomial

Y (ω) = y0 + y1 cosω + · · · + yn cosnω.

The resulting problem is

minimize

∫ π

ωs

Y (ω) dω

subject to 1/δp ≤ Y (ω) ≤ δp, 0 ≤ ω ≤ ωp,
Y (ω) ≤ δs, ωs ≤ ω ≤ π,
Y (ω) ≥ 0, 0 ≤ ω ≤ π,

(57)

with variables y ∈ Rn+1. From the optimal y, the filter coefficients hk can be com-
puted via spectral factorization [34].

Since Y is a cosine polynomial, problem (57) can be cast as an SDP of the
form (53) as explained in section 4. The problem dimensions are L = 4 and si = 2
for i = 1, . . . , L. The primal variables are the n + 1-vector y, and eight symmetric
matrices Xik of size �n/2� or �(n− 1)/2�.

We first consider an instance with parameters

n = 101, δp = 1.05, δs = 0.001, ωp = 0.2π, ωs = 0.23π.

Figure 5 shows the specifications and the optimal filter magnitude. Figure 6 shows the
duality gap and the relative primal and dual residuals versus the iteration number.
The code terminates after 20 iterations and requires 0.41 s per iteration.
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Fig. 6. Progress of a primal-dual method for the lowpass filter design problem. The left plot
shows the duality gap versus iteration number. The right plot shows the primal residual (solid line)
and the dual residual (dashed line).

Table 1

Numerical results for a family of magnitude filter design problems. The first three columns
specify the design parameters. The last two columns show the CPU time per iteration in seconds for
a special-purpose interior-point implementation that exploits problem structure and for the general-
purpose solver SDPT3.

Design parameters Time per iteration (s)
n ωs δs Fast impl. SDPT3

25 0.300π 5.62 × 10−3 0.04 0.17
50 0.280π 3.16 × 10−3 0.10 1.81
75 0.270π 1.00 × 10−3 0.21 5.78
100 0.260π 1.00 × 10−3 0.41 14.2
125 0.255π 1.00 × 10−3 0.71 29.0
150 0.250π 1.00 × 10−3 1.15 55.7
175 0.248π 1.00 × 10−3 1.77 86.5
200 0.248π 3.16 × 10−4 2.46 137
225 0.244π 2.24 × 10−4 3.50 203
250 0.244π 1.78 × 10−4 4.79 302
275 0.244π 1.78 × 10−4 6.57
300 0.244π 1.78 × 10−4 8.56

Table 1 show the solution times for 12 filter design problems from the same
family with ωp = 0.23π and δp = 1.1 and n ranging from 25 to 300. The stopband
parameters ωs and δs are modified to tighten the specifications as n increases. The
last two columns show the CPU time per iteration for the specialized interior-point
implementation and for the general-purpose solver SDPT3, applied to the primal
problem (53). (To express this problem as a standard form SDP, we split the y variable
as a difference of two nonnegative vectors before passing it to SDPT3.) Figure 7
shows a graph of the CPU time versus n. The results clearly illustrate the benefits of
exploiting problem structure when solving the Newton equations.

7. Conclusion. We have described a new SDP formulation of sum-of-squares
theorems of nonnegative polynomials, cosine polynomials, and trigonometric polyno-
mials. The formulation results in structured SDPs that can be solved very efficiently
by taking advantage of simple properties of the diag operator.

The SDP parametrizations involve discrete transform matrices that are often
orthogonal, or products of orthogonal and diagonal matrices. This should benefit
the numerical stability of interior-point algorithms based on the parametrization.
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Fig. 7. CPU time per iteration versus problem dimension for the results in Table 1.

Although we have not analyzed the numerical properties, the numerical experiments
are encouraging. In particular, the FIR filter examples that we solved successfully
are much larger than those reported with other fast implementations of interior-point
methods [16, 4].

REFERENCES

[1] J. W. Adams, FIR digital filters with least-squares stopbands subject to peak-gain constraints,
IEEE Trans. Circuits Syst., 39 (1991), pp. 376–388.

[2] N. I. Ahiezer and M. Krein, Some Questions in the Theory of Moments, Transl. Math.
Monogr. 2, AMS, Providence, RI, 1962 (translated from the 1938 Russian manuscript by
W. Fleming and D. Prill).

[3] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methods
for semidefinite programming: Convergence rates, stability and numerical results, SIAM
J. Optim., 8 (1998), pp. 746–768.

[4] B. Alkire and L. Vandenberghe, Convex optimization problems involving finite autocorre-
lation sequences, Math. Program. Ser. A, 93 (2002), pp. 331–359.

[5] S. J. Benson and Y. Ye, DSDP5: A Software Package Implementing the Dual-Scaling Algo-
rithm for Semidefinite Programming, Technical report ANL/MCS-TM-255, Mathematics
and Computer Science Division, Argonne National Laboratory, 2004.

[6] S. J. Benson, Y. Ye, and X. Zhang, Solving large-scale sparse semidefinite programs for
combinatorial optimization, SIAM J. Optim., 10 (2000), pp. 443–461.

[7] W. L. Briggs and V. E. Henson, The DFT: An Owner’s Manual for the Discrete Fourier
Transform, SIAM, Philadelphia, PA, 1995.

[8] T. N. Davidson, Z.-Q. Luo, and J. F. Sturm, Linear matrix inequality formulation of spectral
mask constraints, IEEE Trans. Signal Process., 50 (2002), pp. 2702–2715.

[9] T. N. Davidson, Z.-Q. Luo, and K. M. Wong, Design of orthogonal pulse shapes for commu-
nications via semidefinite programming, IEEE Trans. Signal Process., 48 (2000), pp. 1433–
1445.

[10] P. J. Davis, Interpolation and Approximation, Dover, New York, 1975 (first published by
Blaisdell Publishing Company in 1963).

[11] B. Dumitrescu, I. Tabus, and P. Stoica, On the parametrization of positive real sequences
and MA parameter estimation, IEEE Trans. Signal Process., 49 (2001), pp. 2630–2639.

[12] L. Faybusovich, On Nesterov’s approach to semi-infinite programming, Acta Appl. Math., 74
(2002), pp. 195–215.

[13] L. Faybusovich, Semidefinite descriptions of cones defining spectral mask constraints, Euro-
pean J. Oper. Res., 169 (2006), pp. 1207–1221.

[14] Y. Genin, Y. Hachez, Yu. Nesterov, and P. van Dooren, Optimization problems over



964 TAE ROH AND LIEVEN VANDENBERGHE

positive pseudopolynomial matrices, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 57–79.
[15] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp., 23

(1969), pp. 221–230.
[16] Y. Hachez, Convex Optimization over Non-Negative Polynomials: Structured Algorithms and

Applications, Ph.D. thesis, Université Catholique de Louvain, Belgium, 2003.
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