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Abstract

We discuss a method for multidimensional FIR filter design via sum-of-squares for-
mulations of spectral mask constraints. The sum-of-squares optimization problem is
expressed as a semidefinite program with low-rank structure, by sampling the con-
straints using discrete cosine and sine transforms. The resulting semidefinite program
is then solved by a customized primal-dual interior-point method that exploits low-
rank structure. This leads to a substantial reduction in the computational complexity,
compared to general-purpose semidefinite programming methods that exploit sparsity.

1 Introduction

A variety of one-dimensional FIR filter design problems can be expressed as convex opti-
mization problems over real trigonometric polynomials, subject to spectral mask constraints
(upper or lower bounds on the polynomial over intervals of the frequency axis). These
optimization problems can be formulated as semidefinite programs (SDPs) using classical
sum-of-squares (SOS) characterizations of nonnegative polynomials, and solved efficiently
via interior-point methods for semidefinite programming [2,7,13,32]. The extension of these
techniques to multidimensional filter design poses several difficulties. First, sum-of-squares
characterizations of multivariate positive trigonometric polynomials may require factors of
arbitrarily high degree. To obtain a tractable optimization problem, a bound on the degrees
of the factor polynomials has to be imposed. This results in a sufficient condition for the
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original nonnegativity or spectral mask constraint [9–11], analogous to sum-of-squares for-
mulations of real multivariate polynomials [16,21]. The second difficulty stems from the large
size of the semidefinite programming problems obtained from multivariate sum-of-squares
programs. This is due to the presence of large matrix variables with dimensions that grow
exponentially with the number of variables in the multivariate polynomials. Hence there is
a need for specialized SDP algorithms that exploit structure in multivariate sum-of-squares
optimization problems.

Most recent research on exploiting structure in semidefinite programming has focused on
exploiting sparsity of the coefficient matrices [12, 19, 31]. These techniques are very useful
for SDPs derived from sum-of-squares programs, and are included in several general-purpose
semidefinite programming packages. An alternative approach based on exploiting dense
rank-one structure was studied in [3, 17, 24] and found to be very well-suited for sum-of-
squares optimization. Our goal in this paper is to extend the techniques proposed in [24] to
multivariate trigonometric polynomials, and to compare their effectiveness in practice with
general-purpose solvers that exploit sparsity. Although we concentrate on applications to
the two-dimensional FIR filter design problems discussed in detail in [9], the results are also
relevant to general sum-of-squares optimization based on trigonometric basis functions [18].

An abridged version of this paper was published in [25].

Notation. Z
d and N

d denote the sets of d-vectors of integers and natural numbers, respec-
tively. For a vector x, we define diag(x) as the diagonal matrix with xi as its ith diagonal
entry. For a square matrix X, diag(X) is a vector with the ith entry Xii. The matrix
inequality A ≻ (�)B denotes that A − B is positive definite (semidefinite). tr(A) denotes
the trace of a symmetric matrix A.

2 Trigonometric sums of squares

Let R be a d-variate trigonometric polynomial of degree n ∈ Z
d, with real symmetric coeffi-

cients xk = x−k:

R(ω) =
n
∑

k=−n

xke
−jkT ω. (1)

The sum is over all integer vectors k that satisfy −n ≤ k ≤ n, where the inequalities between
the vectors are interpreted elementwise. A fundamental result [11, Theorem 3.5], [8, Theorem
5.1], [8, Corollary 5.2] is that if R is positive on [−π, π]d, then it can be expressed as a sum
of squares of trigonometric polynomials,

R(ω) =
r
∑

ℓ=1

|Hℓ(ω)|2, (2)

2



where the trigonometric polynomials Hℓ(ω) are linear combinations of the monomials e−jkT ω

with exponents in the first orthant (k ∈ N
d), i.e., Hℓ takes the form

Hℓ(ω) =

nℓ
∑

k=0

hℓ,ke
−jkT ω.

Note that in general the degrees nℓ = deg Hℓ may be greater than n (elementwise).

2.1 Sum-of-squares formulation

We denote by Pn the set of nonnegative trigonometric polynomials of degree n, and by P
m

n

the set of sum-of-squares trigonometric polynomials (2) with factors of degree nℓ ≤ m. If
m ≥ n then

P
n

n
⊆ P

m

n
⊆ Pn. (3)

Now consider an optimization problem in which we constrain the trigonometric polyno-
mial (1) to be positive on [−π, π]d. Imposing R ∈ P

m

n
instead of R ∈ Pn is only a sufficient

condition, but, as we explain later, it makes the problem solvable by standard convex op-
timization tools (typically semidefinite programming). Moreover it is observed in practice
that the solution of the sum-of-squares problem is often the optimal one, even when we take
m = n [9]. This idea is related to the sum-of-squares relaxations for polynomial optimization
discussed in [16,21,22]. We therefore refer to m as the relaxation degree. In order to simplify
the notation, we will use m = n in the remainder of the paper. However, all the results also
apply to higher relaxation degrees.

2.2 Spectral mask constraints

We next discuss how spectral mask constraints are handled within the framework of [9, 11].
Let D be an intersection of regions Di defined by trigonometric polynomials (of some low
degree) Di:

D =
ℓ
⋂

i=1

Di, (4)

where
Di = {ω ∈ [−π, π]d | Di(ω) ≥ 0}. (5)

Then, a trigonometric polynomial R that is positive on D can be expressed as a weighted

sum-of-squares

R(ω) = S0(ω) +
ℓ
∑

i=1

Di(ω)Si(ω), (6)

where Si, i = 0, . . . , ℓ, are sums of squares of trigonometric polynomials [9], [11, Theorem
4.11]. In practice, if we impose S0 ∈ P

n

n
, and Si ∈ P

ni

ni
, where ni = n − deg(Di), then (6)

provides a sufficient condition for nonnegativity on D.

3



We can also consider spectral mask regions D described as a union

D =
ℓ
⋃

i=1

Di. (7)

A trigonometric polynomial R positive on D must satisfy

R(ω) = Si0(ω) + Di(ω)Si1(ω), i = 1, . . . , ℓ, (8)

where Sij are sums of squares. This again is a sufficient condition if we limit the degrees of
the sum-of-squares factors Sij.

Although these formulations of spectral masks as intersections or unions of sets (5) appear
to be limited, many practical two-dimensional spectral mask regions with simple geometrical
shapes (rectangle, rhombus, fan) can be constructed [9, 11].

2.3 Two-dimensional FIR filter design as SOS program

Let H be the frequency response of a two-dimensional linear-phase FIR filter with filter order
n = (n1, n2):

H(ω) =
n
∑

k=−n

hke
−jkT ω,

with real filter coefficients hk = h−k. We wish to determine the filter coefficients hk that
maximize the attenuation δs in the stopband Ds for a given maximum allowable ripple (δp)
in the passband Dp. The optimization problem is

minimize δs

subject to |1 − H(ω)| ≤ δp, ω ∈ Dp,
|H(ω)| ≤ δs, ω ∈ Ds,

(9)

where the scalar δs and the filter coefficients hk are the problem variables. The constraints
are equivalent to

R1(ω) = H(ω) − 1 + δp ≥ 0, ω ∈ Dp (10)

R2(ω) = 1 − H(ω) + δp ≥ 0, ω ∈ Dp (11)

R3(ω) = H(ω) + δs ≥ 0, ω ∈ Ds (12)

R4(ω) = H(ω) − δs ≥ 0, ω ∈ Ds. (13)

If the passband and stopband are defined as (4) or (7), then we can replace each positive
polynomial Ri by a weighted sum-of-squares expression (5) or (8) (or a combination of the
two). Limiting the degrees of the sum-of-squares polynomials to n then gives sufficient
conditions for feasibility. We call the resulting optimization problem a sum-of-squares pro-

gram. In section 3, we show how this sum-of-squares program can be solved via semidefinite
programming.
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Figure 1: The spectral masks described by the sets (14) with cp = 1 and cs = 0.3.

Example We consider a simple 2-D lowpass filter problem with the following spectral mask
constraints. Let

Dp(ω) = cos(ω1) + cos(ω2) − cp, Ds(ω) = cs − cos(ω1) − cos(ω2).

and define the spectral masks Dp and Ds as

Dp = {ω ∈ [−π, π]2 | Dp(ω) ≥ 0}, Ds = {ω ∈ [−π, π]2 | Ds(ω) ≥ 0}. (14)

Figure 1 illustrates these two regions. The sum-of-squares program for this filter is

minimize δs

subject to H(ω) − 1 + δp = S10(ω) + Dp(ω)S11(ω)
1 − H(ω) + δp = S20(ω) + Dp(ω)S21(ω)
H(ω) + δs = S30(ω) + Ds(ω)S31(ω)
H(ω) − δs = S40(ω) + Ds(ω)S41(ω)
Si0 ∈ P

n

n
, Si1 ∈ P

n−1

n−1
, i = 1, . . . , 4.

(15)

(The symbol 1 in P
n−1

n−1
denotes the vector of ones.) The variables are the coefficients of

trigonometric polynomials H, the sum-of-squares polynomials Sik, and the stopband atten-
uation δs. Figure 2 shows the optimal solution of (15), with the design parameters cp = 1,
cs = 0, 3, δp = 0.05, and 2-D filter order n = (n1, n2) = (11, 11). The optimal attenuation is
69 dB.
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Figure 2: Solution of the lowpass filter problem (15) with n1 = n2 = 11 and passband and
stopband shown in Figure 1.

3 Semidefinite programming formulations

A semidefinite program (SDP) is an optimization problem of the form

minimize tr(QX) + qT y
subject to A(X) + By = c

X � 0.
(16)

The unknowns are the matrix X ∈ S
m (the symmetric matrices of order m) and vector

y ∈ R
p. The problem parameters are Q ∈ S

m, B ∈ R
s×p, c ∈ R

p, and a linear mapping
A : S

m → R
s. The inequality X � 0 means that X is positive semidefinite. The problem (16)

is called a standard form SDP (or more precisely, a standard form SDP with free variables).
In practice it is very common that the variable X is block-diagonal, and its diagonal blocks
Xk can be interpreted as separate smaller matrix variables.

In the applications considered in this paper, the mapping A has a special ‘block-diagonal’
structure, and the SDP can be written as

minimize
∑L

k=1 tr(QkXk) + qT y
subject to Ak(Xk) + Bky = ck, k = 1, . . . , L

Xk � 0, k = 1, . . . , L.
(17)

Each of the matrix variables Xk ∈ S
mk in this problem appears in only one of the L equality

constraints, and Ak is a linear mapping from S
mk to R

sk . The constraints are coupled via
the variable y. In addition each variable Xk can itself be block-diagonal.
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In this section we discuss two possible SDP formulations of the sum-of-squares programs
discussed in Section 2. Although the two formulations are mathematically equivalent, they
have different properties when it comes to numerical implementation of interior-point algo-
rithms.

3.1 SDP formulation of sum-of-squares constraint

Consider the expression (2) with factors Hℓ of degree n, and assume for now that the elements
of n are even. The trigonometric polynomial Hℓ can be written as

Hℓ(ω) = e−jnT ω/2
∑

0≤k≤n

hℓ,k

(

cos((k − n/2)T ω) − j sin((k − n/2))T ω)
)

= e−jnT ω/2
∑

−n/2≤k≤n/2

hℓ,k+n/2

(

cos(kT ω) − j sin(kT ω)
)

= e−jnT ω/2

(

hℓ,n/2 +
∑

k∈Jd

(hℓ,k+n/2 + hℓ,−k+n/2) cos(kT ω)

+j
∑

k∈Jd

(hℓ,k+n/2 − hℓ,−k+n/2) sin(kT ω)

)

,

where Jd is a subset of Z
d that satisfies

Jd ∪ −Jd = {k ∈ Z
d | k 6= 0,−n/2 ≤ k ≤ n/2}, Jd ∩ −Jd = ∅.

For example, for d = 2, one can take

Jd = {(k1, k2) ∈ Z
2 | − n1/2 ≤ k1 ≤ n1/2, 0 < k2 ≤ n2/2 or 0 < k1 ≤ n1/2, k2 = 0}.

We see that the trigonometric polynomial H̃ℓ(ω) = ejnT ω/2Hℓ(ω) can be written as

H̃ℓ(ω) = aT
ℓ v(ω) + jbT

ℓ w(ω), (18)

where v(ω) is a vector of the trigonometric basis functions cos(kT ω) for k ∈ Jd ∪ {0}, w(ω)
is a basis vector of the functions sin(kT ω) for k ∈ Jd, and aℓ, bℓ are real vectors that depend
linearly on the coefficients of Hℓ. The dimensions of the vectors v and w are

Mv = (M + 1)/2, Mw = (M − 1)/2,

respectively, where M =
∏d

i=1(ni + 1).
Since |H̃ℓ(ω)| = |Hℓ(ω)|, it follows from (2) and (18) that

R(ω) =
r
∑

ℓ=1

|aT
ℓ v(ω) + jbT

ℓ w(ω)|2

= v(ω)TX1v(ω) + w(ω)T X2w(ω),
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where X1 =
∑

ℓ aℓa
T
ℓ and X2 =

∑

ℓ bℓb
T
ℓ . We can therefore conclude that R ∈ P

n

n
if and only

if there exist positive semidefinite matrices X1 ∈ S
Mv , X2 ∈ S

Mw such that

R(ω) = v(ω)TX1v(ω) + w(ω)T X2w(ω), X1 � 0, X2 � 0. (19)

Similar expressions hold if n contains at least one odd integer, with slightly different v(ω)
and w(ω), and Mv and Mw equal to M/2. More details and a discussion of other parity cases
can be found in [10].

The expression (19) is readily extended to weighted sums of squares. The constraint (6),
for example, can be written as

R(ω) = v0(ω)T X01v0(ω) + w0(ω)T X02w0(ω) (20)

+
ℓ
∑

i=1

Di(ω)
(

vi(ω)T Xi1vi(ω) + wi(ω)T Xi2wi(ω)
)

with Xi1 � 0, Xi2 � 0, where vi and wi are vectors of the trigonometric basis functions
cos(kT ω) and sin(kT ω), respectively.

The constraints (19) and (20) are in standard SDP form; they are linear equalities between
the coefficients of the trigonometric polynomial R and positive semidefinite matrices X1, X2

(resp., Xi1, Xi2 for i = 0, . . . , l). The equality constraints are expressed as an infinite
number of linear equations, and in order to handle them by interior-point methods, we need
to formulate them as finite sets of equations. In the next sections we outline two methods
for this.

3.2 Gram-pair parametrizations

Expanding the righthand side of the equality in (19) gives

R(ω) =
∑

i,l∈Jd∪{0}

X1,il cos(iT ω) cos(lT ω) + j
∑

i,l∈Jd

X2,il sin(iT ω) sin(lT ω)

where X1,il is the entry of X1 that is multiplied with cos(iT ω) cos(lT ω) in the quadratic form
v(ω)T X1v(ω), and X2,il is the entry of X2 that is multiplied with sin(iT ω) sin(lT ω) in the
quadratic form w(ω)T X2w(ω). Using elementary trigonometric trigonometric identities this
expression can be written as

R(ω) =
1

2

∑

i,l∈Jd∪{0}

X1,il

(

cos((i + l)T ω) + cos((i − l)T ω)
)

+
1

2

∑

i,l∈Jd

X2,il

(

− cos((i + l)T ω) + cos((i − l)T ω)
)

. (21)

We can now convert the equality in (19) to a finite set of equations by in the same basis as
the righthand side of (21), i.e.,

R(ω) = x0 + 2
∑

k∈Jd

xk cos(kT ω), (22)
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and equating the coefficients of the same basis functions on both sides of (21). This gives a
set of linear equations in xk, X1, and X2. Together with the inequality constraints in (19),
this allows us to write (19) in the form

xk = tr(Tk,1X1) + tr(Tk,2X2), k ∈ Jd ∪ {0}, X1 � 0, X2 � 0. (23)

The coefficient matrices Tk,1 and Hk,2 are very sparse and can be built efficiently [10, 11].
We refer to (23) as the Gram-pair parametrization of the sum-of-squares polynomial R.

The relation (23) differs from the Gram parametrization used in [9, 23], xk = tr(ΘkX),
where X � 0 and Θk is a Kronecker product of elementary Toeplitz matrices. The size of the
parameter matrix X is M ×M , i.e., about twice as large as the matrices X1 and X2 in (23).
This makes the Gram-pair parametrization (23) more efficient, as confirmed by experimental
tests for 2-D polynomials [10].

3.3 Discrete transform parametrization

As an alternative to the Gram-pair parametrization, we can pass from (19) to a finite set of
equations by specifying that the two sides of the equation must agree at a sufficient number
(say, N) of distinct values ωi. This formulation was recently proposed in [17, 24] as a basis
of fast algorithms for sum-of-squares programs.

Applied to (19) this gives

R(ωi) = v(ωi)
T X1v(ωi) + w(ωi)

T X2w(ωi), i = 1, . . . , N, X1 � 0, X2 � 0,

or in matrix form,

Fx = diag(V X1V
T + WX2W

T ), X1 � 0, X2 � 0. (24)

Here, x is a vector that contains the coefficients of R in (22), and Fx = (R(ω1), . . . , R(ωN))
are the values of R at the sample points ωi. The matrices V and W have rows v(ωi)

T and
w(ωi)

T , respectively. The matrices F , V , and W represent discrete transforms that map the
coefficients of trigonometric polynomials to their values at the points ωi. For the sample
points we use a rectangular grid in [−π, π]d

ωi =
2πk

2ni + 1
, k = −ni, . . . , ni, i = 1, . . . , d (25)

(see [6, pp. 69]). The choice of grid is important, since orthogonality of discrete transforms
depends on the sample locations. For d = 2 this yields (2n1 + 1)(2n2 + 1) sample points.
However, due to our assumption of real symmetry (which translates to the symmetry about
the origin of the sample grid), we require only (roughly) half of the samples, i.e., N =
(2n1 + 1)(n2 + 1) − n1 for d = 2. Figure 3 shows an example of a possible sampling grid for
d = 2 and n1 = n2 = 5.

For a uniform grid of sample frequencies, the matrices V and W are discrete cosine
transform and discrete sine transform matrices. If we take into account the symmetry of the
grid and of the polynomial coefficients xk, then F can be constructed from a DCT matrix.

9



−2 0 2
−3

−2

−1

0

1

2

3

ω1

ω
2

Figure 3: An example of the (square) sampling grid (25) for d = 2 and n1 = n2 = 5. There
are 61 sampling points.

Note that the constraint (24) is equivalent to (23), and in particular, the matrices X1 and
X2 in the two expressions are the same. In (23) the linear relation between x and the matrices
X1 and X2 is expressed as inner products with sparse matrices; in (26), it is expressed as
linear combinations of inner products with rank-one matrices v(ωi)v(ωi)

T and w(ωi)w(ωi)
T .

Although the formulation (26) involves dense matrices, the presence of the diag operator
leads to an algorithm with a significant reduction in computational complexity (see section 4).

From the sample value y = Fx the coefficient vector x can be obtained via the corre-
sponding ‘inverse’ transform x = Gy, which maps samples of R to its coefficients and satisfies
GF = I. Thus, an alternative to (24) is

x = Gdiag(V X1V
T + WX2W

T ), X1 � 0, X2 � 0. (26)

When the number of sample points is equal to the number of unknown coefficients in R,
the matrices F and G are square and there is no particular advantage in choosing (26)
over (24). However, there exist applications in which a certain set of filter coefficients are
deliberately omitted (e.g., see [30, Section 12.8]), and F may be rectangular with more rows
than columns. In such cases the formulation (24) is less attractive than (26), since in (24) the
number of equality constraints increases linearly with the number of sample points. In (24),
on the other hand, the number of equalities is constant, and only the column dimension of
G and the row dimensions of V and W increase with sampling size.

Similar observations apply to the SDP formulation of the weighted sum of squares (20).
By sampling the two sides of the equality and mapping the sample values back to the
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coefficients of R we obtain an expression of the form

x = G

(

diag(V0X01V
T
0 + W0X02W

T
0 ) +

ℓ
∑

i=1

di ◦ diag(ViXi1V
T
i + WiXi2W

T
i )

)

, (27)

where Xi1 � 0, Xi2 � 0, i = 0, . . . , l. Here ‘◦’ denotes the Hadamard (component-wise)
product. Vi and Wi are discrete cosine and sine transform matrices and di are vectors of
samples of the trigonometric polynomials Di.

3.4 Two-dimensional filter design

As an example, we express the 2-D lowpass filter design problem (15) as an SDP. First, each
weighted sum-of-squares constraint is parametrized with Gram matrices as shown in (20).
For example, the first constraint of (15) is expressed as

H(ω) − 1 + δp

= v0(ω)T X01v0(ω) + w0(ω)T X02w0(ω) + Dp(ω)
(

v1(ω)T X11v1(ω) + w1(ω)T X12w1(ω)
)

.

By applying forward and inverse transforms as in (27) we obtain

h − (1 − δp)e0 = G

(

diag(V0X01V
T
0 + W0X02W

T
0 ) + dp ◦ diag(V1Xi1V

T
1 + W1Xi2W

T
1 )

)

,

where h contains the coefficients of H, dp is the vector of samples of the polynomial Dp, and
e0 is the first unit vector. Repeating this process for the remaining constraints of (15), we
obtain an equivalent SDP

minimize δs

subject to h − (1 − δp)e0 = GH0(X1) + GpH1(X2)

−h + (1 + δp)e0 = GH0(X3) + GpH1(X4)

h + δse0 = GH0(X5) + GsH1(X6)

−h + δse0 = GH0(X7) + GsH1(X8)

Xi � 0, i = 1, . . . , 8.

(28)

where, for a block-diagonal matrix Y with two diagonal blocks Y1 and Y2 of appropriate
dimensions,

Hk(Y ) = diag(VkY1V
T
k + WkY2W

T
k ), k = 0, 1,

Gp = Gdiag(dp) and Gs = Gdiag(ds). The variables in the SDP (28) are the (2n1 +1)(n2 +
1) − n1 coefficients in h, and eight block-diagonal matrices Xk, each with two blocks of size
roughly n1n2/2. Each equality constraint has dimension (2n1 + 1)(n2 + 1) − n1.
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3.5 Bounded Real Lemma

As another example we consider now a nonlinear phase filter

G(ω) =
n
∑

k=0

gke
−jkT ω.

Its frequency response G(ω) is complex and thus a direct formulation of design problems in
terms of positive polynomials, as in the previous subsection, is not possible. Instead, we can
characterize as an inequality

|G(ω)| < γ, ∀ω ∈ D, (29)

where D is defined as in (4)-(5). In [9], this Bounded Real Lemma (BRL) inequality was
relaxed to a linear matrix inequality (LMI) using the Gram matrix parametrization. Here,
we present a new LMI.

As in (18), we write

G̃(ω) = ejnT ω/2G(ω) = (Γvg)T v(ω) + j(Γwg)T w(ω), (30)

where g is a vector containing the coefficients of G and Γv, Γw are constant matrices (easy to
derive). If (29) holds, then the polynomial R(ω) = γ2 − |H(ω)|2 is positive and thus admits
a representation (6). Following the same reasoning as in [9], using this representation, a
majorization result and a Schur complement argument, we can prove the following.

Bounded Real Lemma. The inequality (29) holds for some γ > 0 and D defined as in
(4)-(5), if there exist matrices Xi0 � 0, Xi1 � 0, i = 0, . . . , l, such that

γ2e0 = G

(

diag(V0X01V
T
0 + W0X02W

T
0 ) +

ℓ
∑

i=1

di ◦ diag(ViXi1V
T
i + WiXi2W

T
i )

)

(31)

i.e., the equality (27) holds for the positive ‘polynomial’ γ2, and
[

X01 Γvg
(Γvg)T 1

]

� 0,

[

X02 Γwg
(Γwg)T 1

]

� 0. (32)

This BRL can be used to design nonlinear phase FIR filters, as described in [9]. The
advantages over the BRL from [9] are the smaller size of the variable matrices (inherited
from the Gram-pair parametrization) and the applicability of fast algorithms, as shown in
the next section.

4 Primal-dual interior-point methods

Primal-dual interior-point methods for semidefinite programming simultaneously solve the
SDP (16) and the corresponding dual problem

maximize cT z
subject to Aadj(z) � Q

BT z = q.
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The variable in the dual problem is the vector z ∈ R
s. The mapping Aadj is the adjoint of

A, i.e., it is the mapping from R
s to S

m that satisfies

uTA(V ) = tr(V Aadj(u))

for all u ∈ R
s and V ∈ S

m. The dual of the SDP (17) is

maximize
∑L

k=1 cT
k zk

subject to Aadj
k (zk) � Qk, k = 1, . . . , L

∑L
k=1 BT

k zk = q,

and has L variables zk ∈ R
sk .

4.1 Newton equations

To form an estimate of the cost of solving an SDP via an interior-point method, it is sufficient
to know that the number of iterations is typically between 10 and 50, for a very wide range
of problem sizes, and that the main step in each iteration is the solution of a large set of
linear equations to compute primal and dual search directions. These equations are often
referred to as the Newton equation because they can be viewed as a linearization of the
nonlinear equations that characterize the central path. The construction and solution of
the Newton equations are the most time-consuming part in an iteration, and we therefore
limit our discussion of interior-point methods to the Newton equations. (For more details
on different types of primal-dual SDP methods, see, for example, [1, 14,15,27].)

For a popular class of algorithms, including those implemented in the software packages
SeDuMi [26] and SDPT3 [27–29], the Newton equations take the form

−T−1∆XT−1 + Aadj(∆z) = R1

A(∆X) + B∆y = r2

BT ∆z = r3.

The matrix T is a positive definite matrix, with a different value in each iteration. Elimi-
nating ∆X from the first equation gives

[

H B
BT 0

] [

∆z
∆y

]

=

[

r4

r3

]

, (33)

where r4 = r2 + A(TR1T ) and H is defined by

H∆z = A(TAadj(∆z)T ). (34)

The solution of the Newton equations therefore involves three steps: the construction of the
matrix H from T , the solution of the linear equations (33) to find ∆z and ∆y, and finally
the computation of ∆X = T (Aadj(∆z) − R1)T . In many applications, the first step is the

13



most expensive of the three. It is also the part of the algorithm that provides the best
opportunities for exploiting structure in the mapping A.

In a similar way, we can solve the Newton equations for the SDP (17)

−T−1
k ∆XkT

−1
k + Aadj

k (∆zk) = Rk, k = 1, . . . , L

Aadj
k (∆Xk) + Bk∆y = r2k, k = 1, . . . , L

L
∑

k=1

BT
k ∆zk = r3,

by eliminating the variables ∆Xk and solving














H1 0 · · · 0 B1

0 H2 · · · 0 B2
...

...
. . .

...
...

0 0 · · · HL BL

BT
1 BT

2 · · · BT
L 0





























∆z1

∆z2
...

∆zL

∆y















=















r4,1

r4,2
...

r4,L

r3















where Hk is defined by
Hk∆zk = Ak(TkA

adj
k (∆zk)Tk).

4.2 Gram pair parametrization

General-purpose solvers assume that the mapping A in (16) is expressed as a vector of inner
products with sparse symmetric coefficient matrices Fi:

A(X) =







tr(F1X)
...

tr(FsX)






, Aadj(z) =

s
∑

i=1

ziFi. (35)

The matrix H is then defined by

Hik = tr(TFiTFk), i, k = 1, . . . , s. (36)

Let us assume for simplicity that the three problem dimensions m, p and s of the problem are
of the same order (as is the case in the applications considered in this paper), i.e., m = O(p),
s = O(p). If the matrices Fi are dense, the cost of forming H is O(p4) and the cost of solving
the equations (33) is O(p3). Although sparsity in the matrices Fi helps to lower the cost of
constructing H, the cost of forming H usually still dominates the cost of an iteration.

For block diagonal SDPs (17), if

Ak(Xk) =







tr(Fk1Xk)
...

tr(Fk,mk
Xk)






, k = 1, . . . , L, (37)
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with dense coefficient matrices and dimensions mk = O(p), sk = O(p), we obtain a cost
estimate of O(Lp4) operations to construct the L matrices Hk, and O(Lp3) for solving the
equations. Sparsity in the coefficient matrices can again reduce the cost of constructing Hk.

The Gram pair SDP formulation of sum-of-squares programs, based on (23), naturally
leads to SDPs with linear mappings in the canonical form (37), with very sparse coefficient
matrices Fki.

4.3 Discrete transform parametrization

Next, we consider a class of structured SDPs (16) in which the mapping A is defined as

A(X) = Adiag(CXCT ), (38)

with A ∈ R
s×r, C ∈ R

r×m and r ≪ ms. The mapping A(x) is a linear combination of inner
products of X with r rank-one matrices cic

T
i , where cT

i is the ith row of C. This structure
arises in many applications, in particular, SDP formulations of sum-of-squares programs.
For example, it includes the discrete transform parameterizations of section 3.3.

It can be shown that the matrix H in (34) is equal to

H = A
(

(CTCT ) ◦ (CTCT )
)

AT . (39)

(See [24].) If the dimensions s, m, r are all of the same order as p, then the cost of computing
H is O(p3), much less than the O(p4) complexity of (36) for dense matrices.

For block-diagonal SDPs (17), with

Ak(Xk) = Ak diag(CkXkC
T
k ), k = 1, . . . , L,

and Ak ∈ R
sk×rk , Ck ∈ R

rk×mk we obtain a complexity of O(Lp3) per iteration, if we assume
that sk, rk, mk are O(p).

Note that if A = I, the mapping A(X) is a vector of inner products with r rank-one
matrices cic

T
i . This special case can be handled by the general-purpose solvers DSDP [3–5]

and SDTP3 (ver. 4.0 beta) [27, 29]. Including a non-square matrix A is often useful, and
allows us to handle the constraint (26), for example, with nonsquare G.

Example In the 2-D FIR lowpass filter design problem (28) with filter order n1 = n2 =
n, we have L = 4, p = O(n2), mk = O(n2), sk = O(n2), rk = O(n2). This gives a
complexity of O(n6) per iteration. We can compare this with the complexity of the Gram
pair SDP formulation, which is O(n8) if sparsity is not exploited. If we exploit sparsity it is
substantially less (between O(n6) and O(n8)), as we will see in the experiments of the next
section.
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5 Numerical results

5.1 Test problems

We will use three test examples. The first example is the simple 2-D lowpass filter design
problem (15). The second example is a filter design problem, similar to (15) but with a more
complex description of the passband and stopband regions. We consider a 2-D filter with a
diamond-shaped passband region,

Dp =
3
⋂

i=1

Di, Ds =
6
⋃

i=4

Di, (40)

where

D1 = {ω ∈ [−π, π]2 | cos(ω1 + ω2) − cp ≥ 0} (41)

D2 = {ω ∈ [−π, π]2 | cos(ω1 − ω2) − cp ≥ 0} (42)

D3 = {ω ∈ [−π, π]2 | cos ω1 + cos ω2 ≥ 0} (43)

D4 = {ω ∈ [−π, π]2 | cs − cos(ω1 + ω2) ≥ 0} (44)

D5 = {ω ∈ [−π, π]2 | cs − cos(ω1 − ω2) ≥ 0} (45)

D6 = {ω ∈ [−π, π]2 | − cos ω1 − cos ω2 ≥ 0} (46)

and cp and cs are parameters defining the positions of the rhombi that are the passband
and stopband edges; Dp is an intersection of positive regions of three polynomials ((41)
through (43)), and its SDP representation has 8 matrix variables. Ds, a union of three sets
((44) through (46)), leads to a set of SDP representations with 12 matrix variables. We
take n1 = n2 = n. There are two positive polynomials associated with each of Dp and Ds,
giving this problem a total of 40 matrix variables of size roughly n2/2. We use the design
parameter values cp = 0, cs = −0.7 (see Figure 4) and δp = 0.1 for this problem instance.
We can formulate an SDP that is similar to the problem (28), but with L = 8 constraints
and 40 matrix variables. For the filter orders n = 10, the solution to the filter design with
the constraints (40) produces the filter seen in Figure 5. The optimal stopband attenuation
is 50 dB.

The third example demonstrates another spectral mask geometry that can be obtained
from a set of low-degree trigonometric polynomials. For this instance, we consider a fan filter
with the passband and stopband regions shown in Figure 6, and they are defined by

Dp = D1 ∩ D2, Ds = D3 ∪ D4, (47)

where

D1 = {ω ∈ [−π, π]2 | 2 cos ω1 − cos ω2 − 1 ≥ 0},

D2 = {ω ∈ [−π, π]2 | cos ω2 ≥ 0},
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Figure 4: The spectral mask regions for the diamond filter in Figure 5.
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Figure 5: Solution of the diamond filter problem (40), with n1 = n2 = 10.
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Figure 6: The spectral mask regions for the fan filter in Figure 7.

and

D3 = {ω ∈ [−π, π]2 | − 2 cos ω1 + cos ω2 ≥ 0},

D4 = {ω ∈ [−π, π]2 | − 0.7 − cos ω2 ≥ 0}.

In this SDP problem, there are 28 semidefinite variables of size roughly n1n2/2. With the
design parameters δp = 0.1 and n1 = n2 = 7, we obtain the optimal attenuation of 33.6 dB.
The corresponding filter response is shown in Figure 7.

5.2 Results

We solved the first two test problems for various filter orders using the two formulations of
section 3. The sparse Gram-pair formulation (with constraints in the form (23)) is solved
with the general-purpose SDP solvers (SeDuMi v. 1.1, DSDP v. 5.8, and SDPT3 v. 4.0
beta). (More precisely, the SDP from the Gram-pair formulation is put in the SeDuMi
format. The SDP description is then converted to the DSDP and SDPT3 formats using the
routines that are provided with these packages.) The discrete-transform formulation (with
constraints in the form (26)) is solved using a Matlab implementation of a primal-dual path-
following method similar to the algorithms used in SeDuMi and SDPT3, but with the Newton
equations solved using the fast technique outlined in section 4.3. This Matlab method does
not include many of the advanced features implemented in the general-purpose solvers (such
as infeasibility detection, starting point selection, conjugate gradient refinement, etc.)1. It

1DSDP v. 5.8 and SDPT3 v. 4.0 beta support SDPs with low-rank coefficients, with certain limitations.
First, DSDP does not admit free vector variable (the By term in (16)). In our experiments, we had to
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Figure 7: Solution of the diamond filter problem (47), with n1 = n2 = 7.

also does not take advantage of fast discrete transform algorithms when computing the
matrix H in Newton equation. The experiments were run on an Intel Pentium-4 3GHz
computer with 3GB RAM memory and Linux-version of MATLAB 7.1 (R14).

Table 1 shows the CPU time per iteration (in seconds) for each of the solvers, applied to
the lowpass filter shown in Figure 2. Since the purpose of this experiment is to evaluate the
effectiveness of the discrete transform technique for solving the Newton equations, we only
report the time per iteration, and omit the number of iterations or the accuracy reached.
Some columns are incomplete due to the ‘out of memory’ error caused while solving the
larger problems. Note that we use odd values of n1 = n2 for the first example and even
values for the second. This was done in order to verify that the parity description (presented
in [10] and affecting the choice of trigonometric polynomial basis functions) works in both
cases. From the table we observe that the time per iteration for the general-purpose solvers
grows at a rate between O(n6) and O(n7).

Table 2 shows the solution times per iteration for the more complex diamond filter prob-
lems. We note that the SeDuMi times appear to increase at a slower rate (but still greater
than O(n6)), indicating that the exploitation of sparsity is quite effective for this family of

split the free variable term as a difference form By+ − By−, with nonnegative vector variables y+ and
y−. However, this is known to cause numerical difficulties. Secondly, SDPT3 v. 4.0 supports only a single
semidefinite variable block, while our experiments require multiple blocks. We therefore did not use the
low-rank option in SDPT3. We point out that the inclusion of free variables in DSDP, or multiple diagonal
blocks in SDPT3, would make these packages as well suited for the SDPs described here as our customized
Matlab solver.
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Gram-pair DT-based
n = n1 = n2 SeDuMi DSDP SDPT3 IPM

5 0.07 0.09 0.23 0.10
7 0.21 0.32 0.95 0.37
9 1.03 0.99 2.15 1.15
11 3.15 3.34 4.58 2.97
13 9.16 7.36 9.90 6.78
15 24.4 17.1 19.8 14.1
17 49.1 43.8 40.5 26.2
19 86.9 47.2
21 80.6
23 132
25 212

Table 1: Solution times per iteration (in seconds) for the lowpass filter design problem.

Gram-pair DT-based
n = n1 = n2 SeDuMi DSDP SDPT3 IPM

6 0.44 0.465 0.966 0.32
8 2.30 1.55 5.29 0.93
10 8.41 5.36 12.0 4.24
12 21.7 13.2 25.63 7.10
14 52.1 33.3 14.3
16 31.8
18 68.6
20 129

Table 2: Solution times per iteration (in seconds) for the diamond filter design problem.
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problems. Another observation is that the complexity growth for DSDP is between O(n5)
and O(n6). This can be explained by the fact that DSDP takes advantage of low-rank
structure.

In both tables the times for the fast discrete-transform based method, within this rela-
tively small range of values for n, appear to grow at a rate of about O(n5).

6 Conclusion

We have discussed a fast implementation of primal-dual interior-point algorithms for multi-
variate trigonometric sum-of-squares programs, based on the sampling formulation proposed
in [17,24]. This approach leads to SDPs with a low-rank structure, which is easily exploited
in standard interior-point algorithms. For two-dimensional FIR filter design problems with
filters of order n, the fast algorithm has a complexity of O(n6) per iteration. Experimental
results confirm that this method is more efficient and requires less memory than general-
purpose solvers applied to the standard sparse Gram matrix representation.

References

[1] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, “Primal-dual interior-point methods
for semidefinite programming: convergence rates, stability and numerical results,” SIAM

J. on Optimization, vol. 8, no. 3, pp. 746–768, 1998.

[2] B. Alkire and L. Vandenberghe, “Convex optimization problems involving finite auto-
correlation sequences,” Mathematical Programming Series A, vol. 93, pp. 331–359, 2002.

[3] S. J. Benson and Y. Ye and X. Zhang. “Solving Large-Scale Sparse Semidefinite Programs
for Combinatorial Optimization,” SIAM J. on Optimization, vol. 10, no. 2, pp. 443–461,
2000.

[4] S. J. Benson and Y. Ye. “DSDP5: Software for semidefinite programming,” Technical
report ANL/MCS-P1289-0905, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL. Submitted to ACM Transactions on Mathematical
Software, September, 2005. http://www.mcs.anl.gov/~benson/dsdp.

[5] S. J. Benson and Y. Ye. “DSDP5 User Guide — Software for semidefinite program-
ming,” Technical report ANL/MCS-TM-227, Mathematics and Computer Science Divi-
sion, Argonne National Laboratory, Argonne, IL. Submitted to ACM Transactions on
Mathematical Software, September, 2005. http://www.mcs.anl.gov/~benson/dsdp.

[6] W. L. Briggs and V. E. Henson. The DFT. An Owner’s Manual for the Discrete Fourier

Transform. SIAM, 1995.

21



[7] T. N. Davidson, Z.-Q. Luo, and J. F. Sturm. Linear matrix inequality formulation of
spectral mask constraints. IEEE Transactions on Signal Processing, 50(11):2702–2715,
2002.

[8] M.A. Dritschel, “On Factorization of Trigonometric Polynomials,” Integr. Equ. Oper.

Theory, vol. 49, pp. 11–42, 2004.

[9] B. Dumitrescu, “Trigonometric polynomials positive on frequency domains and applica-
tions to 2-D FIR filter design,” IEEE Trans. Signal Proc., vol.54, no.11, pp. 4282–4292,
Nov. 2006.

[10] B. Dumitrescu, “Gram pair parameterization of multivariate sum-of-squares trigono-
metric polynomials,” EUSIPCO, Florence, Italy, Sept. 2006.

[11] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications.
Spinger, 2007.

[12] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. “Exploiting sparsity in semidefinite
programming via matrix completion I: general framework,” SIAM Journal on Optimiza-

tion, vol. 11, pp. 647–674, 2000.

[13] Y. Genin, Y. Hachez, Yu. Nesterov, and P. Van Dooren. Optimization problems over
positive pseudopolynomial matrices. SIAM Journal on Matrix Analysis and Applications,
25(1):57–79, 2003.

[14] C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz. “An interior-point method
for semidefinite programming,” SIAM J. on Optimization, vol. 6, pp. 342–361, 1996.

[15] M. Kojima, S. Shindoh, S. Hara. “Interior-point methods for the monotone linear
complementarity problem in symmetric matrices,” SIAM J. on Optimization, vol. 7, pp.
86–125, 1997.

[16] J. B. Lasserre, “Global optimization with polynomials and the problem of moments,”
SIAM Journal on Optimization, vol. 11, no. 3, pp. 796–817, 2001.
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