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Abstract—We describe semidefinite programming methods by ¢;-norm methods have recently been extended to nuclear
for system realization and identification. For each of these norm methods [RFP07], [CRO8], [RXHO08].
two applications, a variant of a simple subspace algorithm e hyrpose of the paper is to examine the effectiveness of
is presented, in which a low-rank matrix approximation is . L
computed by minimizing the nuclear norm (sum of singular _the nuclear no_rm_heurlst|c_ for _rgnk_mlnlmlzanon problems
values) of a structured matrix. This technique preserves linear N system realization and identification, and to compare the
matrix structure in the low-rank approximation, an important results with standard subspace algorithms. In section Il we
advantage over standard approaches based on the singular compare two methods fatochastic realizationthe problem
value decomposition. of estimating a state-space model of an ARMA process from
estimates of the process covariances. The first method is a
subspace algorithm that uses the singular value decomposi-
The basic optimization model used in the paper is thfon (SVD) to approximate the Hankel matrix constructed

I. INTRODUCTION

nuclear norm approximatioproblem from the covariance estimates by a (non-Hankel) matrix of
minimize [lA(z) — B|.. 1) onv_ra_nk._ln t_he second m_ethod, regular_ized nuclf_ear norm

minimization is used to adjust the covariance estimates to

Here B € RP*? is a given matrix and obtain a Hankel matrix of low rank. We present results of
an experiment in which the covariance estimates are sample

Alz) = 2141 + 2242 + -+ + 204y averages for different data lengths. Although we do not

observe exact recovery of the covariances for finite data
lengths, the nuclear norm method results in more accurate
and robust estimates than the subspace method.

In section Il we discuss an application in system identifi-
cation. Again, we compare two methods, a subspace method
minimize || A(z) — Bll« + (z —2)TQ(z — %), (2) that uses the singular value decomposition to find a low-rank

_ .. approximation of a matrix constructed from input-output
where( > 0. Problems (1) and (2) are convex optimizationyanke| matrices, and a method based on regularized nuclear

problems that can be expressed and solved as semidefinjigy approximation. Experiments with benchmark data from
programs (SDPs). o o [DDDF97] suggest that the nuclear norm method is more
The nuclear norm approximation problem is of interest agqcyrate and offers a clearer model order selection aiteri
a convex heuristic for theank minimizationproblem In the numerical experiments we use the interior-point
minimize rank(A(z) — B), method descrit_)ed in [L\_/09]. This is a primal—dual_semidefi—
nite programming algorithm, customized to exploit problem
which is NP-hard in general. This heuristic was first studiedtructure in the SDP formulation of problems (1) and (2).
by Fazel, Hindi, and Boyd [FHBO1], and is based on thé&or problem (1), the SDP formulation is
fact that the residuall(z) — B at the optimal solution of (1)
typically has low rank. The idea is very useful for a variety o T
apolicati . i L bi U (A(x) — B) 3
pplications that require low-rank approximations of stru subject to A(z) - B v =0,
tured matrices; see [FHBO1], [Faz02], [CFP03], [FHB04],
[RFPO7] for surveys of applications. with variablesz € R", U € S, V € S. (We useS" to
The nuclear norm of a diagonal matrix is tiig-norm denote the set of symmetric matrices of ordej It can
of its diagonal, and nuclear norm techniques can be viewdberefore be solved by general software for semidefinite
as a matrix extension of;-norm methods for sparse ap-programming. Unfortunately the SDP (3) has+ p(p +
proximation and cardinality minimization [Don06], [CTQ5] 1)/2 + ¢(q + 1)/2 variables and is very difficult to solve
[CRTO06], [Tro06]. Some of the theoretical results that eharby general-purpose solvers, jif and ¢ approach 100. This
acterize the possibility of exact recovery of sparse signalimits the use of the nuclear norm heuristic in practice. A
more efficient interior-point method that exploits the desh
Electrical Engineering Department, University of CalifarrLos Angeles.  structure in (3) and is capable of solving problems with
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NSF under grants ECCS-0524663 and ECCS-0824003 and a tiprthrdiMensions, ¢ on the order of several hundred, is described
Grumman Ph.D. Fellowship. in [LV0O9]. In this algorithm, the cost per iteration of the

is a linear mapping fronR™ to RP*9. The norm| - ||.
denotes the nuclear norm &7*?, i.e, || X||. is the sum of
the singular values ok. We will also encounter extensions
of (1) with a quadratic regularization term in the objective

minimize (trU +trV)/2



interior-point method is reduced 10 (pgn?) operations, if that the rank is minimized. It can be shown thdtis equal

n > max{p, ¢}. This is comparable to solving the normto the order of the minimal realization &, ..., Hy. This
approximation problem in least-squares semge, to mini- was proved forp = m = 1 in [FHBO03]. For completeness
mizing the Frobenius norm afi(z) — B. More details and we include a general proof below.

a discussion of other algorithms can be found in [LV09]. First, we can note that no realization of order less than
n* exists. If H, = CA*'B, k = 1,...,N, with A of

Il. MINIMUM RANK HANKEL MATRIX COMPLETION order less tham*, then taking i, = CA*-1B for k —

We will use the notationH(; ;) to denote the block N 4+ 1 ... 2N —1 gives a completiorH; y  with rank
Hankel matrix with matricegv{i, Ceey Hj in its first block less thann*. This contradicts the definition of*.
column andH;, ..., Hy in its first block row: The less obvious part of the theorem is that there exists
H;, Hiq - H;, a realization with ordern*. Such a realization can be
Hiyy His -+ Hp constructed as follows. Fer= 1, . .., p, definen; = 0 if row
H = i i of H(1,1 n) is linearly dependent on rows,...,i — 1 of

. : H 1 1,ny. Otherwise define; as the largest € {1,..., N}
H;j  Hjpr -+ Higj— such that rowi of block row k of Hyy . x 11y IS linearly
In this section we discuss two rank minimization probleméidependent of all the rows @, . x 1+ 1) that precede it.
involving Hankel matrices. The first problem is to find the(Note that all the Hankel matrices in this definition depend

minimum rank completion off(; y xy if the matricest;,  only on Hy, ..., Hy, and hence are completely specified.)
..., Hy are specified, and the matricéby 1, ..., Hoy_; Define
are free variables. The solution is given by the minimum n=mny+--+np.

order system realization of the sequetitg ..., Hy. In the Thenn* >
second part of the section, we discuss an extension in whi%h -
matricesHy, ..., Hy are given, and we seek approximation
H, ~ H,, k = 1,...,N, that have a low-rank Hankel
completion. More specifically, we consider the problem

n, because in any completion &f; y n), the

rows j+ (k—1)p, j = 1,...,p, k = 1,...,n; are

ﬁinearly independent. To show that = n, we construct a
completion with rankn. Without loss of generality we will
assume that; > 0 for i = 1,..., p. Following the notation
of [Gui81, §3], define

min{n; +1,n,;} j<i
nij = M J=1
min{n,,n;} Jj >

N
minimize rank Hi vy +AY | Hy — HelZ  (4)
k=1
with Hy, ..., Hon_1 as variables, and a positive weight

used to trade-off the two objectived. (| » denotes Frobenius o ,
norm.) In Section 1I-B.2 we will study the effectiveness oflf 7: < IV, then, by definition of the:;'s, we can express

the nuclear-norm heuristic for (4), row i of block row n; +1 of H n,11,v-n,) @S a linear
N combination of rowsj + p(k — 1), j = 1,...,p, k =
N _ 1,...,n;;. Therefore there exist coefficients;;x, 7,7 =
_ 2 ) s Iy gk Uy
minimize [,y vl + A; 1Hy, = Hyllz, ) L,...,p, k=1,...,n;, that satisfy
in the context of stochastic realization. e [ Hpiy1 -+ Hn }
p T
A. Minimum partial realization = ZZO‘U’WT[ Hy, - Hgin-ni—1 |,
J —ha
A fundamental problem in linear system theory is the j=1k=1
minimal partial realization problemgiven a sequence of \ynere ¢. is the ith unit vector inR?. If n. — N. the
. . .. 1 . 1 - 1
matrices H,, £k = 1,...,N, find a minimal state-space coefficientsax, 4,j = 1,...,p, k =1,...,n;;, are chosen

model (4, B, C') such thatH,, = CA*~'B. The realization  4pitrarily. Now define the following mode{A, B, C) of
problem has been studied since the 1960s, and many differepfier ;-

algorithms are described in the literature. These methoals a

based on checking the rank of Hankel matrices constructed A Ay By
from the sequenced;, [Tet70], [Kal71], [Sil71]; see also A= : : ) B = Co s
[Wil86, page 689] and the survey paper [Sch00]. Ap App B,
The minimum patrtial realization problem can also be for-
mulated as a rank minimization problem [FHBO03]. Suppose C= [ G Gy ]
Hy, ..., Hy € RP*™ are given, and let* be the optimal \yhere
value of the rank minimization problem e%TH1
minimize rank H(; y ), (6) B; = K _H2 € RWX™,
with variablesHy 1, ..., Hoy_1. In this problem, the top eTH
left block-triangular part of anV x N block Hankel matrix 37"

is specified; the problem is to complete the bottom part so C; = [ e;j 0 -+~ 0 ] € RPX™ |



o 1 0 - 0 in (9), and then computingl, C, D from F and G. The

0 0 L0 matrices@ and B can be found by solving the algebraic
Ay = : : oo e R Riccati equation
0 0 0 - 1 P = APAT (D~ APC™)(H,~CPCT) " (D~ APCT)"
| Qi1 Qg2 Qg3 ccc Qing (20)
and and taking
[0 0 0 0 Q=H,—-CpPCT, ~ B=(D-APCTQ™'.
0o - 0 0 --- 0
A = i i . | e R™XM Now suppose we are given a sequence of approximate
: : : : covariancesHy, ..., H.1s_1. In a subspace algorithm the
| @ij1 o Qjng; 0 -0 0 singular value decomposition of the block-Hankel matrix

with blocks Hj, is used to estimate the model order and

for i # j. It can be verified thatd, = CA*~'B for k = o
make a low-rank approximation

.,N.DefiningH,, = CA*~'Bfork = N+1,...,2N—

1 gives a Hankel completion of rank This shows that there Hii o) = FG. (11)
exists a realization offy, ..., Hy with order equal to» and R R . R .
that n* — n. We takeC' = F; (the first block ofF"), and computed from

the least-squares problem
B. Stochastic realization
We now turn to the regularized minimum rank Hankel
completion problem (4) and the convex heuristic (5) for itif necessary, the solutior is corrected to make it stable,
applied to a stochastic realization problem. Consider & staypically by inverting the unstable eigenvalues. An al&ive
space model of an autoregressive moving-average (ARMAwethod proposed in [MSMO0O] computes an approximate

minimize ||F 1A — Fornll% (12)

processy(t) € RP: stableA by solving an SDP. The matrik can be computed
z(t+1) = Az(t)+ Be(t), @) from the least- squares problem, tiy minimizing the norm of
y(t) = Calt)+e(t), , ¢
wherez(t) € R™ ande(t) is white noise with covariance. Hy B CA 5 1)
The process covariancés$, = E(y(t + k)y(t)1) are given : : ’
by Hy s 1 CAr+s—2

_ T _ k—1 R
Ho =CPC™ +Q, Hy=CA™D, k=1 (8) The state covarianc® can be computed from the Riccati

where D = APCT + BQ, and P = E(z(t)x(t)T) satisfies equation (10), withd, C, D, Ho, P substituted for4, C,
the Lyapunov equation D, Hy, P. Lastly, we can comput® and B from

P = APAT + BQBT Q=H,—CPCT, B=(D-APCTQ"

(see [SM97], [Bal95]). In a stochastic realization probjemThe algebraic Riccati equation (10) may fail to have a
we are given estimate&, H,, ..., Hy of the covariance positive definite solution, and [MSMOO] proposed a remedy
matrices H,, (for example, from sample averages of a seto deal with such situations.
quence of observationg(t)), and are asked to estimate the 2) Nuclear norm optimizationThe key step in the sub-
model parameters, A, B, C, Q. space algorithm is the low-rank approximation (11). As an
1) Subspace a|g0rithn]\-/ve first bneﬂy review a Subspace alternative which preserves Hankel structure, we can use th
method for stochastic realization [MSMO00]. Subspace metHegularized nuclear norm approximation problem (5). From
ods for stochastic realization are based on the fact that tHe optimal solutiond* of (5), we can then find model

block Hankel matrix of process covarianc, . ;) has rank parametersi, B, C, andQ as in the subspace method.
n, if » >n, s > n, and that it can be factored as 3) Numerical experiment:We generate data using an

ARMA process with transfer function

Hany =FGC, ®) 2541724 — 4.023 + 2.42% — 0.862 + 0.27
where 25 —1.42% +0.662% — 0.1622 + 0.0232 4 0.012’
C and Gaussian noise with input covariarige= 1. The sample
CA averages
F= : , G=[D AD --- A*'D]. o Mok .
oA Hy = 4 2 y(t+k)yt)" . (14)

Given exact covariancesl;, we can therefore compute aare used as covariance estimates. Table | shows the results
state-space model by first factoring the Hankel matrix a®r the different methods. All values in the table are avethg



Sample est. SVvD Nuclear norm 0
M error Pys \ error error 10 D m— "
1000 0.622 54% | 0.526 0.282 © I .
5000 0.266 48% | 0.232 0.158 = ® e Tox
20000 0.136 32% | 0.115 0.088 g 10 * e ]
TABLE | r_E “
COMPARISON OF STOCHASTIC REALIZATION METHODS =y 107}
‘»
B -6
107 |
©
1.4 €
5 10 -*- Sample -
" > .
s 120 —— Fitting —e— Optimized el
£ --- izati - e
5 Realization 1071 ‘ ‘ ‘ ‘
c 0 2 4 6 8 10
o Singular value index
S 0.8
T Fig. 2. Singular values of the Hankel matrﬁi(lyNyN) constructed from
g 0.6 the sample covariancel;, and the Hankel matrix{(; y n of nuclear-
= 04 norm optimized covariances.
."L:L'
0.2
Ill. SYSTEM IDENTIFICATION
% In this section we present results for a system identifi-

Nuclear norm cation method based on nuclear norm minimization. Sub-

space algorithms use the SVD of matrices constructed from
observed inputs and outputs to estimate the system order,
and to compute low-rank approximations from which the
model parameters are determined [Lar90], [Ver94], [OD94],
) . . [ViIb95]. Nuclear norm minimization offers an alternative
over 50 simulations.M is the length of the sample. method to compute low rank matrix approximations.

The error in column 2 is the normalized average of o o

ii1(Hk — H{re)2, where ), are the sample covari- A. System identification by nuclear norm optimization
ances (14), andd;"™ are the true covariances. The error in Suppose we are given a sequence of inpit§ € R™
column 4 is the normalized average@iil(ﬁk—H,zr”C)Q, and outputymeas(t) € RP, t = 0,..., N. Our objective is
where H,, are the covariances computed from the statee find a low-order discrete-time linear time-invarianttsta
space realizatiod, C, D returned by the SVD subspacespace model
method, withr = s = 10. Pus is the percentage of th&0 2(t+1) Az(t) + Bu(®),
instances wherd from (12) was unstable. In these cases, the
matrix was stabilized by inverting its unstable eigenvalue y(®) Ca(t) + Du(?),
All system orders are selected to Héor a fair comparison. that satisfies/(t) & ymeas(t). The proposed method is based
The last column, labeled ‘Nuclear norm’ shows the erroon the fact that ifu(t), y(¢) are related by (15), then
for the algorithm based on nuclear norm optimization in
section 1I-B.2, with N = 10. In this experiment the method Y =GX+HU,
based on the nuclear norm optimization always producedyghere
stable matrixA. We also note that the errors in the covariance -

Fig. 1. Trade-off curve between the fitting/realizatioroe@nd the nuclear
norm of H; n, ) computed by solving (5) for a range of differeht

(15)

estimates were smaller than in the SVD method. Figures 1
and 2 show plots for an instance wiflif = 1000. Figure 1
shows the trade-off curves between the fitting/realization
errors and the nuclear norm of the Hankel matrix, obtained
by solving (5) for a range of different values df The fitting
error is the error between the optimized covariances and the
sample covariances. The realization error is the error &etw
the optimized covariances and the true covariances. Fjure
shows the singular values of the optimal Hankel matrix
H,n vy in (5), for the value ofA marked with a dot on
the trade-off curve in figure 1. We observe a sharp transition
of the singular values, corresponding to a model orded. of (;
For comparison, we also show the singular values of the
Hankel matrixH(LN,N) based on the sample covariances.
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Fig. 3. Largest normalized singular values Xf.easU (‘original’) and Fig. 4. Measured and identified outputs.
YU (‘optimized’).
200
andH is a lower-triangular block-Toeplitz matrix constructed
from A, B, C, D. Therefore
150(
1 1 —
YU~ =GXU-, (16) 5
. @
where U+ denotes a matrix whose columns span the o 100!
. c
nullspace ofU. If X has rankn and there is no rank £
cancellation in the product U+, then we can find the model L
order from the rank of the matrix U+. From the column 50+
space ofY U+, one can comput&, A, and C; and once
A and C are computed, the rest of the state-space model

follows easily [DMVV88], [Lju99, Section 10.6]. %

This leads us to the following method. We ugg), ¢t =
0,...,N, as optimization variables, and compujé&) by
solving the convex optimization problem

20 30 40
Nuclear norm

10 50 60

Fig. 5. Trade-off between the fitting errEf;O ly(t) — Ymeas(t)]|3 and
the nuclear norm|Y UL ||.
N

minimize [[YU* . + A" (1) = gumeas(®)[3 . (A7)
t=0 output data. As can be seen, the optimized makfi+

is closer to low rank (rank three) than the original matrix

the trade-off curve between the nuclear normydf - and YmeasU™. In figure 4 we compare the measured outputs

the deviation between the sequengés andyumeas(t). From with the model predictions based on the estimated thir@ord

the optimal solutiony(¢) of (17), we compute the singular moqlel-

value decomposition o¥ U, and a realization ofs, 4, C Figure 5 shows the trade-off curve between the two terms

and the rest of the state space model; see [LV09] for detail§ the cost function of (17). The dot marks the point used
in figures 3 and 4. Figure 6 shows the identification and

B. Experimental results validation errors for the models computed from the soligion

We apply the method of section IlI-A to a benchmarkOn the trade-off curve in figure 5. The errey is computed
problem from [DDDF97]. The system is an industrial wind-2S

for a positive weighting parametey, This gives a point on

_ . 1/2
ing process with five inputs and two outputs (data set 97- o — T Ymeas () — 90113 (18)
003). The number of data points used in the identification v M ymeas (8) — Gv 12 ’

experiment isSN = 200. Ny = 600 points were used for

model validation. (This includes th& data points used in where gy = (1/Ny)

the identification.) given output data, ang(t) is the output of the identified
Figure 3 shows the singular values B/, whereY is  state-space model, starting at the estimated initial .state

the solution of the optimization problem (17). The parametecalculated using the same formula with sums ranging from

A was selected by examining different points and choosing= 0 to N — 1. At the point marked on the curves the

the value that gives approximately the smallest identificat validation error isey = 0.17.

error. The figure also shows the singular value¥,f..U~", We also compared the results with the subspace identifi-

where Y,..s is the Hankel matrix constructed from thecation algorithm implemented in the Matlab Identification

! Yimeas(t), Ymeas(t) are the
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Fig. 6. Trade-off between the identification/validatiomoer(e;/ey/) and
the nuclear norm|Y U || [FHBO4]
[Guig1]

Toolbox. The Matlab commanad4si d with the default
settings gives a system model of order 10, and a validaticEQam]
errorey = 0.18. If we fix the order to threendsi d returns

a model withey = 0.17.

These results and the results for other benchmark proRérQO]
lems from [LV09] indicate that the identification errors for
the nuclear norm optimization algorithm are comparable to
n4si d. The main advantage of the nuclear norm technique.
is that it makes the selection of an appropriate model ord 7
easier (see figure 3). [LV09]

u99]

IV. CONCLUSION

We have described identification and system realizatiofY!SM00]
methods based on regularized nuclear norm minimization, a
convex heuristic for computing low-rank approximations ofob94]
structured matrices. Experiments with simulated datecatei
that the stochastic realization subspace method based ffpo7)
nuclear norm minimization improves the accuracy of the
covariance estimation. Similarly, the experimental ressaf
the system identification method suggest that the quality g?XHosl
the models obtained by this method is comparable with state-
of-the-art subspace identification software. An advantafge
the nuclear norm approach for system identification is thé?ChOO]
it provides a sharper criterion for the selection of the exyst

order. [Sil71]
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