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Abstract— We describe semidefinite programming methods
for system realization and identification. For each of these
two applications, a variant of a simple subspace algorithm
is presented, in which a low-rank matrix approximation is
computed by minimizing the nuclear norm (sum of singular
values) of a structured matrix. This technique preserves linear
matrix structure in the low-rank approximation, an important
advantage over standard approaches based on the singular
value decomposition.

I. I NTRODUCTION

The basic optimization model used in the paper is the
nuclear norm approximationproblem

minimize ‖A(x) − B‖∗. (1)

HereB ∈ Rp×q is a given matrix and

A(x) = x1A1 + x2A2 + · · · + xnAn

is a linear mapping fromRn to Rp×q. The norm ‖ · ‖∗
denotes the nuclear norm onRp×q, i.e., ‖X‖∗ is the sum of
the singular values ofX. We will also encounter extensions
of (1) with a quadratic regularization term in the objective,

minimize ‖A(x) − B‖∗ + (x − x̂)T Q(x − x̂), (2)

whereQ � 0. Problems (1) and (2) are convex optimization
problems that can be expressed and solved as semidefinite
programs (SDPs).

The nuclear norm approximation problem is of interest as
a convex heuristic for therank minimizationproblem

minimize rank(A(x) − B),

which is NP-hard in general. This heuristic was first studied
by Fazel, Hindi, and Boyd [FHB01], and is based on the
fact that the residualA(x)−B at the optimal solution of (1)
typically has low rank. The idea is very useful for a variety of
applications that require low-rank approximations of struc-
tured matrices; see [FHB01], [Faz02], [CFP03], [FHB04],
[RFP07] for surveys of applications.

The nuclear norm of a diagonal matrix is theℓ1-norm
of its diagonal, and nuclear norm techniques can be viewed
as a matrix extension ofℓ1-norm methods for sparse ap-
proximation and cardinality minimization [Don06], [CT05],
[CRT06], [Tro06]. Some of the theoretical results that char-
acterize the possibility of exact recovery of sparse signals
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by ℓ1-norm methods have recently been extended to nuclear
norm methods [RFP07], [CR08], [RXH08].

The purpose of the paper is to examine the effectiveness of
the nuclear norm heuristic for rank minimization problems
in system realization and identification, and to compare the
results with standard subspace algorithms. In section II we
compare two methods forstochastic realization, the problem
of estimating a state-space model of an ARMA process from
estimates of the process covariances. The first method is a
subspace algorithm that uses the singular value decomposi-
tion (SVD) to approximate the Hankel matrix constructed
from the covariance estimates by a (non-Hankel) matrix of
low rank. In the second method, regularized nuclear norm
minimization is used to adjust the covariance estimates to
obtain a Hankel matrix of low rank. We present results of
an experiment in which the covariance estimates are sample
averages for different data lengths. Although we do not
observe exact recovery of the covariances for finite data
lengths, the nuclear norm method results in more accurate
and robust estimates than the subspace method.

In section III we discuss an application in system identifi-
cation. Again, we compare two methods, a subspace method
that uses the singular value decomposition to find a low-rank
approximation of a matrix constructed from input-output
Hankel matrices, and a method based on regularized nuclear
norm approximation. Experiments with benchmark data from
[DDDF97] suggest that the nuclear norm method is more
accurate and offers a clearer model order selection criterion.

In the numerical experiments we use the interior-point
method described in [LV09]. This is a primal-dual semidefi-
nite programming algorithm, customized to exploit problem
structure in the SDP formulation of problems (1) and (2).
For problem (1), the SDP formulation is

minimize (trU + trV )/2

subject to

[

U (A(x) − B)T

A(x) − B V

]

� 0,
(3)

with variablesx ∈ Rn, U ∈ Sq, V ∈ Sp. (We useSn to
denote the set of symmetric matrices of ordern.) It can
therefore be solved by general software for semidefinite
programming. Unfortunately the SDP (3) hasn + p(p +
1)/2 + q(q + 1)/2 variables and is very difficult to solve
by general-purpose solvers, ifp and q approach 100. This
limits the use of the nuclear norm heuristic in practice. A
more efficient interior-point method that exploits the problem
structure in (3) and is capable of solving problems with
dimensionsp, q on the order of several hundred, is described
in [LV09]. In this algorithm, the cost per iteration of the



interior-point method is reduced toO(pqn2) operations, if
n ≥ max{p, q}. This is comparable to solving the norm
approximation problem in least-squares sense,i.e., to mini-
mizing the Frobenius norm ofA(x) − B. More details and
a discussion of other algorithms can be found in [LV09].

II. M INIMUM RANK HANKEL MATRIX COMPLETION

We will use the notationH(i,j,k) to denote the block
Hankel matrix with matricesHi, . . . , Hj in its first block
column andHi, . . . , Hk in its first block row:

H(i,j,k) =











Hi Hi+1 · · · Hk

Hi+1 Hi+2 · · · Hk+1

...
...

...
Hj Hj+1 · · · Hk+j−i











.

In this section we discuss two rank minimization problems
involving Hankel matrices. The first problem is to find the
minimum rank completion ofH(1,N,N) if the matricesH1,
. . . , HN are specified, and the matricesHN+1, . . . , H2N−1

are free variables. The solution is given by the minimum
order system realization of the sequenceH1, . . . ,HN . In the
second part of the section, we discuss an extension in which
matricesH̄1, . . . ,H̄N are given, and we seek approximations
Hk ≈ H̄k, k = 1, . . . , N , that have a low-rank Hankel
completion. More specifically, we consider the problem

minimize rankH(1,N,N) + λ
N
∑

k=1

‖Hk − H̄k‖
2
F (4)

with H1, . . . , H2N−1 as variables, andλ a positive weight
used to trade-off the two objectives. (‖·‖F denotes Frobenius
norm.) In Section II-B.2 we will study the effectiveness of
the nuclear-norm heuristic for (4),

minimize ‖H(1,N,N)‖∗ + λ
N
∑

k=1

‖Hk − H̄k‖
2
F , (5)

in the context of stochastic realization.

A. Minimum partial realization

A fundamental problem in linear system theory is the
minimal partial realization problem:given a sequence of
matrices Hk, k = 1, . . . , N , find a minimal state-space
model (A,B,C) such thatHk = CAk−1B. The realization
problem has been studied since the 1960s, and many different
algorithms are described in the literature. These methods are
based on checking the rank of Hankel matrices constructed
from the sequenceHk [Tet70], [Kal71], [Sil71]; see also
[Wil86, page 689] and the survey paper [Sch00].

The minimum partial realization problem can also be for-
mulated as a rank minimization problem [FHB03]. Suppose
H1, . . . , HN ∈ Rp×m are given, and letn⋆ be the optimal
value of the rank minimization problem

minimize rankH(1,N,N), (6)

with variablesHN+1, . . . , H2N−1. In this problem, the top
left block-triangular part of anN ×N block Hankel matrix
is specified; the problem is to complete the bottom part so

that the rank is minimized. It can be shown thatn⋆ is equal
to the order of the minimal realization ofH1, . . . , HN . This
was proved forp = m = 1 in [FHB03]. For completeness
we include a general proof below.

First, we can note that no realization of order less than
n⋆ exists. If Hk = CAk−1B, k = 1, . . . , N , with A of
order less thann⋆, then takingHk = CAk−1B for k =
N + 1, . . . , 2N − 1 gives a completionH(1,N,N) with rank
less thann⋆. This contradicts the definition ofn⋆.

The less obvious part of the theorem is that there exists
a realization with ordern⋆. Such a realization can be
constructed as follows. Fori = 1, . . . , p, defineni = 0 if row
i of H(1,1,N) is linearly dependent on rows1, . . . , i − 1 of
H(1,1,N). Otherwise defineni as the largestk ∈ {1, . . . , N}
such that rowi of block row k of H(1,k,N−k+1) is linearly
independent of all the rows ofH(1,k,N−k+1) that precede it.
(Note that all the Hankel matrices in this definition depend
only on H1, . . . , HN , and hence are completely specified.)
Define

n = n1 + · · · + np.

Then n⋆ ≥ n, because in any completion ofH(1,N,N), the
n rows j + (k − 1)p, j = 1, . . . , p, k = 1, . . . , nj are
linearly independent. To show thatn⋆ = n, we construct a
completion with rankn. Without loss of generality we will
assume thatni > 0 for i = 1, . . . , p. Following the notation
of [Gui81, §3], define

nij =







min{ni + 1, nj} j < i
ni j = i
min{ni, nj} j > i.

If ni < N , then, by definition of theni’s, we can express
row i of block row ni + 1 of H(1,ni+1,N−ni) as a linear
combination of rowsj + p(k − 1), j = 1, . . . , p, k =
1, . . . , nij . Therefore there exist coefficientsαijk, i, j =
1, . . . , p, k = 1, . . . , nij , that satisfy

eT
i

[

Hni+1 · · · HN

]

=

p
∑

j=1

nij
∑

k=1

αijkeT
j

[

Hk · · · Hk+N−ni−1

]

,

where ei is the ith unit vector in Rp. If ni = N , the
coefficientsαijk, i, j = 1, . . . , p, k = 1, . . . , nij , are chosen
arbitrarily. Now define the following model(A,B,C) of
ordern:

A =







A11 · · · A1p

...
...

Ap1 · · · App






, B =







B1

...
Bp






,

C =
[

C1 · · · Cp

]

where

Bj =











eT
j H1

eT
j H2

...
eT
j Hnj











∈ Rnj×m,

Cj =
[

ej 0 · · · 0
]

∈ Rp×nj ,



Aii =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
αii1 αii2 αii3 · · · αiini















∈ Rni×ni ,

and

Aij =











0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
αij1 · · · αijnij

0 · · · 0











∈ Rni×nj

for i 6= j. It can be verified thatHk = CAk−1B for k =
1, . . . , N . DefiningHk = CAk−1B for k = N+1, . . . , 2N−
1 gives a Hankel completion of rankn. This shows that there
exists a realization ofH1, . . . ,HN with order equal ton and
that n⋆ = n.

B. Stochastic realization

We now turn to the regularized minimum rank Hankel
completion problem (4) and the convex heuristic (5) for it,
applied to a stochastic realization problem. Consider a state
space model of an autoregressive moving-average (ARMA)
processy(t) ∈ Rp:

x(t + 1) = Ax(t) + Be(t),
y(t) = Cx(t) + e(t),

(7)

wherex(t) ∈ Rn ande(t) is white noise with covarianceQ.
The process covariancesHk = E(y(t + k)y(t)T ) are given
by

H0 = CPCT + Q, Hk = CAk−1D, k ≥ 1, (8)

whereD = APCT + BQ, andP = E(x(t)x(t)T ) satisfies
the Lyapunov equation

P = APAT + BQBT

(see [SM97], [Bal95]). In a stochastic realization problem,
we are given estimates̄H0, H̄1, . . . , H̄N of the covariance
matricesHk (for example, from sample averages of a se-
quence of observationsy(t)), and are asked to estimate the
model parametersn, A, B, C, Q.

1) Subspace algorithm:We first briefly review a subspace
method for stochastic realization [MSM00]. Subspace meth-
ods for stochastic realization are based on the fact that the
block Hankel matrix of process covariancesH(1,r,s) has rank
n, if r ≥ n, s ≥ n, and that it can be factored as

H(1,r,s) = FG, (9)

where

F =











C
CA

...
CAr−1











, G =
[

D AD · · · As−1D
]

.

Given exact covariancesHk, we can therefore compute a
state-space model by first factoring the Hankel matrix as

in (9), and then computingA, C, D from F and G. The
matricesQ and B can be found by solving the algebraic
Riccati equation

P = APAT +(D−APCT )(H0−CPCT )−1(D−APCT )T

(10)
and taking

Q = H0 − CPCT , B = (D − APCT )Q−1.

Now suppose we are given a sequence of approximate
covariancesH̄0, . . . , H̄r+s−1. In a subspace algorithm the
singular value decomposition of the block-Hankel matrix
with blocks H̄k is used to estimate the model order and
make a low-rank approximation

H̄(1,r,s) ≈ F̂ Ĝ. (11)

We takeĈ = F̂1 (the first block ofF̂ ), and computeÂ from
the least-squares problem

minimize ‖F̂(1,r−1,1)Â − F̂(2,r,1)‖
2
F . (12)

If necessary, the solution̂A is corrected to make it stable,
typically by inverting the unstable eigenvalues. An alternative
method proposed in [MSM00] computes an approximate
stableÂ by solving an SDP. The matrix̂D can be computed
from the least-squares problem, by minimizing the norm of











H̄1

H̄2

...
H̄r+s−1











−











Ĉ

ĈÂ
...

ĈÂr+s−2











D̂. (13)

The state covariancêP can be computed from the Riccati
equation (10), withÂ, Ĉ, D̂, H̄0, P̂ substituted forA, C,
D, H0, P . Lastly, we can computêQ and B̂ from

Q̂ = H̄0 − ĈP̂ ĈT , B̂ = (D̂ − ÂP̂ ĈT )Q̂−1.

The algebraic Riccati equation (10) may fail to have a
positive definite solution, and [MSM00] proposed a remedy
to deal with such situations.

2) Nuclear norm optimization:The key step in the sub-
space algorithm is the low-rank approximation (11). As an
alternative which preserves Hankel structure, we can use the
regularized nuclear norm approximation problem (5). From
the optimal solutionH∗ of (5), we can then find model
parametersÂ, B̂, Ĉ, andQ̂ as in the subspace method.

3) Numerical experiment:We generate data using an
ARMA process with transfer function

z5 + 1.7z4 − 4.0z3 + 2.4z2 − 0.86z + 0.27

z5 − 1.4z4 + 0.66z3 − 0.16z2 + 0.023z + 0.012
,

and Gaussian noise with input covarianceQ = I. The sample
averages

H̄k =
1

M

M−k
∑

t=1

y(t + k)y(t)T . (14)

are used as covariance estimates. Table I shows the results
for the different methods. All values in the table are averaged



Sample est. SVD Nuclear norm
M error Pus error error

1000 0.622 54% 0.526 0.282
5000 0.266 48% 0.232 0.158
20000 0.136 32% 0.115 0.088

TABLE I

COMPARISON OF STOCHASTIC REALIZATION METHODS
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Fig. 1. Trade-off curve between the fitting/realization error and the nuclear
norm of H(1,N,N) computed by solving (5) for a range of differentλ.

over 50 simulations.M is the length of the sample.

The error in column 2 is the normalized average of
∑10

k=1(H̄k − Htrue
k )2, where H̄k are the sample covari-

ances (14), andHtrue
k are the true covariances. The error in

column 4 is the normalized average of
∑10

k=1(Ĥk−Htrue
k )2,

where Ĥk are the covariances computed from the state-
space realizationÂ, Ĉ, D̂ returned by the SVD subspace
method, withr = s = 10. Pus is the percentage of the50
instances wherêA from (12) was unstable. In these cases, the
matrix was stabilized by inverting its unstable eigenvalues.
All system orders are selected to be5 for a fair comparison.
The last column, labeled ‘Nuclear norm’ shows the error
for the algorithm based on nuclear norm optimization in
section II-B.2, withN = 10. In this experiment the method
based on the nuclear norm optimization always produced a
stable matrixÂ. We also note that the errors in the covariance
estimates were smaller than in the SVD method. Figures 1
and 2 show plots for an instance withM = 1000. Figure 1
shows the trade-off curves between the fitting/realization
errors and the nuclear norm of the Hankel matrix, obtained
by solving (5) for a range of different values ofλ. The fitting
error is the error between the optimized covariances and the
sample covariances. The realization error is the error between
the optimized covariances and the true covariances. Figure2
shows the singular values of the optimal Hankel matrix
H(1,N,N) in (5), for the value ofλ marked with a dot on
the trade-off curve in figure 1. We observe a sharp transition
of the singular values, corresponding to a model order of5.
For comparison, we also show the singular values of the
Hankel matrixH̄(1,N,N) based on the sample covariances.

0 2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

Singular value index

N
or

m
al

iz
ed

si
ng

ul
ar

va
lu

e

Sample

Optimized

Fig. 2. Singular values of the Hankel matrix̄H(1,N,N) constructed from
the sample covariances̄Hk and the Hankel matrixH(1,N,N) of nuclear-
norm optimized covariances.

III. SYSTEM IDENTIFICATION

In this section we present results for a system identifi-
cation method based on nuclear norm minimization. Sub-
space algorithms use the SVD of matrices constructed from
observed inputs and outputs to estimate the system order,
and to compute low-rank approximations from which the
model parameters are determined [Lar90], [Ver94], [OD94],
[Vib95]. Nuclear norm minimization offers an alternative
method to compute low rank matrix approximations.

A. System identification by nuclear norm optimization

Suppose we are given a sequence of inputsu(t) ∈ Rm

and outputsymeas(t) ∈ Rp, t = 0, . . . , N . Our objective is
to find a low-order discrete-time linear time-invariant state-
space model

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(15)

that satisfiesy(t) ≈ ymeas(t). The proposed method is based
on the fact that ifu(t), y(t) are related by (15), then

Y = GX + HU,

where

Y =











y(0) y(1) · · · y(N − r)
y(1) y(2) · · · y(N − r + 1)

...
...

...
y(r) y(r + 1) · · · y(N)











,

U =











u(0) u(1) · · · u(N − r)
u(1) u(2) · · · u(N − r + 1)

...
...

...
u(r) u(r + 1) · · · u(N)











,

G =











C
CA

...
CAr











, X =
[

x(0) x(1) · · · x(N − r)
]

,
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Fig. 3. Largest normalized singular values ofYmeasU
⊥ (‘original’) and

Y U⊥ (‘optimized’).

andH is a lower-triangular block-Toeplitz matrix constructed
from A, B, C, D. Therefore

Y U⊥ = GXU⊥, (16)

where U⊥ denotes a matrix whose columns span the
nullspace ofU . If X has rankn and there is no rank
cancellation in the productXU⊥, then we can find the model
order from the rank of the matrixY U⊥. From the column
space ofY U⊥, one can computeG, A, and C; and once
A and C are computed, the rest of the state-space model
follows easily [DMVV88], [Lju99, Section 10.6].

This leads us to the following method. We usey(t), t =
0, . . . , N , as optimization variables, and computey(t) by
solving the convex optimization problem

minimize ‖Y U⊥‖∗ + λ

N
∑

t=0

‖y(t) − ymeas(t))‖
2
2 , (17)

for a positive weighting parameterλ, This gives a point on
the trade-off curve between the nuclear norm ofY U⊥ and
the deviation between the sequencesy(t) andymeas(t). From
the optimal solutiony(t) of (17), we compute the singular
value decomposition ofY U⊥, and a realization ofG, A, C
and the rest of the state space model; see [LV09] for details.

B. Experimental results

We apply the method of section III-A to a benchmark
problem from [DDDF97]. The system is an industrial wind-
ing process with five inputs and two outputs (data set 97-
003). The number of data points used in the identification
experiment isN = 200. NV = 600 points were used for
model validation. (This includes theN data points used in
the identification.)

Figure 3 shows the singular values ofY U⊥, whereY is
the solution of the optimization problem (17). The parameter
λ was selected by examining different points and choosing
the value that gives approximately the smallest identification
error. The figure also shows the singular values ofYmeasU

⊥,
where Ymeas is the Hankel matrix constructed from the
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Fig. 4. Measured and identified outputs.
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Fig. 5. Trade-off between the fitting error
∑N

t=0
‖y(t)−ymeas(t)‖2

2 and
the nuclear norm‖Y U⊥‖∗.

output data. As can be seen, the optimized matrixY U⊥

is closer to low rank (rank three) than the original matrix
YmeasU

⊥. In figure 4 we compare the measured outputs
with the model predictions based on the estimated third-order
model.

Figure 5 shows the trade-off curve between the two terms
in the cost function of (17). The dot marks the point used
in figures 3 and 4. Figure 6 shows the identification and
validation errors for the models computed from the solutions
on the trade-off curve in figure 5. The erroreV is computed
as

eV =

(

∑NV−1
t=0 ‖ymeas(t) − ŷ(t)‖2

2
∑NV−1

t=0 ‖ymeas(t) − ȳV‖2
2

)1/2

, (18)

where ȳV = (1/NV)
∑NV−1

t=0 ymeas(t), ymeas(t) are the
given output data, and̂y(t) is the output of the identified
state-space model, starting at the estimated initial state. eI is
calculated using the same formula with sums ranging from
t = 0 to N − 1. At the point marked on the curves the
validation error iseV = 0.17.

We also compared the results with the subspace identifi-
cation algorithm implemented in the Matlab Identification
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Fig. 6. Trade-off between the identification/validation error (eI/eV) and
the nuclear norm‖Y U⊥‖∗.

Toolbox. The Matlab commandn4sid with the default
settings gives a system model of order 10, and a validation
error eV = 0.18. If we fix the order to three,n4sid returns
a model witheV = 0.17.

These results and the results for other benchmark prob-
lems from [LV09] indicate that the identification errors for
the nuclear norm optimization algorithm are comparable to
n4sid. The main advantage of the nuclear norm technique
is that it makes the selection of an appropriate model order
easier (see figure 3).

IV. CONCLUSION

We have described identification and system realization
methods based on regularized nuclear norm minimization, a
convex heuristic for computing low-rank approximations of
structured matrices. Experiments with simulated data indicate
that the stochastic realization subspace method based on
nuclear norm minimization improves the accuracy of the
covariance estimation. Similarly, the experimental results of
the system identification method suggest that the quality of
the models obtained by this method is comparable with state-
of-the-art subspace identification software. An advantageof
the nuclear norm approach for system identification is that
it provides a sharper criterion for the selection of the system
order.

REFERENCES

[Bal95] A. V. Balakrishnan. Introduction to Random Processes in
Engineering. John Wiley & Sons, Inc., New York, 1995.

[CFP03] M. T. Chu, R. E. Funderlic, and R. J. Plemmons. Structured
low rank approximation.Linear Algebra and its Applications,
366:157–172, 2003.

[CR08] E. J. Cand̀es and B. Recht. Exact matrix completion via
convex optimization. 2008. Preprint available atarXiv.org
(0805.4471).

[CRT06] E. J. Cand̀es, J. K. Romberg, and T. Tao. Stable signal recovery
from incomplete and inaccurate measurements.Communi-
cations on Pure and Applied Mathematics, 59(8):1207–1223,
2006.

[CT05] E. J. Cand̀es and T. Tao. Decoding by linear programming.
IEEE Transactions on Information Theory, 51(12):4203–4215,
2005.

[DDDF97] B. De Moor, P. De Gersem, B. De Schutter, and W. Favoreel.
DAISY: A database for the identification of systems.Journal
A, 38(3):4–5, Sep. 1997.

[DMVV88] B. De Moor, M. Moonen, L. Vandenberghe, and J. Vandewalle.
A geometrical approach for the identification of state space
models with the singular value decomposition. InProceedings
of the 1988 IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 2244–2247, 1988.

[Don06] D. L. Donoho. Compressed sensing.IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[Faz02] M. Fazel.Matrix Rank Minimization with Applications. PhD
thesis, Stanford University, 2002.

[FHB01] M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic
with application to minimum order system approximation. In
Proceedings of the American Control Conference, pages 4734–
4739, 2001.

[FHB03] M. Fazel, H. Hindi, and S. P. Boyd. Log-det heuristicfor matrix
rank minimization with applications to Hankel and Euclidean
distance matrices. InProceedings of the American Control
Conference, pages 2156–2162, 2003.

[FHB04] M. Fazel, H. Hindi, and S. Boyd. Rank minimization and
applications in system theory. InProceedings of American
Control Conference, pages 3273–3278, 2004.

[Gui81] R. P. Guidorzi. Invariants and canonical forms for sys-
tems structural and parametric identification.Automatica,
17(1):117–133, 1981.

[Kal71] R. E. Kalman. On minimal partial realizations of a linear in-
put/output map. In N. DeClaris, editor,Aspects of Network and
System Theory, pages 385–407. Holt, Rinehart and Winston,
New York, 1971.

[Lar90] W. E. Larimore. Canonical variate analysis in identification,
filtering, and adaptive control. InProceedings of the 29th IEEE
Conference on Decision and Control, volume 2, pages 596–
604, 1990.

[Lju99] L. Ljung. System Identification: Theory for the User. Prentice
Hall, Upper Saddle River, New Jersey, second edition, 1999.

[LV09] Z. Liu and L. Vandenberghe. Interior-point method fornuclear
norm approximation with application to system identification.
SIAM Journal on Matrix Analysis and Applications, 2009. To
appear.

[MSM00] J. Mari, P. Stoica, and T. McKelvey. Vector ARMA estimation:
a reliable subspace approach.IEEE Transaction on signal
processing, 48(7):2092–2104, 2000.

[OD94] P. Van Overschee and B. De Moor. N4SID: subspace
algorithms for the identification of combined deterministic-
stochastic systems.Automatica, 30(1):75–93, 1994.

[RFP07] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-
rank solutions of linear matrix equations via nuclear norm
minimization. 2007. Submitted toSIAM Review.

[RXH08] B. Recht, W. Xu, and B. Hassibi. Necessary and sufficient
conditions for success of the nuclear norm heuristic for rank
minimization. InProceedings of the 47th IEEE Conference on
Decision and Control, pages 3065–3070, 2008.

[Sch00] B. De Schutter. Minimal state-space realization in linear
system theory: an overview.Journal of Computational and
Applied Mathematics, 121(1-2):331–354, 2000.

[Sil71] L. M. Silverman. Realization of linear dynamical systems.
IEEE Transactions on Automatic Control, AC-16(6):554–567,
1971.

[SM97] P. Stoica and R. L. Moses.Introduction to Spectral Analysis.
Prentice Hall, 1997.

[Tet70] A. J. Tether. Construction of minimal linear state-variable
models from finite input-output data.IEEE Transactions on
Automatic Control, 15(4):427–436, 1970.

[Tro06] J. A. Tropp. Just relax: Convex programming methods for
identifying sparse signals in noise.IEEE Transactions on
Information Theory, 52(3):1030–1051, 2006.

[Ver94] M. Verhaegen. Identification of the deterministic part of MIMO
state space models given in innovations form from input-output
data. Automatica, 30(1):61–74, 1994.

[Vib95] M. Viberg. Subspace-based methods for the identification of
linear time-invariant systems.Automatica, 31(12):1835–1851,
1995.

[Wil86] J. C. Willems. From time series to linear system — Part II.
Exact modelling.Automatica, 22(6):675–694, 1986.


