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1. Introduction. Chebyshev inequalities give upper or lower bounds on the
probability of a set based on known moments. The simplest example is the inequality

Prob(X < 1) ≥ 1

1 + σ2
,

which holds for any zero-mean random variable X on R with variance EX2 = σ2. It
is easily verified that this inequality is sharp: the random variable

X =

{

1 with probability σ2/(1 + σ2)
−σ2 with probability 1/(1 + σ2)

satisfies EX = 0, EX2 = σ2 and Prob(X < 1) = 1/(1 + σ2).
In this paper we study the following extension: given a set C ⊆ Rn defined by

strict quadratic inequalities,

C = {x ∈ Rn | xT Aix + 2bT

i x + ci < 0, i = 1, . . . ,m},(1.1)

find the greatest lower bound on Prob(X ∈ C), where X is a random variable on
Rn with known first and second moments EX and EXXT . We will see that the
bound, and a distribution that attains it, are readily obtained by solving a convex
optimization problem.

History. Several generalizations of Chebyshev’s inequality were published in the
1950s and 1960s. We can mention in particular a series of papers by Isii [Isi59, Isi63,
Isi64] and Marshall and Olkin [MO60], and the book by Karlin and Studden [KS66,
Chapters XII-XIV]. Isii [Isi64] notes that Chebyshev-type inequalities can be derived
using the duality theory of infinite-dimensional linear programming. He considers the
problem of computing upper and lower bounds on E f0(X), where X is a random
variable on Rn, whose distribution satisfies the moment constraints

E fi(X) = ai, i = 1, . . . ,m,
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but is otherwise unknown. The best lower bound on E f0(X) is given by the optimal
value of the linear optimization problem

minimize E f0(X)
subject to E fi(X) = ai, i = 1, . . . ,m,

where we optimize over all probability distributions on Rn. The dual of this problem
is

maximize z0 +
∑m

i=1 aizi

subject to z0 +
∑m

i=1 zifi(x) ≤ f0(x) for all x,
(1.2)

and has a finite number of variables zi, i = 0, . . . ,m, but infinitely many constraints.
Isii shows that strong duality holds under appropriate constraint qualifications, so we
can find a sharp lower bound on E f0(X) by solving (1.2). The research on generalized
Chebyshev inequalities in the 1960s focused on problems for which (1.2) can be solved
analytically.

Isii’s formulation is also useful for numerical computation of Chebyshev bounds.
In fact the constraints in (1.2) are equivalent to a single constraint

g(z0, . . . , zm)
∆
= sup

x

(

z0 +
m
∑

i=1

zifi(x) − f0(x)

)

≤ 0.

The function g : Rm+1 → R is convex, but in general difficult to evaluate, so solv-
ing (1.2) is usually a very hard computational problem. In this paper we consider a
special case for which (1.2) reduces to a semidefinite programming problem that can
be solved efficiently.

The recent development of interior-point methods for nonlinear convex optimiza-
tion, and semidefinite programming in particular, has revived the interest in gener-
alized Chebyshev inequalities and related moment problems. Bertsimas and Sethu-
rama [BS00], Bertsimas and Popescu [BP05], Popescu [Pop05] and Lasserre [Las02]
discuss various types of generalized Chebyshev bounds that can be computed by
semidefinite programming. Other researchers, including Nesterov [Nes00], Genin,
Hachez, Nesterov and Van Dooren [GHNV03], and Faybusovich [Fay02] have also ex-
plored the connections between different classes of moment problems and semidefinite
programming.

Outline of the paper. The main result is given in §2, where we present two equiva-
lent semidefinite programs (SDPs) with optimal values equal to the best lower bound
on Prob(X ∈ C), where C is defined as in (1.1), given the first two moments
of the distribution. We also show how to compute a distribution that attains the
bound. These SDPs can be derived from Isii’s semi-infinite linear programming for-
mulation, combined with a non-trivial linear algebra result known as the S-procedure
in control theory [BV04, Appendix B]. Our goal in this paper is to present a sim-
pler and constructive proof based only on (finite-dimensional) convex duality. The
theorem is illustrated with a simple example in §3. A geometrical interpretation is
given in §4. Some applications and possible extensions are discussed in §5. The
appendix summarizes the key definitions and results of semidefinite programming du-
ality theory. More background on semidefinite programming can be found in the
books [NN94, WSV00, BTN01, BV04].

Notation. Sn will denote the set of symmetric n × n matrices; Sn

+ the set of
symmetric positive semidefinite n × n matrices. For X ∈ Sn, we write X º 0 if X is
positive semidefinite, and X Â 0 if X is positive definite. The trace of a matrix X is
denoted trX. We use the standard inner product tr(XY ) on Sn.
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2. Probability of a set defined by quadratic inequalities. The main result
of the paper is as follows. Let C be defined as in (1.1), with Ai ∈ Sn, bi ∈ Rn, and
ci ∈ R. For x̄ ∈ Rn, S ∈ Sn with S º x̄x̄T , we define P(C, x̄, S) as

P(C, x̄, S) = inf{Prob(X ∈ C) | EX = x̄, EXXT = S},

where the infimum is over all probability distributions on Rn.
The optimal values of the following two SDPs are equal to P(C, x̄, S).
1. (Upper bound SDP)

minimize 1 −∑m

i=1 λi

subject to tr(AiZi) + 2bT
i
zi + ciλi ≥ 0, i = 1, . . . ,m

∑m

i=1

[

Zi zi

zT
i

λi

]

¹
[

S x̄
x̄T 1

]

[

Zi zi

zT
i

λi

]

º 0, i = 1, . . . ,m.

(2.1)

The variables are Zi ∈ Sn, zi ∈ Rn, and λi ∈ R, for i = 1, . . . ,m.
2. (Lower bound SDP)

maximize 1 − tr(SP ) − 2qT x̄ − r

subject to

[

P − τiAi q − τibi

(q − τibi)
T r − 1 − τici

]

º 0, i = 1, . . . ,m

τi ≥ 0, i = 1, . . . ,m
[

P q
qT r

]

º 0.

(2.2)

The variables are P ∈ Sn, q ∈ Rn, r ∈ R, and τi ∈ R, for i = 1, . . . ,m.
In the remainder of this section we prove this result using semidefinite programming
duality. The proof can be summarized as follows.

• In §2.1 and §2.2 we show that the optimal value of the SDP (2.1) is an upper
bound on P(C, x̄, S).

• In §2.3 we show that the optimal value of the SDP (2.2) is a lower bound on
P(C, x̄, S).

• To conclude the proof, we note that the two SDPs are dual problems, and
that the lower bound SDP is strictly feasible. It follows from semidefinite pro-
gramming duality (see the appendix) that their optimal values are therefore
equal.

2.1. Distributions that satisfy an averaged quadratic constraint. In this
section we prove a linear algebra result that will be used in the constructive proof of
the upper bound property in §2.2.

Suppose a random variable Y ∈ Rn satisfies

E(Y T AY + 2bT Y + c) ≥ 0,

where A ∈ Sn, b ∈ Rn, c ∈ R. Then there exists a discrete random variable X, with
K ≤ 2n possible values, that satisfies

XT AX + 2bT X + c ≥ 0, EX = EY, EXXT ¹ EY Y T .

If we denote the moments of Y as Z = EY Y T and z = EY , we can state this
result more specifically as follows. Suppose Z ∈ Sn and z ∈ Rn satisfy

Z º zzT , tr(AZ) + 2bT z + c ≥ 0.
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Then there exist vectors vi ∈ Rn and scalars αi ≥ 0, i = 1, . . . ,K, with K ≤ 2n, such
that

vT

i Avi + 2bT vi + c ≥ 0, i = 1, . . . ,K,

and

K
∑

i=1

αi = 1,
K
∑

i=1

αivi = z,
K
∑

i=1

αiviv
T

i ¹ Z.(2.3)

Proof. We distinguish two cases, depending on the sign of λ
∆
= zT Az + 2bT z + c.

If λ ≥ 0, we can simply choose K = 1, v1 = z, and α1 = 1. If λ < 0, we start by
factoring Z − zzT as

Z − zzT =

n
∑

i=1

wiw
T

i ,

for example, using the eigenvalue decomposition. (We do not assume that the wi’s
are independent or nonzero.) We have

0 ≤ tr(AZ) + 2bT z + c =

n
∑

i=1

wT

i Awi + zT Az + 2bT z + c =

n
∑

i=1

wT

i Awi + λ,

and because λ < 0, at least one of the terms wT
i
Awi in the sum must be positive.

Assume the first r terms are positive, and the last n − r are negative or zero. Define

µi = wT

i Awi, i = 1, . . . , r.

We have µi > 0, i = 1, . . . , r, and

r
∑

i=1

µi =
r
∑

i=1

wT

i Awi ≥
n
∑

i=1

wT

i Awi ≥ −λ.

For i = 1, . . . , r, let βi and βi+r be the positive and negative roots of the quadratic
equation

µiβ
2 + 2wT

i (Az + b)β + λ = 0.

The two roots exist because λ < 0 and µi > 0, and they satisfy

βiβi+r = λ/µi.

We take K = 2r, and, for i = 1, . . . , r,

vi = z + βiwi, αi =
µi

(1 − βi/βi+r)(
∑r

k=1 µk)
,

and

vi+r = z + βi+rwi, αi+r = −αiβi/βi+r.
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By construction, the vectors vi satisfy vT
i
Avi + 2bT vi + c = 0. It is also clear that

αi > 0 and αi+r > 0 (since µi > 0 and βi/βi+r < 0). Moreover

2r
∑

i=1

αi =

r
∑

i=1

αi(1 − βi/βi+r) =

r
∑

i=1

µi
∑r

k=1 µk

= 1.

Next, we note that αiβi + αi+rβi+r = αi(βi − (βi/βi+r)βi+r) = 0, and therefore

K
∑

i=1

αivi =

r
∑

i=1

(αi(z + βiwi) + αi+r(z + βi+rwi)) = z.

Finally, using the fact that βiβi+r = λ/µi and
∑r

i=1 µi ≥ −λ, we can prove the third
property in (2.3):

K
∑

i=1

αiviv
T

i =

r
∑

i=1

(

αi(z + βiwi)(z + βiwi)
T + αi+r(z + βi+rwi)(z + βi+rwi)

T
)

=
2r
∑

i=1

αizzT +
r
∑

i=1

(αiβi + αi+rβi+r)(zwT

i + wiz
T )

+

r
∑

i=1

(αiβ
2
i + αi+rβ

2
i+r)wiw

T

i

= zzT +
r
∑

i=1

αi(β
2
i − βiβi+r)wiw

T

i

= zzT +

r
∑

i=1

µi

(1 − βi/βi+r)
∑r

k=1 µk

(β2
i − βiβi+r)wiw

T

i

= zzT +

r
∑

i=1

µi
∑r

k=1 µk

(−βiβi+r)wiw
T

i

= zzT +

r
∑

i=1

−λ
∑r

k=1 µk

wiw
T

i

¹ zzT +

r
∑

i=1

wiw
T

i

¹ Z.

2.2. Upper bound property. Assume Zi, zi, λi satisfy the constraints in the
SDP (2.1), with

∑m

i=1 λi < 1. (We will return to the case
∑m

i=1 λi = 1.) We show
that there exists a random variable X with

EX = x̄, EXXT = S, Prob(X ∈ C) ≤ 1 −
m
∑

i=1

λi.

Hence,

P(C, x̄, S) ≤ 1 −
m
∑

i=1

λi.
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Proof. Without loss of generality we assume that the first k coefficients λi are
nonzero, and the last m−k coefficients are zero. Using the result of §2.1, and the first
and third constraints in (2.1), we can define k independent discrete random variables
Xi that satisfy

XT

i AiXi + 2bT

i Xi + ci ≥ 0, EXi = zi/λi, EXiX
T

i ¹ Zi/λi(2.4)

for i = 1, . . . , k. From the second constraint in (2.1) we see that

k
∑

i=1

λi

[

EXiX
T
i

EXi

EXT
i

1

]

¹
k
∑

i=1

[

Zi zi

zT
i

λi

]

¹
[

S x̄
x̄T 1

]

,

so if we define S0, x̄0 as

[

S0 x̄0

x̄T
0 1

]

=
1

1 −∑k

i=1 λi

(

[

S x̄
x̄T 1

]

−
k
∑

i=1

λi

[

EXiX
T
i

EXi

EXT
i

1

]

)

,

then S0 º x̄0x̄
T
0 . This means we can construct a discrete random variable X0 with

EX0 = x̄0 and EX0X
T
0 = S0, for example, as follows. Let S0 − x̄0x̄

T
0 =

∑r

i=1 wiw
T
i

be a factorization of S0 − x̄0x̄
T
0 . If r = 0 we choose X0 = x̄0. If r > 0, we define

X0 =

{

x̄0 +
√

rwi with probability 1/(2r)
x̄0 −

√
rwi with probability 1/(2r).

It is easily verified that X0 satisfies EX0 = x̄0 and EX0X
T
0 = S0.

To summarize, we have defined k + 1 independent random variables X0, . . . , Xk

that satisfy XT
i

AiXi + 2bT
i
Xi + ci ≥ 0 for i = 1, . . . , k, and

k
∑

i=0

λi

[

EXiX
T
i

EXi

EXT
i

1

]

=

[

S x̄
x̄T 1

]

,(2.5)

where λ0 = 1 −∑k

i=1 λi. Now consider the random variable X with the mixture
distribution

X = Xi with probability λi for i = 0, . . . , k.

From (2.5), X satisfies EX = x̄, EXXT = S. Furthermore, since X1, . . . , Xk 6∈ C,
we have Prob(X ∈ C) ≤ 1 −∑m

i=1 λi, and therefore 1 −∑m

i=1 λi is an upper bound
on P(C, x̄, S).

It remains to consider the case in which Zi, zi, and λi are feasible in (2.1) with
∑m

i=1 λi = 1. Define

Z̃i = (1 − ε)Zi, z̃i = (1 − ε)zi, λ̃i = (1 − ε)λi, i = 1, . . . ,m,

where 0 < ε < 1. These values are also feasible, with
∑

i
λ̃i = 1 − ε, so we can apply

the construction outlined above and construct a random variable X with EX = x̄,
EXXT = S, and Prob(x ∈ C) ≤ ε. This is true for any ε with 0 < ε < 1. Therefore
P(C, x̄, S) = 0.

2.3. Lower bound property. Suppose P , q, r, and τ1, . . . , τm are feasible
in (2.2). Then

1 − tr(SP ) − 2qT x̄ − r ≤ P(C, x̄, S).
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Proof. The constraints of (2.2) imply that, for all x,

xT Px + 2qT x + r ≥ 1 + τi(x
T Aix + 2bT

i x + ci), i = 1, . . . ,m,

and xT Px + 2qT x + r ≥ 0. Therefore

xT Px + 2qT x + r ≥ 1 − 1C(x) =

{

1 x 6∈ C
0 x ∈ C,

where 1C(x) denotes the 0-1 indicator function of C. Hence, if EX = x̄, and
EXXT = S, then

tr(SP ) + 2qT x̄ + r = E(XT PX + 2qT X + r)

≥ 1 − E1C(X)

= 1 − Prob(X ∈ C).

This shows that 1 − tr(SP ) − 2qT x̄ − r is a lower bound on Prob(X ∈ C).

3. Example. In simple cases, the two SDPs can be solved analytically, and the
formulation can be used to prove some well-known inequalities. As an example, we
derive an extension of the Chebyshev inequality known as Selberg’s inequality [KS66,
page 475],

Suppose C = (−1, 1) = {x ∈ R | x2 < 1}. We show that

P(C, x̄, s) =







0 1 ≤ s
1 − s |x̄| ≤ s < 1
(1 − |x̄|)2/(s − 2|x̄| + 1) s < |x̄|.

(3.1)

This generalizes the Chebyshev inequality

Prob(|X| ≥ 1) ≤ min{1, σ2},

which is valid for random variables X on R with EX = 0 and EX2 = σ2.
Without loss of generality we assume that x̄ ≥ 0. The upper bound SDP for

P(C, x̄, s) is

minimize 1 − λ
subject to Z ≥ λ

0 ¹
[

Z z
z λ

]

¹
[

s x̄
x̄ 1

]

with variables λ,Z, z ∈ R. If s ≥ 1, we can take Z = s, z = x̄, λ = 1, which has
objective value zero. If x̄ ≤ s < 1, we can take Z = s, z = x̄, λ = s, which provides
a feasible point with objective value 1 − s. Finally, if x̄ > s, we can verify that the
values

Z = z = λ =
s − x̄2

s − 2x̄ + 1
=

s − x̄2

s − x̄2 + (x̄ − 1)2

are feasible. They obviously satisfy Z ≥ λ and the first matrix inequality. They also
satisfy the upper bound, since

[

s − Z x̄ − z
x̄ − z 1 − λ

]

=
1

s − 2x̄ + 1

[

x̄ − s
1 − x̄

] [

x̄ − s
1 − x̄

]T

º 0.
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The objective function evaluated at this feasible point is

1 − λ =
(1 − x̄)2

s − 2x̄ + 1
.

This shows that the righthand side of (3.1) is an upper bound on P(C, x̄, s).
The lower bound SDP is

maximize 1 − sP − 2x̄q − r

subject to

[

P q
q r − 1

]

º τ

[

1 0
0 −1

]

τ ≥ 0
[

P q
q r

]

º 0,

with variables P, q, r, τ ∈ R. The values P = q = τ = 0, r = 1 are always feasible,
with objective value zero. The values P = τ = 1, r = q = 0 are also feasible, with
objective value 1 − s. The values

[

P q
q r

]

=
1

(s − 2x̄ + 1)2

[

1 − x̄
s − x̄

] [

1 − x̄
s − x̄

]T

, τ =
1 − x̄

s − 2x̄ + 1

are feasible if s < x̄, since in that case x̄2 ≤ s implies x̄ < 1, and hence

τ =
1 − x̄

s − x̄2 + (x̄ − 1)2
> 0

and
[

P − τ q
q r + τ − 1

]

=
(1 − x̄)(x̄ − s)

(s − 2x̄ + 1)2

[

1 −1
−1 1

]

º 0.

The corresponding objective value is

1 − sP − 2x̄q − r =
(1 − x̄)2

s − 2x̄ + 1
.

This proves that the righthand side of (3.1) is a lower bound on P(C, x̄, s).

4. Geometrical interpretation. Figure 4.1 shows an example in R2. The set
C is defined by three linear inequalities and two nonconvex quadratic inequalities.
The moment constraints are displayed by showing x̄ = EX (shown as a small circle),
and the set

{x | (x − x̄)T (S − x̄x̄T )−1(x − x̄) = 1}

(shown as the dashed ellipse).
The optimal Chebyshev bound for this problem is P(C, x̄, S) = 0.3992. The

six heavy dots are the possible values vi of the discrete distribution computed from
the optimal solution of the upper bound SDP. The numbers next to the dots give
Prob(X = vi), rounded to four decimal places. Since C is defined as an open set, the
five points on the boundary are not in C itself, so Prob(X ∈ C) = 0.3992 for this
distribution. The solid ellipse is the level curve

{x | xT Px + 2qT x + r = 1}
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PSfrag replacements

0.1494

0.0311

0.0527

0.0743

0.2934

0.3992

x̄

C

Fig. 4.1. The set C is the interior of the area bounded by the five solid curves. The dashed
ellipse with center x̄ is the boundary of the set {x | (x− x̄)T (S− x̄x̄T )−1(x− x̄) ≤ 1}. The Chebyshev
lower bound on Prob(X ∈ C), over all distributions with EX = x̄ and EXXT = S, is 0.3992.
This bound is sharp, and achieved by the discrete distribution shown with heavy dots. The point
with probability 0.3392 lies inside C; the other five points are in the boundary of C, hence not in C.
The solid ellipse is the level curve {x | xT Px + 2qT x + r = 1} where P , q, and r are the optimal
solution of the lower bound SDP (2.2).

where P , q, and r are the optimal solution of the lower bound SDP (2.2).
We notice that the optimal distribution assigns nonzero probability to the points

where the ellipse touches the boundary of C, and to its center. This relation between
the solutions of the upper and lower bound SDPs holds in general, and can be derived
from the optimality conditions of semidefinite programming, as we now show.

Suppose Zi, zi, λi form an optimal solution of the upper bound SDP, and P , q,
r, τi are optimal for the lower bound SDP. Consider the set

E = {x | xT Px + 2qT x + r ≤ 1},

which is an ellipsoid if P is nonsingular. The complementary slackness or optimality
conditions for the pair of SDPs (see the appendix) state that

τi(tr(AiZi) + 2bT

i zi + ciλi) = 0, i = 1, . . . ,m,

tr(PZi) + 2qT zi + rλi = τi(tr(AiZi) + 2bT

i zi + ciλi) + λi, i = 1, . . . ,m,

and

tr(PS) + 2qT x̄ + r =

m
∑

i=1

(tr(PZi) + 2qT zi + rλi).

Combining the first two conditions gives

tr(PZi) + 2qT zi + rλi = λi, i = 1, . . . ,m,(4.1)

and substituting this in the last condition, we obtain

tr(PS) + 2qT x̄ + r =

m
∑

i=1

λi.(4.2)
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Suppose λi > 0. As we have seen in §2.1, we can associate with Zi, zi, λi a
random variable Xi that satisfies (2.4). Dividing (4.1) by λi, we get

E(XT

i PXi + 2qT Xi + r) ≤ (tr(PZi) + 2qT zi + rλi)/λi = 1.(4.3)

On the other hand,

XT

i PXi + 2qT Xi + r ≥ XT

i PXi + 2qT Xi + r − τi(X
T

i AiXi + 2bT

i Xi + ci)

≥ 1,

where the first line follows because XT
i

AiXi + 2bT
i
Xi + ci ≥ 0 and τi ≥ 0, and the

second line because
[

P q
qT r − 1

]

º τi

[

Ai bi

bT
i

ci

]

.

Combining this with (4.3) we can conclude that

XT

i PXi + 2qT Xi + r = 1.(4.4)

In other words, if λi > 0 and Xi satisfies (2.4), then Xi lies on the boundary of E .
If
∑m

i=1 λi < 1 we can also define a random variable X0 that satisfies (2.5), and
hence

(1 −
m
∑

i=1

λi)E(XT

0 PX0 + 2qT X0 + r)

= tr(PS) + 2qT x̄ + r −
m
∑

i=1

λi E(XT

i PXi + 2qT Xi + r)

=

m
∑

i=1

λi −
m
∑

i=1

λi

= 0,

i.e., E(XT
0 PX0 + 2qT X0 + r) = 0. (The second step follows from (4.2) and (4.4).)

On the other hand, XT
0 PX0 + 2qT X0 + r ≥ 0 for all X0, so we can conclude that

XT

0 PX0 + 2qT X0 + r = 0,

i.e., X0 is at the center of E .

5. Conclusion. Generalized Chebyshev inequalities find applications in stochas-
tic processes [PM05], queueing theory and networks [BS00], machine learning [LEBJ02],
and communications. The probability of correct detection in a communication or
classification system, for example, can often be expressed as the probability that a
random variable lies in a set defined by linear or quadratic inequalities. The technique
presented in this paper can therefore be used to find lower bounds on the probabil-
ity of correct detection, or, equivalently, upper bounds on the probability of error.
The bounds obtained are the best possible, over all distributions with given first and
second order moments, and are efficiently computed using semidefinite programming
algorithms. From the optimal solution of the SDPs, the worst-case distribution can
be established as described in §2.2.



GENERALIZED CHEBYSHEV BOUNDS 11

In practical applications, the worst-case distribution will often be unrealistic, and
the corresponding bound overly conservative. Improved bounds can be computed by
further restricting the allowable distributions. The lower bound SDP in §2, for exam-
ple, can be extended to incorporate higher order or polynomial moment constraints
[Las02, Par03, BP05], or additional constraints on the distribution such as unimodal-
ity [Pop05]. In contrast to the case studied here, however, the resulting Chebyshev
bounds are in general not sharp.
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Appendix A. This appendix summarizes the definition and duality theory of
semidefinite programming.
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Let V be a finite-dimensional real vector space, with inner product 〈u, v〉. Let

A : V → Sl1 × Sl2 × · · · × SlL , B : V → Rr

be linear mappings, where we identify Sl1 × · · · × SlL with the space of symmetric
block-diagonal matrices with L diagonal blocks of dimensions li, i = 1, . . . , L. Suppose
c ∈ V, D = (D1, D2, . . . , DL) ∈ Sl1×· · ·×SlL , and d ∈ Rr are given. The optimization
problem

minimize 〈c, y〉
subject to A(y) + D ¹ 0

B(y) + d = 0

with variable y ∈ V is called a semidefinite programming problem (SDP). The problem
is often expressed as

minimize 〈c, y〉
subject to A(y) + S + D = 0

B(y) + d = 0
S º 0,

(A.1)

where S ∈ Sl1 × · · · × SlL is an additional slack variable.
The dual SDP associated with (A.1) is defined as

maximize tr(DZ) + dT z
subject to Aadj(Z) + Badj(z) + c = 0

Z º 0,
(A.2)

where

Aadj : Sl1 × · · · × SlL → V, Badj : Rr → V
denote the adjoints of A and B. The variables in the dual problem are Z ∈ Sl1 ×· · ·×
SlL , and z ∈ Rr. We refer to Z as the dual variable (or multiplier) associated with
the constraint A(y) + D ¹ 0, and to z as the multiplier associated with the equality
constraint B(y) + d = 0.

The duality gap associated with primal feasible y, S and a dual feasible Z is
defined as

tr(SZ).

It is easily verified that the duality gap is equal to the difference between the primal
and dual objective functions evaluated at y, S, and Z:

tr(SZ) = 〈c, y〉 − tr(DZ) − dT z.

It is also clear that the duality gap is nonnegative, since S º 0, Z º 0. It follows that
the optimal value of the primal problem (A.1) is greater than or equal to the optimal
value of the dual problem (A.2). We say strong duality holds if the optimal values are
in fact equal. It can be shown that a sufficient condition for strong duality is that the
primal or the dual problem is strictly feasible.

If strong duality holds, then y, S, Z, z are optimal if and only if they are feasible
and the duality gap is zero:

tr(SZ) = 0.

The last condition is referred to as complementary slackness.


