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Optimizing Dominant Time Constant in RC Circuits

Lieven Vandenberghe, Stephen Boyd, and Abbas El Gamal

Abstract—Conventional methods for optimal sizing of wires The tree topology restriction, however, precludes the use
and transistors use linear resistor-capacitor (RC) circuit models of these Elmore delay methods in several sizing problems of
and the Elmore delay as a measure of signal delay. If the RC gjgpjficant importance to high performance deep submicron

circuit has a tree topology, the sizing problem reduces to a convex : : : P ; . .
optimization problem that can be solved using geometric pro- design including circuits with capacitive coupling between

gramming. The tree topology restriction precludes the use of these the no_des' e.g., buses with crosstalk and circuits with loops
methods in several sizing problems of significant importance to Of resistors, e.g., clock meshes. In this paper, we present
high-performance deep submicron design, including for example, a new optimal sizing method that can be used to address
circuits with loops of resistors, e.g., clock distribution meshes these problems. The method uses tlseninant time constant
and circuits with coupling capacitors, e.g., buses with crosstalk a5 3 measure of signal delay instead of Elmore delay. The
Pne;"k']%znt;gf x;ei'elz stZ'j %agggrévsesa[%ps?ggbqgrnv S?pt'm'zat'on motivation for this c_hoi(':e.is that thg dominant timg constant

The method is based on the dominant time constant as a ©f @ general RC circuit is a quasi-convex function of the
measure of signal propagation delay in an RC circuit instead conductances and capacitances. In particular, we show that it
of Elmore delay. Using this measure, sizing of any RC circuit can can be optimized using recently developed efficient methods
be cast as a convex optimization problem and solved using re- for semidefinite programminghe Elmore delay, on the other

cently developed efficient interior-point methods for semidefinite 544 has no useful convexity properties except when the RC
programming. The method is applied to three important sizing circuit has a tree topology.

problems: clock mesh sizing and topology design, sizing of tristate . .
buses, and sizing of bus line widths and spacings taking crosstalk Ve apply our method to three important sizing problems.

into account. The first is the problem of sizing a clock mesh (Section V).
Index Terms—Circuit optimization, circuit topology, clocks, This problem is difficult to handle gsing Elmore delay methods
crosstalk, delay effects, dominant time constant, integrated circuit Pecause of the presence of resistor loops. The results also
interconnections, nonlinear programming, RC circuits, semidef- illustrate that, to a certain extent, our method can be used

inite programming. to design the interconnedbpology (in addition to sizing).
The second problem we consider is the sizing of a tristate
bus (Section VI). The interconnect network in this example
I. INTRODUCTION is driven by multiple sources and therefore it does not have

HE CLASSICAL approach to optimal sizing of wiresthe tree topology required by the Elmore delay methods.

and transistors assumes a linear resistor-capacitor (R third problem is the simultaneous sizing of bus line
circuit model and use&lmore delayas a measure of signalWidths and spacings taking into account coupling capacitances
propaga’[ion de|ay_ This approach finds its Origins in [1]_[3Petween neighboring bus WireS, i.e., crosstalk (Section V”)
In particular, Fishburn and Dunlop [3] were first to observéhis problem is particularly important in deep submicron
that if the resistors form a tree with the input voltage sour&esign where the coupling capacitance can be significantly
at its root and all capacitors are grounded, the Elmore de|g'5gher than the plate capacitance. The results illustrate that
of a RC circuit is aposynomial functionof the conduc- optimizing dominant time constant allows us to control not
tances and capacitances. This observation has the impor@Hy the signal propagation delay, but also indirectly the
consequence that convex programming, specifigigmetric Ccrosstalk between the wires. Since the circuit has nongrounded
programming can be used to optimize Elmore delay subje@@pacitors, this is not possible using Elmore delay.
to area and power constraints. Geometric programming formsIhe outline of the paper is as follows. In Section II, we
the basis of the TILOS program and of several extensions a#@scribe the RC circuit model considered in the paper. In

related programs developed since then [3]-[8]. See [9] al§&ction IIl, we discuss three definitions of signal propagation
for a comprehensive recent survey. delay and define the dominant time constant. In Section IV, we
show that sizing problems using the dominant time constant as
a measure of delay lead to semidefinite programming problems
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Il. CIRCUIT MODELS

N = g5
Vin :

A. General RC Circuit T ciy
We consider linear RC circuits that can be described by the T . i =
differential equation = T ‘“I
dv = -
O% = —G(v(t) — u(t)) 1) Fig. 3. Example of a grounded capacitor RC tree.

wherew(t) € R™ is the vector of node voltages(t) € R" is

the vector of independent voltage sourcése R**" is the currents byl € RY. The relation between branch voltages

capacitance matrix, an@ € R"*" is the conductance matrix and currents is

(see Fig. 1). Throughout the paper we assume ¢haind GG av;,

are symmetric and positive definite (i.e., that the capacitive  Ix = g + ax (Vi — Ur), E=1---,N.  (3)

and resistive subcircuits are reciprocal and strictly passive).

The case in whichC and G are only positive semidefinite, To obtain a description of the form (1), we introduce the

i.e., possibly singular, is considered in Appendix A. reduced node-incidence matrik € R™*" and defineC' and
We are interested in design problems in whichand G G as

depend on some design parameters R™. Specifically we

H T H T
assume that the matricésandG areaffinefunctions ofz, i.e., C = Adiagc)A", G = Adiagg)A”. (4)
Clz) =Co+z1C1 + - + 2, Cypy Obviously, C and G are positive semidefinite. Both matrices
G(z) =Go+21G1+ -+ + 2mGm (2) are nonsingular if the capacitive and resistive subnetworks are

] ) connected. It can also be shown that the matriBes G!
where C; and G; are symmetric matrices. and C~! are elementwise nonnegative.

We will refer to a circuit described by (1) and (2) as a Using Kirchhoffs laws AI = 0 and V = ATw, it is

general RC circuit We will also consider several importanigyaightforward to write the branch equations (3) as (1) with
special cases, for example, circuits composed of two-terminal_"~-1 4 diag(g)U.

elements, circuits in which the resistive network forms a tree, From the expressions for the matric8sand €' (4), we see

or all capacitors are grounded. We describe these special c3ggp they are affine functions of the design parameiei
now. each of the conductances and capacitances; is.

B. RC Circuit C. Grounded Capacitor RC Circuit

When the general RC circuit is composed of two-terminal |, . . . . N
. . . It is quite common that all capacitors in the RC circuit are
resistors and capacitors (and the independent voltage sources

. . oo . . cornnected to the ground node. In this case, the matris
we will refer to it as anRC circuit More precisely, consider diagonal and nonsingular if there is a capacitor between ever
a circuit with N branches ana + 1 nodes, humbered O to 9 g P y

where node 0 is the ground or reference node. Each brhncHOde and the ground. We will refer to circuits of this form as

consists of a capacitat;, > 0 and a conductance, > 0 in grounded capacitor RC circuits

series with a voltage sourdeg;, (see Fig. 2). Some branches )

can have a zero capacitance or a zero conductance, but we RillGrounded Capacitor RC Tree

assume that both the capacitive subnetwork (i.e., the networkrThe most restricted class of circuits considered in this

obtained by removing all resistors and voltage sources) and ffaper consists of grounded capacitor RC circuits in which the

resistive subnetwork (i.e., the network obtained by removingsistive branches form a tree with the ground node as its root.

all capacitors) are connected. Moreover, only one resistive branch is connected to the ground
We denote the vector of node voltagesibg R™, the vector node and it contains the only voltage source in the circuit. An

of branch voltages by € R, and the vector of branch example is shown in Fig. 3.
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Note that the resistance matriR = G~! for a circuit of relation between these three measures will be presented in

this class can be written down by inspection Appendix B, including some bounds that they must satisfy.
_ . . We assume that far< 0, the circuit is in static steady state
R;; = resistances upstream from nadend nodej with «(¢) = v(t) = v_. Fort > 0, the source switches to the

(5) constant value:(t) = v4. As a result, fort > 0 we have

i.e., to find R;; we add all resistances in the intersection of the u(t) = vy + e ¢ Gt(v— —vy) (6)
unique path from nodéto the root of the tree and the uniqugNhiCh converges ag — oo to
path from nodej to the root of the tree. For the example i
Fig. 3, we obtain thaf? is equal to (see the equation Iocater%v
at the bottom of this page) wherg = 1/g;.

One can also verify that in a grounded capacitor RC tree o(t) = e‘cflct(v_ —vy)
with input voltagew;,(t), the vectoru(t) in (1) is equal to
u(t) = uin(t)1 wherel is the vector with all components
equal to one.

vy (since our assumption
>0,G >0 implies stability). The difference between the
ode voltage and its ultimate value is given by

and we are interested in how largemust be before this is
small.
To simplify the notation, we will relabel as+ and from

E. Applications here on study the rate at which

_c—1
Linear RC circuits are often used as approximate models u(t) = =< “o(0) (7
for transistors and interconnect wires. When the design R&s

ecomes small. Note that this satisfies the autonomous

rameters are the physical widths of conductors or tranS'StoéS%uation Cdv/dt = —Go.

th;acrﬁggeﬁtainge t?]';d Eig:clhagﬁsrga(g;ces are affine in the ?can be shown that for a grounded capacitor RC circuit
.C. . . -1 . . .
P , 1€, ey the matrixe=¢~ ©* is elementwise nonnegative for al> 0

_An important example is wire sizing, Wh_eue denotes t_he ee [23, p. 146]). Therefore, i0) > 0 (meaningx(0) > 0
width of a segment of some conductor or interconnect line. ! ; =
or k=1, ---,n)in (7), the voltages remain nonnegative, i.e.,

simple lumped model of the segment consists af section:
) . . for ¢+ > 0 we have
a series conductance with a capacitance to ground on each
end. Here the conductance is linear in the widthand the v(t) > 0.
capacitances are linear or affine. We can also model each . ]
segment by many such sections and still have the general Also note that in a grounded capacitor RQ tree', the steady-
form (1), (2). state .node voltages are all gqual. When dlscussmg RC trees,
Another important example is an MOS transistor circul/® will t_herefore assume without Iosg of generality that the
wherez; denotes the width of a transistor. When the transist8IPUt switches from zero to one &= 0, i.e., v = 0,v4 =1
is “on” it is modeled as a conductance that is proportiond} (6). or for the autonomous model, thef0) = 1 in (7).

to x; and a source-to-ground capacitance and drain-to-ground

capacitance that are linear or affineip A. Threshold Delay
In many applications the natural measure of the delay at
IIl. DELAY nodek is the first time after whichy, stays below some given

. . . . threshold levelx >0, i.e.,
We are interested in how fast a change in the input “

propagates to the different nodes of the circuit and in how e — inf {7 |up(t)| < afort > T}
this propagation delay varies as a function of the resistances
and capacitances. In this section, we introduce three possi
measures for this propagation delay: the threshold delé&y
which is the most natural measure but difficult to handle thres _ maX{Tlthres’...7Trfihres}

mathgmancally; Fhe Elmore delay, whlch is W|Qely used in — Wt {T| |[o(t)]| < afor¢ > T}

transistor and wire sizing; and the dominant time constant. ' '

We will compare the three delay measures in the examplehere|| - ||, denotes the infinity norm, defined Bl||.. =
(Sections V-VI) where we will observe that their numericahax; |2;|. The critical threshold delay is the first time after
values are usually quite close. More theoretical details on tivnich all node voltages are less than

will call the maximum threshold delay to any node the
itical threshold delayof the circuit

T1 T1 T1 T1 T1 T1
TL 172 1L+ T2 71 71 71
1 ritr2 mit+re+rs 71 71 71
71 71 71 71+ 74 71+ 74 71+ 74
r - - rLA Ty LT T o+ T

1 1 1 7,1+7,4 7,1+7,4 7)1+7)4+T6
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v () et we can also write
i k

6(0) b= T = mgx(e;{aflce) =107 oo (8)

rpothres
o'l

(For a matrixA € R™", || Al| is the maximum row sum of
A, i.e., ||x4||C><> = mMax;=1,....n E?:l |A“|)

“thros i )
T C. Dominant Time Constant

Fig. 4. Graphical interpretation of the Elmore delay at nuiideT,‘Ehres is In this paper, we propose using tbdeminant time constant

the threshold delay at node The area below,, which is shaded lightly, ; : :
is T¢Im . The darker shaded box, which lies belay, has areaTthes of the RC circuit as a measure of the delay. We start with

From this it is clear that when the voltage is nonnegative and monotohicame definition. LetA;,---, A, denote the eigenvalues of the
decayingaTyhres < Tphm. circuit, i.e., the eigenvalues cfC~1G or equivalently, the
roots of the characteristic polynomiéét(sC + G). They are

The critical threshold delag™ = depends on the designreal and negative since they are also the eigenvalues of the
symmetric, negative definite matrix

parameterse: through (7), i.e., in a very complicated way.
Methods for direct optimization of "¢ are inefficient and 01/2(—0_1G)C_1/2 — _o-Y2q012
also local, i.e., not guaranteed to find a globally optimal design.

(which is similar to—C~1G). We assume they are sorted in
B. Elmore Delay decreasing order, i.e.,

In [1], EImore introduced a measure of the delay to a node
that depends o andG (hence,x) in a simpler way than the

threshold delay and often gives an acceptable approximatipRe |argest eigenvalug; is called thedominant eigenvalue
to it. The Elmore delay to nodg is defined as or dominant poleof the RC circuit.

0 Each node voltage can be expressed in the form
e = / v (t) dt.
0

0>A 22 Ay

Vs (t) = Z aike)‘it (9)

While T,Slm is always defined, it can be interpreted as a i—1
measure of delay only whem(¢) > 0 for all £ > 0, i.e., when \yhich is a sum of decaying exponentials with rates given by
the node voltage is nonnegative. (Which is the case, as g eigenvalues. We define tdeminant time constart the
mentioned, in grounded capacitor RC circuits will) > 0.)  1th node as follows. Let denote the index of the first nonzero

In the common case that the voltages decay monotonicalym in the sum (9), i.equix = 0 for i<p and a;, # 0.
i.e., du(t)/dt < 0 for all t > 0, we have the simple bound (Thus, the slowest decaying term if is a;,c*t.) We call

T hres < e Ap the dominant eigenva_luat nodek, and the dominant time
constant at nodé is defined as

which can be derived as follows. Assuming is positive
and nonincreasing, we must havg(t) > « for ¢ < ZTihres,
Hence the integral of;, must exceedZ}'** (see Fig. 4). The In most casesy, contains a term associated with the largest
monotonic decay property holds, for example, for groundedigenvalue\; in which case we simply havedo™ = —1/X;.
capacitor RC trees [2, Appendix C]. (See also [24] for sharperThe dominant time constafiil®™ measures the asymptotic
bounds between the threshold delay and the Elmore delayréte of decay oty (¢) and there are several ways to interpret
grounded capacitor RC trees.) it. For exampleZ;°™ is the smallest numbeF such that

We can express the Elmore delay in termsfC, and _

P y @ oa(8)] < et/

v(0) as

holds for somes and all¢ > 0.
The (critical) dominant time constaris defined agd°™ =
where ¢, is the kth unit vector. Thus the vector of Elmoremaxi T;*". Except in the pathological case whex0) is
delays is given by the simple expressidtCu(0) where deficientin the eigenvector associated with we have

Tiom = 1)),

e = I G=1Cw(0)

R = G! is the resistance matrix. We define theitical Tdom — _1/),. (10)
Elmore delayas the largest Elmore delay at any node, i.e., ) o
T = max, T, In the sequel we will assume this is the case. Note that the
For a grounded capacitor RC circuit witli0) > 0, we can dominant time constarif°™ is a very complicated function
express the critical Elmore delay as of G and (, i.e., the negative inverse of the largest zero of
. . the polynomialdet(sC + G).
" = |7 Cv(0)|| The dominant time constant can also be expressed in another

by noting that the matrixG—'C = RC is elementwise form that will be more useful to us.

nonnegative. If/(0) = 1 (as in a grounded-capacitor RC tree) 7™ — min{T|TG - C > 0}. (12)
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This form has another advantage: it provides a reasonabléds an example, suppose the area of the circuit described by

measure of delay in the case wh€rand G are only positive (2) is an affine function of the variables. This occurs when

semidefinite (i.e., possibly singular). The details are given the variables represent the widths of transistors or conductors

Appendix A. (with lengths fixed ad;) in which case the circuit area has
the form

V. DOMINANT TIME CONSTANT OPTIMIZATION ap + 21l + -+ Tl

In this section, we show how several important desigRhereq, is the area of the fixed part of the circuit. We can
problems involving dominant time constant, area, and powgfinimize the area subject to a bound on the dominant time
can be cast as convex or quasi-convex optimization problegtnstant/ o™ < 7;,.... and subject to upper and lower bounds

that can be solved efficiently. on the widths by solving the SDP
A. Dominant Time Constant Specification minimize Zlm
as Linear Matrix Inequality i=1

As a consequence of (11), we have subject to. TinaxG(z) — C(x) 2 0

min £ T; < Tmax, t= 17 BN 14
T (@) < Thnax <= TuaxG(x) = C(2) 20. (12) i == L e ()

Thi ¢ traint i led En trix i lit The solutions of (14) are on the globally optimal tradeoff
LI\I/ISI _Wt?]e (I)ftcr(l)nsdramd IS cafe e?_r ma ?)_( mterz]qualty_ curve, i.e., they ardPareto optimalfor area and dominant
(LMI): the left-hand side is a symmetric matrix, the en N€%me constant. By solving this SDP for a sequence of values

of which are affine fun(_:t|ons o&._ It can be shown that the Of Tiae, We can compute the exact globally optimal tradeoff
set of vectorse that satisfy (12) is convex regardless of th%etween area and dominant time constant

topology of the circuit. In other words, an upper bound on the In Section V we will see that tradeoffs between power
dominant time constant is a convex constraint in the Variablg%sipation and dominant time constant can be computed in

x'This means thai 4™ is a quasi-convesxunction of z, i.e., a similar way by solving a series of SDP's.
the sublevel sets C. Generalized Eigenvalue Minimization
{279 (%) < Tnax Another common problem involving LMI’s has the form
are convex sets for all},,x. Quasiconvexity can also be minimize A
expressed as: fof € [0, 1] subject to AB(z) — A(z) > 0
T4™(fz + (1 — 0)3) < max{T4™(z), T4™(2)} B(z)>0, C(z)>0 (15)

i.e., as the design parameters vary on a segment between e 4, B, and C' are symmetric matrices that are affine

values, the dominant time constant is never any more than fHections of z and the variables are and A € R. This

larger of the two dominant time constants at the endpointsProblem is called thegeneralized eigenvalue minimization
Linear matrix inequalities have recently been recognizdfoblem(GEVP). GEVP's are quasiconvex and can be solved

as an efficient and unified representation of a wide varie@fficiently. See [25], [31], [27], [32], and [33] for details on

of nonlinear convex constraints. They arise in many differefPecialized algorithms.

fields such as control theory and combinatorial optimization AS an example, the problem of minimizing the dominant

(for surveys, see [26]-[30]). Most importantly for us, manyme constant, subject to an upper bound on the area and upper

convex and quasi-convex optimization problems that invoh@d lower bounds on the variables, can be cast as a GEVP

LMI's can be solved with great efficiency using recently minimize 7°

developed interior-point methods. subject to TG(z) — C(z) > 0
B. Semidefinite Programming > himi<c
The most common optimization problem involving LMI's =t )
is the semidefinite programmingroblem (SDP) in which we Tmin £ T < Tmax,  t=Le,m
minimize a linear function subject to a linear matrix inequalityvith variables7” and .
minimize 'z

V. SIZING OF CLOCK MESHES

subject to A(z) = 0 (13) The possibility of optimizing RC circuits with loops of

where A(x) = Ag + 2141 + - + TmAm, 4; = AT, and the resistors is of importance to high-performance microprocessor
inequality meansA(x) is positive semidefinite. Semidefinitedesign where the clock signal is distributed using a mesh
programs are convex optimization problems and can be solhiedtead of a tree. In [34], Desai, Cvijetic, and Jensen describe
very efficiently (see, e.g., [27]-[29]). We can also handihe design of the clock distribution network on a DEC-
multiple LMI constraints in the SDP (13) by representing thermlpha processor and note, “there is a need for algorithms for
as one big block diagonal matrix. sizing large nontree networks.” Minimizing the dominant time
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Fig. 7. RC mesh example withx 4 segments and the numerical values of
the load capacitances used in the calculation.
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Fig. 5. Clock distribution network modeled as an RC mesh. Each rectangular
element represents a wire, which we model as a simggdegment as in Fig. 6.

The drivers switch simultaneously. We are interested in the tradeoff between
delay (dominant time constant) and total dissipated power. The variables are
the widths of theV? segments, wher&' is the number of segments in each 50 - T
column and row.

135 140 145 150
power

— 11— Fig. 8. Tradeoff between dissipated power and dominant time constant.

4 dominant time constant by solving the SDP

[)’:Lmﬁz minimize 17C(z)1
I :|: SUbjeCt to ﬂ1laxG($) — C(.’L’) 2 0

Osxiswmaxv i:]-v"'vNQ' (16)
Fig. 6. A segment of an interconnect wire with widthis modeled as a . ) .
conductancevx and two capacitances to the grougid. By solving this problem for different values df;,,, we

can trace the exact globally optimal tradeoff curve between

constant instead of Elmore delay is a promising technigue dissipated power and dominant time constant. This tradeoff
achieve exactly that goal. curve is shown in Fig. 8 for the numerical values

Fig. 5 shows the example that we consider. The circuit
consists of a mesh of interconnect wire, withsegments per N=d, Go=1 a=1l f=05 wnx=1
row and column (so the number of nodes in the circuit is equahd for load capacitances as indicated in Fig. 7. Fig. 9 shows
ton = (N +1)?). Each interconnect segment (the rectanguldne solution for two different points on the tradeoff curve
elements in Fig. 5) is modeled asrasegment, as in Fig. 6. (79°* = 55 and 79°* = 100).
Each node of the mesh has a capacitive l6adrhe networkis ~ We note that the topology is different in the two cases.
driven by voltage sources with output conductag&e Note More segments are used in the circuit on the left, which has
that this circuit is a grounded capacitor RC circuit, but na small dominant time constant and large power consumption
an RC tree, since it contains loops of resistors and multiplarge total capacitance). In the solution on the right, fewer
sources. The optimization variables are M&segment widths segments are used and they are smaller which reduces the
x; (with constraints < z; < wWpax)- power dissipation but increases the dominant time constant.

The sources switch between zero and one simultaneouslyFig. 10 shows the fastest and the slowest step responses in
and at a fixed frequency. Therefore the energy dissipatedhioth circuits when a step input is applied simultaneously to

once cycle is equal to the five voltage sources in the middle row. Note in particular
n N? that the values of the three delay measures are very close (and

170(2)1 = ZCi +2/32xi in fact, the dominant time constant approximates the 50%-

i=1 i=1 threshold delay better than the EImore delay). This observation

which is a linear function of the variables This means we is confirmed by many other examples (see the following
can minimize the dissipated power subject to a bound on thections and the report [22]).
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® ®

Fig. 9. Optimal solution for two points on the tradeoff cunB?°™ = 50 (left) and T9°™ = 100 (right). The numbers indicate the optimal widths
xz; of the segments; the segments with width = 0 are not shown.

Tthres TdomTelm

PRV

0.5 0.5

0.0 .

0.0

200 300 400 500 0 100 200 300 400 500

Fig. 10. Step responses for the two solutions in Fig. 9. The plots show the responses at the fastest (a) and the slowest (b) node in Fig. 9. We also show
the critical 50%-threshold delay, the critical Elmore delay, and the dominant time constant.

G

ol S Le ¢ .
r L/l T '
NI O e R RO BN -

oL o L Lo
1 oot s L Byl Byl
= = N N = = 7% 13ty
G T G I I

g opTe

Fig. 11. Tristate bus sizing and topology design. The circuit on the left represents a tristate bus connecting six nodes. Each pair of nodesdis connecte
through a wire, shown as a dashed line, modeled assegment shown at right. The bus can be driven from any node. When:nddees the bus,

the «th switch is closed and the others are all open. Note that we have 15 wires connecting the nodes, whefeasaoalypeeded to connect them. In

this example, as in the previous example, we will use dominant time constant optimization to determine the topology of the bus as well as the optimal
wire widths 2;;: optimal x;;’s which are zero correspond to unused wires.

VI. TRI-STATE BUS SIZING AND TOPOLOGY DESIGN (Since in the optimal designs many of the wire segments will

In this example we optimize a tristate bus connecting SB{ave width zero, it is perhaps better to think of the fifteen

segments apossiblewire segments.) The capacitance and the

nodes. The example will again illustrate that dominant t'mgonductance of the wire segment between nodad node

cohstant minimization cgn be used to (indirectly) design thyedepend on its physical dimensions, i.e., on its lenggh
optimal topology of a circuit. and widthz;;: the conductance is proportional 4g;/l;;; the

The model for the bus is shown in Fig. 11. Each pair qfapacitance is proportional ta;/;;. The lengths of the wires
nodes is connected by a wire (shown as a dashed line) whigle given; the widths will be our design variables. The total
is modeled as a-segment, as shown on the right in the figurewire area is¥;; I;;z;;.
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Fig. 12. Position of the six nodes. The lendth of the wire between each &~ 1000 |
two nodes: andj in Fig. 11 is the(; -distance (Manhattan-distance) between
the points: andj in this figure. The squares in the grid have unit size.

500 |
The bus can be driven from any node. When nodeives

the bus, theith switch is closed and the others are all open. ‘ ‘
Thus we really have six different circuits, each corresponding 0 20 . 40 60

to a given node driving the bus. To constrain the dominant time

constant, we require that the dominant time constant of eachféf 13. Area-delay tradeoff.

the six drive configuration circuits has dominant time constant

less tharll™>*. In other words, ifZ1°™ is the dominant time the right. Also note that in both cases the optimal topologies
constant of the RC circuit obtained by closing the switch &tave loops.

nodei and opening the other switches, tHef*™ = max; 7; Fig. 15 shows the step responses for the first solution
is the measure of dominant time constant for the tristate bug™°™ = 410). The results confirm what we expect. The
The numerical values used in the calculation are smallest delay arises when the input node is one or two (the

5 . first two plots in the left column) since they lie in the middle.
G=1 =10, =05 a=1 The delay is larger when the input node is one of the four

dom ; H i

The wire widths are limited to a maximum value of 1.0. Wé’ther podes. Note that IS qual In fo'ur of the six cases.
assume that the geometry of the bus is as in Fig. 12 and thaf\9ain. the Elmore delay is slightly higher than dominant
the lengthl;; of the wire between nodesandj is given by time constant and the dominant time constant is slightly higher
the #,-distance (Manhattan distance) between poingsd ; han the 50%-threshold delay.
in Fig. 12.

Fig. 13 shows the tradeoff curve between maximum domi- VII. COMBINED WIRE SIZING AND SPACING
nant time constarff!>™ and the bus area. This tradeoff curve The third application demonstrates another important advan-
was computed by solving the following SDP for a sequencgge of using dominant time constant instead of EImore delay:

of values of Tiax the ability to take into account nongrounded capacitors.
. The problem is to determine the optimal wire widthsd
minimize Zliﬂ“ spacings for a bus taking into account the coupling capaci-
_ s tances between the wires. We consider an example with three
subjectto 0 < a;; <1 wires, each consisting of five segments, as shown in Fig. 16.
oo (G(2) + GEpp,) — C(z) > 0 The optimization variables are the widtles; and the distances
k=1,---,6. s1 and sy between the wires.

The RC model of the three wires is shown in Fig. 17.
Here » denotes the vector with components; (in any The wires are connected to a voltage source with output
indexing order),G¢(z) denotes the conductance matrix of theonductances at one end and to capacitive loads at the other
circuit when all switches are open, adi{x) is the diagonal end. As in the previous example, each segment is modeled as a
matrix with itsith element the total capacitance at nedéhe =-segment with conductance and capacitance proportional to
matrix Fyy, is zero except for théth diagonal element, which the segment widthw;;. We include a parasitic capacitance
is equal to one. The six different LMI constraints in the abovieetween the wires. We assume that there is a capacitance
SDP correspond to the six different RC circuits we have tzetween thejth segments of wires 1 and 2, and between the
consider. The conductance matrix for the circuit with switclith segments of wires 2 and 3, with total values inversely
k closed is@ with G added to itskth diagonal element, so proportional to the distances,; and s»;, respectively. To
the kth LMI constraint states that the dominant time constanbtain a lumped model, we split this distributed capacitance
of the circuit with switchk closed is less thaff,,,. . over two capacitors: the capacitance between segnyenfs

Fig. 14 shows the optimal widths for two solutions on thevires 1 and 2 is lumped in two capacitors with vahiés ;

tradeoff curve. The connections in the figure are drawn witind the total capacitance between segmeras wires 2 and
a thickness proportional to;;. (Note however that the scales3 is lumped in two capacitors with valug/s,;. This leads to
are not the same in the left and right figure.) We note thtdte RC circuit in Fig. 17.
the topology of both designs are different. The left solution, We also impose the constraints that the distangesbe-
which is faster, uses more connections than the solution tween the wires must exceed a vakyg,, and that wire widths
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Fig. 14. Two solutions on the tradeoff curve. The left figure shows the line widths for the solutiof"#fth = 410. The width of the wires is proportional

to z;;. The width of the wires between (1, 5), (2, 4), (3, 4), and (3, 6) is equal to the maximum allowed value of one. There is no connection between
node pairs (2, 6), (3, 5), (4, 5), and (4, 6). The right figure is the solution on the tradeoff cur@'¥8r = 2000. The widest connection is between

nodes (3, 4) and has width 0.14. Again all connections are drawn with a width proportiong}.tén this solution the connections between (1, 4), (2,

3), (2, 5), (2, 5), (2, 6), (3, 5), (4, 5), and (4, 6) are absent. (Note when comparing both figures, that a different scale was used for the widths in both
figures. The sizes in the right figure are roughly seven times smaller than in the left figure.)

Tthres Tdom Telm Tthres Tdom Telm Am
1.0 \l / S . ey Uy @W\/\T ICH Clzjﬁ fl‘ fl‘ iCl
" ) - : ‘ — ,//'/'/”// Y5 — 211 :L = cu :L: C16 :L
= Z% 1.0 - BEme———— s I
T T T V4
/ L
0.5( - /
0.0 . . S .
Fig. 17. RC model of the three wires shown in Fig. 16. The wires are
1.0 ———————==—Y3 1.0 ————————==3Y6 COnnected to voltage sources with output conductatteat one end
//—/"""" e T __———""7]"4 and to load capacitor&’; at the other end. The conductances and
/ e [ P capacitancesz;; are part of thew-models of the wire segments. The
0-5/ 0.5 : capacitances?;; model the capacitive coupling. The conductances and
o J/ f capacitances depend on the geometry of Fig. 16 in the following way:
0.0 L 0.0 gij = awijcn = Pwi,cij = Blwiy + wi_n) (1<5<6),ci
0 500 1000 0 500 1000 = Bwis, Gi1 = v/si1, 85 = v/5i5 + 7/ sij—1) (L <3 <6),éi6 =7/s:5.

Fig. 15. Step responses for the solution on the tradeoff curve with
79 = 410 (i.e., the solution shown on the left in Fig. 14). The topconstant of the circuit by solving the optimization problem
left figure is the step response when switch 1 is closed, the second figure

in the left column is the step response when switch 2 is closed, etc. Each minimize s + s

shows the fastest and the slowest of the six responses. We also |nd|cate

the values of the dominant time constant, the critical Elmore delay, and the subject to TmaXG( ) C’(w, 5) >0

critical 50%-threshold delay.

[t

s1; = 81 — wi; — 0.5wyy, j=1--,

32j:32—w3]’—0.5w2j, j:]_’---’5

wijswmaxv 1 =1,2,3, 5=1,---,9

a7)

in the variablessy, s, w;;, s;;. Note that the capacitance
matrix contains terms that are inversely proportional to the
variables s;; and therefore problem (17) isot an SDP.
However, by a change of variables = 1/s;;, problem (17)
can be reformulated as a convex optimization problem

321>31111n7 i:1727 J:1775

St

82

- s - mimimize s; + sz
- subject to TpaxG(w) — Clw,t) > 0

Fig. 16. Wire sizing and spacing. Three parallel wires consisting of five

segments each. The conductance and capacitance gthtisegment of wire 1/t1j < 51— wiy — 0.5wyy, J=1--,5

is proportional taw; ;. There is a capacitive coupling between ftfesegments 1/t2,. < 89— wsy; — 0.5ws; j=1,---,5

of wires 1 and 2, and between tfith segments of wires 2 and 3, and the J = J R ST

value of this parasitic capacitance is inversely proportional;to and sz;, 0<¢; < 1/ Smin, 1=1,2, 53=1,---,5

respectively. The optimization variables are the 15 segment widthsand L L

the distancess; and so. Wij < Wmax, =123, j=1,--,5
(18)

are less thamv,,x. We can minimize the total widtl; + s,  with variablessy, s2,%;; and w,,;. Note that we replace the
of the three wires subject to a bound on the dominant tinggualities in the second and third constraints by inequalities.
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we place the driver at the right end of the second wire and
the capacitanc€’; at the left. The rest of the circuit and the
paramaters are left unchanged (Figs. 22-25).

Note in the application of this section that we cannot
guarantee that the peak due to crosstalk stays under a certain
- 1 level. This would be a specification in practice, but it is
L 4 difficult to incorporate into the optimization problem. However
. e 1 we influence the level indirectly: minimizing the dominant

0 1 2 3 4 5 time constant makes the crosstalk peak shorter in time (since
Fig. 18. Solution of (17) foflmax = 130. Note that the distance betweenthe dominant time constant determines how fast all voltages
the wires is equal to its minimal allowed value of 1.0. settle around their steady-state value). Indirectly, this also

tends to make the magnitude of the peak smaller (as can be
We first argue that this can be done without loss of generaken by comparing the crosstalk levels for the two solutions
ity. Suppose(s;,w;;,t;;) are feasible in (18) with a certainin the examples).
objective value and that one of the nonlinear inequalities in A practical heuristic based on the dominant time constant

S = R W oA Ut
!

tij, e.g., the inequality minimization that would guarantee a given peak level is as
1 < 05 follows. We first solve problem (17) for a given valuetf ..
[t < 51— wij = 0.5up; Then we simulate to see if the crosstalk level is acceptable.

is not tight. Decreasing ; increases the smallest eigenvalue df Not, we increase the spacing of the wires until it is. Then
the matrixT i G(w) — C(w, t). (This is readily shown from We determine the optimal wire sizes again, keeping the wires
the Courant—Fischer minimax theorem. It is also quite int@ least at this minimum distance. This iteration is continued

itive: reducing coupling decreases the dominant time consta}il it converges. The dominant time constant of the final
Therefore we can repladg; by the value result will be at least as good as the first solution and the

- crosstalk level will not exceed the maximum level.
tlj = 1/(81 — Wi — 0.5w2j)

while still retaining feasibility in (18) and without changing the
objective value. Without loss of generality, we can therefore
assume that at the optimum the second and third constraint$Ve have presented a new method for wire and transistor
in (18) are tight. Hence problem (18) is equivalent to (17). sizing based on using the dominant time constant as a measure
Problem (18) can be readily cast as an SDP by expressiwfgsignal delay in RC circuits. The main advantage of using

VIIl. CONCLUSIONS

the second and third constraints as the LMI's this measure is that RC circuits with general nontree topologies
t; 1 . can be optimally sized using convex optimizatjon. This is in
[ 1 sy —wy— 0_5w2j} =0 contrast to Elmore delay sizing methods, which only work
for RC trees. We demonstrated the power of this method
and by applying it to several important examples of significant
{tgj 1 } =0 practical importance: sizing of clock meshes, sizing of a tristate
1 s9—ws; — 0.5wo; bus, and sizing and spacing of a bus, taking crosstalk into
Figs. 18-21 illustrate the solution of (17) for two values 0?ccount.

Thax assuming the parameter values
G =100, C; =10, Cy=20, C3=30

= 17 [3 = 057 Y= 27 Smin = 17 Wmax = 2.

A. Computational Complexity of Dominant
Time Constant Minimization

The method we described uses the recently developed
Figs. 18 and 19 illustrate a solution fdf,.. = 130. The interior-point methods for semidefinite programming (see,
widest wire is number three since it drives the largest load, aed)., [27], [28]). Since real world sizing problems are likely
the narrowest wire is number one which drives the smalldast be very large, we briefly discuss the complexity of the
load. We also see that the smallest distance between the wB&P methods. Two factors determine the overall complexity
is equal to its minimum allowed value of 1.0 which means thaf these methods: the total number of iterations and the
the cross coupling did not affect the optimal spacing betweenmplexity of an iteration. It can be shown that the number
the wires. Fig. 19 shows the output voltages for steps appliefliterations to solve an SDP to a given accuracyrows at
to one of the wires, while the two other input voltages remaimsost a<0(,/n log(1/¢€)) wheren is the size of the matrid(z)
zero. in (13) [27]. In practice, the performance is even better than
Figs. 20 and 21 illustrate a solution f@t,.. = 90. Here suggested by this worst-case bound. The number of iterations
the distance between the second and third wires is larger thesually lies between 5 and 50 and is almost independent of
the minimum allowed value of 1.0. Fig. 21 shows the outpyroblem size. For practical purposes it is therefore fair to
voltages for the same situations as above. consider the total number of iterations as constant and to regard
As an interesting variation, we consider the same circuthe complexity of an iteration as the key factor in the overall
but with the signal direction of the second wire reversed, i.eomplexity.
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Fig. 19. Responses for the solution of Fig. 18. (a) The voltages at the output nodes due to a step applied to the first wire, (b) second wire, or (c)
third wire. The dashed line marks the dominant time constant.

iU

.; ; | can expect that this research will lead to software capable of

woH o ; : L

- ‘ handling much larger circuits (several thousand nodes).

8 ; For even larger problems (more than 10000 nodes), it may

6" '| be necessary to develop special-purpose techniques. These

techniques can take advantage of the fact that the function

Tom(z) and its (sub)-gradients can be evaluated very effi-

! ciently using the Lanczos algorithm for computing the largest

0 1 2 3 4 eigenvalue of a sparse symmetric matrix. In other words, the

Fig. 20. Solution of (17) fofTinax = 90. problems we described in this paper are not o_nly convex,
and hence fundamentally tractable, there also exist extremely
efficient algorithms for evaluating the objective and constraint

Each iteration involves solving a large system of lineg(nctions and their derivatives. Reference [48] describes recent
equations to compute search directions. Little can be said ab@ufk in this direction.

the complexity of this computation since it largely depends
on the amount of problem structure that can be exploited.
If the problem has no structure, i.e., if the matricds in g Comparison with Elmore Delay

(13) are completely dense, then the cost of one iteration is ) ) _
O(mn3 + m2n2)_ This is the case for the general-purpose We conclude with an overview of the differences between

SDP softwaresp and sppsoL [35], [36], which were used EImor_e delay apd the dominan_t time constant. The most impor-
for the numerical examples in this paper. These codes sofg@t difference is that the dominant time const@amtaysleads
problems up to several hundred variables without difficultj® tractable convex or quasi-convex optimization problems
but become impractical for larger problems since they dl&lth no restrictions on circuit topolqu. This follows frpm (12)
not exploit the problem structure. In all practical applicationd/hich holds regardless of the circuit topology. Specifically, we
however, there is a great deal of structure that can be exploit8gteé the following advantages.
and specialized codes are orders of magnitude more efficient Eimore delay optimization applies only to circuits with
than the general-purpose software (for a few examples see one input source. The dominant time constant can be
[37] and [38]). applied to circuits with multiple sources, a problem that
SDP problems arising in dominant time constant minimiza-  has only recently received attention [17], [49].
tion possess two forms of sparsity that should be exploiteds The circuits may contain loops of resistors, e.g., clock
in a specialized code. First, the capacitance and conductance meshes. Although for grounded capacitor RC circuits with

(S

matricesC and G are usually sparse matrices (inde€dis loops of resistors, the Elmore delay is still a meaningful
often diagonal). Secondly, each variableaffects only a very approximation of signal delay [13], [11], [14], it does not
small number of elements of and & (i.e., the different have the simple posynomial form as it does for RC trees,
matricesC; and G; in (2) are extremely sparse). and convex optimization cannot be used to minimize it.

We can also comment on the current status of SDP softwares The possibility of handling nontree topologies allows us
Several general-purpose software packages for SDP’s are now to design the topology of the interconnection itself. For
available, e.g., [35], [36], [39]-[45]. These packages exploit example, in the optimization of a clock mesh we start
little or no sparse structure and are therefore only useful for with a full grid of possible wire segments. After optimal
circuits of small size (several hundred nodes). The examples wire sizes are computed, some (and often, many) of the
in this paper were produced using teepackage of [35]. To wires have zero widths, which means they are not needed
give an idea of the run time, solving one instance of the SDP in the circuit (see also [17] for problems of designing
(16) of Section V takes about 15 s on a 120 Mhz Pentium interconnection topology).
machine. e Dominant time constant minimization handles circuits

Semidefinite programming is a very active area of research with capacitive coupling between the nodes (see
in optimization, and much of this activity is directed at  Section VII).
developing general-purpose software for large sparse SDP’She Elmore time constant, in addition to being quite useful
(see [46], [42], 47] for a few recent reports in this topic). Onas a measure of delay when sizing RC trees, is sometimes
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Fig. 21. Responses for the solution shown in Fig. 20. (a) The voltages at the output nodes, due to a step applied to the first wire, (b) second wire, or
(c) third wire. The dashed line marks the dominant time constant.

6F I capacitor RC circuit with loops of resistors. Optimizing the
sLis B | dominant time constant on the other hand leads to tractable
4l convex optimization problems even in general RC circuits.

3! }

2 APPENDIX |

ik | SINGULAR C' OR G

oh s : 5 5 | L We now come back to the assumption in Section Il that

the capacitance matrixXC and conductance matriX; are

Fig. 22. Solution of (17) with the signal direction of the second wirgyoth Stncﬂy posmve definite. This assumpnon s|mp||f|ed the

reversed, and foflinax = 130. definition and interpretation of the dominant time constant
since it ensures that the number of generalized eigenvalues,

more appropriate to use than the dominant time constant. Y& the number of roots of the polynomidtt(AC + G) is

give here two examples where this is the case. exactly equal ton.

» Consider a path consisting of several stages of bufferedwhen bothC and G were singular, the dominant time con-
wire segments. The total Elmore delay of the path &ant minimization still leads to meaningful results provided
the sum of the Elmore delays of the segments amge do not define the dominant time constant in terms of the
is still a posynomial function that can be efficientlyargest generalized eigenvalue, but use the LMI definition
minimized by geometric programming. In contrast, it

is not possible to efficiently minimize the sum of the TI°m — inf{T|TG — C > 0} (19)
dominant time constants since in general the sum of
guasi-convex functions is not quasiconvex. (we should add thafl*™ = +oo if there is noZ" with

» The dominant time constant is useful as an alternative 1oz — C' > 0). In this appendix we show that this definition is
the critical Elmore delay, i.e., the Elmore delay to thindeed meaningful and valid whe®i and G are only positive
node with the slowest response. It is not a good measwgemidefinite, i.e., possibly singular.
for the delay to the other nodes. Given arbitrary positive semidefinit¢’ and &, one can

Fishburn and Dunlop make an interesting remark in trdways change coordinates to bring the circuit equat@ins=

conclusion of their paper on the TILOS program{80]. They —Guv into the form
address the question whether it is justified to assume perfect

step inputs, or whether the program should take into account ¢ 00 d@/dt Gll Gz 0 @(t)
a more realistic input waveform: “although there exist several 0 00 d“f/ dt | =—|Gl, Gn 0 “j(t)
0 0 0] |diz/dt 0 0 o] @@

static timing analyzers and a transistor sizer that take into

account input waveform shape, we hesitate to do so without a (20)

convexity proof in hand. If a more accurate model turns out

to be nonconvex, there is always the danger that the optimiéth C' and G strictly positive definite. Note that these

might become trapped in a local minimum that is not a g|obgquat|ons are a combination of differential and algebraic

minimum, resulting in a more pessimal solution than the legguations.

acurate model.” AssumeC € RP*P. The circuit equation (20) is equivalent
A similar argument can be made in favor of the approadh

in this paper. Accurate expressions for the delay in transistor R AL LyA A A—LAT A\~

circuits are important for simulation and timing verification, do /dt =—=C (Gll — G12Gyy G12)Ul(t)

and approximations based on the first few moments seem to be 0 (t) = -G GLa (1)

very well suited for this purpose (see, for example, [50]-[53]).

For delay optimization, however, these expressions lead and 73(¢) completely arbitrary. Let\;,s = 1,---,p be the

complicated nonconvex optimization problems, with possibligenvalues of the matrix

many local minima. This is already the case for the Elmore

delay (the first moment of the transfer function) of a grounded -C- (Gu — G12G G12)
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Fig. 23. Responses for solution of Fig. 22. (a) The voltages at the output nodes due to a step applied to the first wire, (b) second wire, or (c) third wire
(right). The dashed line marks the dominant time constant. The voltage the voltage across the capacit@s which is placed at the left end of the wire.

10f] - — 7 and use the second form to derive an upper bountudt)||..
L - e—1/2 —1/2,
il 1 el =lICY 2O (0o
of <O le T o
4 1072l [0(0)]|oo
_—1/2 —1/2

2 < Vikioo (CH2) e 9| lo(0) loo

B 1/2 _¢/dom
"o 1 2 3 1 5 = Voo (C?) [0(0)|oe (21)

Fig. 24. Solution of (17) with the signal direction of the second wirgvhere the condition number.., is defined aSrico(4) =
reversed, and foffmax = 90. || Al|oo|lA7||oo @and || A]| denotes the spectral norm df i.e.,
its largest singular value. The first inequality follows from
t%he submultiplicative property of the matrix nofAB||o. <
[A]|oo]|Blloo) @and the definition of the infinity-induced matrix
norm (|| Az||o < [|4]lool|#]|o0)- The second inequality follows
N At Sy it s ; from the relation between the infinity-induced and the spectral
() zi:aze - () Zﬁzc . Ua(t) arbitrary norm of a matrix(|| A4l < v/n||4]| for A € R™*™). In the

T

sorted in decreasing order. Then all solutions of (20) have
form

last line we used the fact that the largest eigenvalue of the
The components ofu; correspond to nodes that are nokymmetric matrixe=C~""*GC """t is ¢=t/T*™ and that the

connected by capacitors or resistors to the rest of the circyrgest eigenvalue and the spectral norm of a positive definite

Itis therefore natural to ignore; when defining the dominant symmetric matrix coincide.

time constant (or, equivalently, to impose the extra assumption\ote that for diagonalC’ = diag(Cy,---,C,) we have

that v3(t) = 0) and to say that7d*™ = —1/); (and Foo(CY?) = (max; C;)/2 /(min; C;)/2.

Tiom =coif Ay =0). o _ For grounded capacitor RC circuits with{0) >0 we can
Finally, to see that this definition coincides with (19), notg|so derive a lower bound ofjv(t)||-e. Recall that for a

thatT > —1/A, if and only if the LMI grounded capacitor RC circuit the matdx® ™ ¢t is elemen-

TGy —C T @12 twise nonnegative. We therefore have

L >0 _
TGE, TG | — m’?ka(t) = max (efe_c 1Gtv(()))
holds. This can be easily shown by using a Schur complement > Vinin(0) lnax(cze—C_Ith)
(see e.g., [28)). b
Z Umin(O)C_t/T (22)
APPENDIX I where v,,;,(0) is the smallest component af(0). The last
SOME RELATIONS BETWEEN THE DELAY MEASURES inequality follows from the Gershgorin disk theorem [59, p.

In this section we derive several bounds between the thragtl, which together with the elementwise nonnegativity, im-
delay measures. The results allow us to translate upper bouRli€S that the eigenvalues of the matlalxc “* are bounded
on 7™ into upper bounds on Elmore delay and threshold d@Pove by largest row sumnaxy, ef ¢”“ 9'1. In a grounded-
lays. Some of the bounds will turn out to be quite conservativeaPacitor RC tree we can assumt®) = 1 and therefore
As the examples in the paper show, the 50% threshold delay, max vi,(t) > et/ T (23)
the Elmore delay, and the dominant time constant are much k
closer in practice than the bounds derived here would suggest.

B. Threshold Delay and Dominant Time Constant

A. Bounds on Node Voltages From (21), we see that for
We start by rewriting (7) as

0)loo
L L s > Tdoml N - 1/2 ||U(
o(t) = ¢=C T Chy(0) = ¢ 120G P G/2 tz 0g <\/ﬁli (C )—a



VANDENBERGHE et al: OPTIMIZING DOMINANT TIME CONSTANT 123

1.0 ¥

'Ul 7_)3
0.5
0.0 — — 32 = 02

0 50 100 150 0 50 100 150
(a) (©

Fig. 25. Responses for the solution shown in Fig. 24. (a) The voltages at the output nodes, due to a step applied to the first wire, (b) second wire, (c)
or third wire. The dashed line marks the dominant time constant.

TABLE |
BouNDs FOR GROUNDED CAPACITOR RC TREES k STANDS FOR Cr]n/ai/crl]/ii

” Tthres l Telm I Tdorn

pthres < Telm/a < 7dom log (vnK/a)
pelm < Tthres\/ﬁn/ log(1/ex) < Tdom\/ﬁn
pdom < Tthres/ log(1/cx) < relm

we have||u(t)||. < a, so we conclude For a grounded capacitor circuit we can also put together
bounds (25) and (24), which yields

hres dom N 1/2 ||U(O)||OO
Tt S T 108 <\/ﬁ’{o<> (C / )T . Telm S Tthres\/ﬁlioo(cl/Q) ||U(O)||OO
1Og(vmin(0)/a)
In a similar way, we can derive from (22) the lower bound and for a grounded capacitor RC tree
1
in 0 Telm < Tthres too 01/2 .
Tthres Z Tdom 108 <U ( )) (24) — \/ﬁh ( )10g(1/06)
67
. E. Summary
on the critical threshold delay of a grounded capaciisr . )
circuit. If v(0) = 1, we obtain Table | summarizes the bounds for grounded-capacitor RC
trees for which we have a complete set of upper and lower

Tthres Z Tdom 10g(1/0{) bounds.
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