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Abstract

A wide variety of nonlinear convex optimization problems can be cast as problems involv-

ing linear matrix inequalities (LMIs), and hence e�ciently solved using recently developed

interior-point methods. In this paper, we will consider two classes of optimization problems

with LMI constraints:

� The semide�nite programming problem, i.e., the problem of minimizing a linear func-

tion subject to a linear matrix inequality. Semide�nite programming is an important

numerical tool for analysis and synthesis in systems and control theory. It has also

been recognized in combinatorial optimization as a valuable technique for obtaining

bounds on the solution of NP-hard problems.

� The problem of maximizing the determinant of a positive de�nite matrix subject to

linear matrix inequalities. This problem has applications in computational geometry,

experiment design, information and communication theory, and other �elds.

We review some of these applications, including some interesting applications that are less

well known and arise in statistics, optimal experiment design and VLSI.



1 Optimization problems involving LMI constraints

We consider convex optimization problems with linear matrix inequality (LMI) constraints,

i.e., constraints of the form

F (x) = F0 + x1F1 + � � �+ xmFm � 0; (1)

where the matrices Fi = F T
i 2 Rn�n are given, and the inequality F (x) � 0 means F (x) is

positive semide�nite. The LMI (1) is a convex constraint in the variable x 2 Rm. Conversely,

a wide variety of nonlinear convex constraints can be expressed as LMIs (see the recent

surveys by Alizadeh [Ali95], Boyd, El Ghaoui, Feron and Balakrihnan [BEFB94], Lewis and

Overton [LO96], Nesterov and Nemirovsky [NN94] and Vandenberghe and Boyd [VB96]).

The purpose of the paper is to illustrate the use of linear matrix inequalities with a

number of applications from di�erent areas. The examples fall in two categories. The �rst

problem is known as the semide�nite programming problem or SDP. In an SDP we minimize

a linear function of a variable x 2 Rm subject to an LMI:

minimize cTx

subject to F (x) = F0 + x1F1 + � � �+ xmFm � 0:
(2)

Semide�nite programming can be regarded as an extension of linear programming where the

componentwise inequalities between vectors are replaced by matrix inequalities, or, equiva-

lently, the �rst orthant is replaced by the cone of positive semide�nite matrices. Although

the SDP (2) looks very specialized, it is much more general than a linear program, and it

has many applications in engineering and combinatorial optimization [Ali95, BEFB94, LO96,

NN94, VB96]. Most interior-point methods for linear programming have been generalized to

semide�nite programs. As in linear programming, these methods have polynomial worst-case

complexity, and perform very well in practice.

The second problem that we will encounter is the problem of maximizing the determinant

of a matrix subject to LMI constraints. We call this the determinant maximization or

maxdet-problem:

maximize detG(x)

subject to G(x) = G0 + x1G1 + � � �+ xmGm � 0

F (x) = F0 + x1F1 + � � �+ xmFm � 0:

The matrices Gi = GT
i 2 R

l�l are given matrices. The problem is equivalent to minimizing

the convex function log detG(x)�1 subject to the LMI constraints. The max-det objective

arises in applications in computational geometry, control, information theory, and statistics.

A uni�ed form that includes both the SDP and the determinant maximization problem

is
minimize cTx+ log detG(x)�1

subject to G(x) � 0

F (x) � 0:

(3)

This problem was studied in detail in Vandenberghe, Boyd and Wu [VBW98].
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2 Ellipsoidal approximation

Our �rst class of examples are ellipsoidal approximation problems. We can distinguish two

basic problems. The �rst is the problem of �nding the minimum-volume ellipsoid around

a given set C. The second problem is the problem of �nding the maximum-volume ellip-

soid contained in a given convex set C. Both can be formulated as convex semi-in�nite

programming problems.

To solve the �rst problem, it is convenient to parametrize the ellipsoid as the pre-image

of a unit ball under an a�ne transformation, i.e.,

E = fv j kAv + bk � 1g :

It can be assumed without loss of generality that A = AT � 0, in which case the volume

of E is proportional to detA�1. The problem of computing the minimum-volume ellipsoid

containing C can be written as

minimize log detA�1

subject to A = AT � 0

kAv + bk � 1; 8v 2 C;

(4)

where the variables are A and b. For general C, this is a semi-in�nite programming problem.

Note that both the objective function and the constraints are convex in A and b.

For the second problem, where we maximize the volume of ellipsoids enclosed in a convex

set C, it is more convenient to represent the ellipsoid as the image of the unit ball under an

a�ne transformation, i.e., as

E = fBy + d j kyk � 1g :

Again it can be assumed that B = BT � 0. The volume is proportional to detB, so we can

�nd the maximum volume ellipsoid inside C by solving the convex optimization problem

maximize log detB

subject to B = BT � 0

By + d 2 C 8y; kyk � 1

(5)

in the variables B and d. For general convex C, this is again a convex semi-in�nite opti-

mization problem.

The ellipsoid of least volume containing a set is often called the L�owner ellipsoid (after

Danzer, Gr�unbaum, and Klee [DGK63, p.139]), or the L�owner-John ellipsoid (Gr�otschel,

Lov�asz and Schrijver [GLS88, p.69]). John in [Joh85] has shown that if we shrink the

minimum volume outer ellipsoid of a convex set C � Rn by a factor n about its center, we

obtain an ellipsoid contained in C. Thus the L�owner-John ellipsoid serves as an ellipsoidal

approximation of a convex set, with bounds that depend only on the ambient dimension,

and not in any other way on the set C.
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Minimum volume ellipsoid containing given points

The best known example is the problem of determining the minimum volume ellipsoid that

contains given points x1, . . . , xK in Rn, i.e.,

C = fx1; : : : ; xKg;

(or, equivalently, the convex hull Cofx1; : : : ; xKg). This problem has applications in cluster

analysis (Rosen [Ros65], Barnes [Bar82]), and robust statistics (in ellipsoidal peeling methods

for outlier detection; see Rousseeuw and Leroy [RL87, x7]).
Applying (4), we can write this problem as

minimize log detA�1

subject to kAxi + bk � 1; i = 1; : : : ; K

A = AT � 0;

(6)

where the variables are A = AT 2 Rn�n and b 2 Rn. The norm constraints kAxi + bk � 1,

which are convex quadratic inequalities in the variables A and b, can be expressed as LMIs"
I Axi + b

(Axi + b)T 1

#
� 0;

so (6) is a maxdet-problem in the variables A and b.

Maximum volume ellipsoid in polytope

We assume the set C is a polytope described by a set of linear inequalities:

C = fx j aTi x � bi; i = 1; : : : ; Lg:

To apply (5) we �rst work out the last constraint:

By + d 2 C for all kyk � 1 () aTi (By + d) � bi for all kyk � 1

() max
kyk�1

aTi By + aTi d � bi

() kBaik+ aTi d � bi:

This is a convex constraints in B and d, and equivalent to the LMI"
(bi � aTi d)I Bai

aTi B bi � aTi d

#
� 0:

We can therefore formulate (5) as a maxdet-problem in the variables B and d:

minimize log detB�1

subject to B � 0"
(bi � aTi d)I Bai
(Bai)

T bi � aTi d

#
� 0; i = 1; : : : ; L:
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Minimum volume ellipsoid containing ellipsoids

These techniques extend to several interesting cases where C is not �nite or polyhedral, but

is de�ned as a combination (the sum, union, or intersection) of ellipsoids. In particular, it

is possible to compute the optimal inner approximation of the intersection or the sum of

ellipsoids, and the optimal outer approximation of the union or sum of ellipsoids, by solving

a maxdet problem. We refer to [BEFB94] and Chernousko [Che94] for details.

As an example, consider the problem of �nding the minimum volume ellipsoid E0 con-

taining K given ellipsoids E1; : : : ; EK. For this problem we describe the ellipsoids as sublevel

sets of convex quadratic functions:

Ei = fx j xTAix+ 2bTi x+ ci � 0g; i = 0; : : : ; K:

The solution can be found by solving the following maxdet-problem in the variables A0 = AT
0 ,

b0, and K scalar variables �i:

minimize log detA�1
0

subject to A0 = AT
0 � 0

�1 � 0; : : : ; �K � 0264 A0 b0 0

bT0 �1 bT0
0 b0 �A0

375� �i

264 Ai bi 0

bTi ci 0

0 0 0

375 � 0; i = 1; : : : ; K:

(7)

(c0 is given by c0 = bT0A
�1
0 b0 � 1.) See [BEFB94, p.43] for details.

3 Wire and transistor sizing

We consider linear resistor-capacitor (RC) circuits described by the di�erential equation

C
dv

dt
= �G(v(t)� u(t)); (8)

where v(t) 2 Rn is the vector of node voltages, u(t) 2 Rn is the vector of independent voltage

sources, C 2 Rn�n is the capacitance matrix, and G 2 Rn�n is the conductance matrix. We

assume that C and G are symmetric and positive de�nite (i.e., that the capacitive and

resistive subcircuits are reciprocal and strictly passive). We are interested in problems in

which C and G depend on some design parameters x 2 Rm. Speci�cally we assume that the

matrices C and G are a�ne functions of x, i.e.,

C(x) = C0 + x1C1 + � � �+ xmCm; G(x) = G0 + x1G1 + � � �+ xmGm; (9)

where Ci and Gi are symmetric matrices.

Linear RC models of the form (8) are often used as approximate models for transistors

and interconnect wires in VLSI circuits. When the design parameters are the physical widths

of conductors or transistors, the conductance and capacitance matrices are a�ne in these

parameters, i.e., they have the form (9). An important example is wire sizing, where xi
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denotes the width of a segment of some conductor or interconnect line. A simple lumped

model of the segment consists of a � section: a series conductance, with a capacitance to

ground on each end. Here the conductance is linear in the width xi, and the capacitances

are linear or a�ne. We can also model each segment by many such � sections, and still

have the general form (8), (9). Another important example is an MOS transistor circuit

where xi denotes the width of a transistor. When the transistor is `on' it is modeled as a

conductance that is proportional to xi, and a source-to-ground capacitance and drain-to-

ground capacitance that are linear or a�ne in xi. See [VBE96] for details.

Signal propagation delay

We are interested in how fast a change in the input u propagates to the di�erent nodes of

the circuit, and in how this propagation delay varies as a function of the variables x.

We assume that for t < 0, the circuit is in static steady-state with u(t) = v(t) = v�. For

t � 0, the source switches to the constant value u(t) = v+. As a result we have, for t � 0,

v(t) = v+ + e�C
�1Gt(v� � v+) (10)

which converges, as t ! 1, to v+ (since our assumption C � 0, G � 0 implies stability).

The di�erence between the node voltage and its ultimate value ~v(t) = e�C
�1Gt(v��v+), and

we are interested in how large t must be before this is small. To simplify notation, we will

relabel ~v as v, and from here on study the rate at which

v(t) = e�C
�1Gtv(0) (11)

becomes small. Note that this v satis�es the autonomous equation Cdv=dt = �Gv.
Let �1; : : : ; �n denote the eigenvalues of the circuit, i.e., the eigenvalues of �C�1G, or

equivalently, the roots of the characteristic polynomial det(sC +G). They are real and neg-

ative since the matrix is similar to the symmetric, negative de�nite matrix �C�1=2GC�1=2.

We assume the eigenvalues are sorted in decreasing order, i.e., 0 > �1 � � � � � �n. The

largest eigenvalue, �1, is called the dominant eigenvalue or dominant pole of the RC circuit.

The (critical) dominant time constant is de�ned as

T dom = �1=�1: (12)

Note that the dominant time constant T dom is a very complicated function of G and C,

i.e., the negative inverse of the largest zero of the polynomial det(sC +G). However it can

be expressed in terms of an LMI, since

T dom = minf T j TG� C � 0 g:

In particular,

T dom(x) � Tmax () TmaxG(x)� C(x) � 0: (13)

We can conclude that T dom is a quasiconvex function of x, i.e., its sublevel setsn
x
��� T dom(x) � Tmax

o
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are convex sets for all values of Tmax.

As a consequence, various optimization problems involving dominant time constant, area,

and power can be cast as convex optimization problems. Therefore we can compute exact,

optimal tradeo� curves between these quantities. We discuss this in more detail now. For

more extensive discussion and examples, we refer to [VBE96, VBE97], where this approach

to delay optimization is explored in more detail, and compared with conventional techniques

based on geometric programming.

Minimum area subject to bound on delay

Suppose the area of the circuit is a linear (or a�ne) function of the variables xi. This occurs

when the variables represent the widths of transistors or conductors (with lengths �xed as

li), in which case the circuit area has the form

a0 + x1l1 + � � �+ xmlm

where a0 is the area of the �xed part of the circuit.

We can minimize the area subject to a bound on the dominant time constant T dom � Tmax,

and subject to upper and lower bounds on the widths by solving the SDP

minimize
mX
i=1

lixi

subject to TmaxG(x)� C(x) � 0

xmin � xi � xmax; i = 1; : : : ; m:

(14)

By solving this SDP for a sequence of values of Tmax, we can compute the exact optimal

tradeo� between area and dominant time constant. The optimal solutions of (14) are on the

tradeo� curve, i.e., they are Pareto optimal for area and dominant time constant.

Minimum power dissipation subject to bound on delay

The total energy dissipated in the resistors during a transition from initial voltage v to �nal

voltage 0 (or between 0 and v) is the energy stored in the capacitors, i.e., (1=2)vTCv. There-

fore for a �xed clock rate and �xed probability of transition, the average power dissipated

in proportional to

vTC(x)v =
mX
i=1

xk
�
vTCiv

�
;

which is a linear function of the design parameters x.

Therefore we can minimize power dissipation subject to a constraint on the dominant

time constant by solving the SDP

minimize vTC(x)v

subject to TmaxG(x)� C(x) � 0

xmin � xi � xmax; i = 1; : : : ; m:

We can also add an upper bound on area, which is a linear inequality. By solving this

SDP for a sequence of values of Tmax, we can compute the optimal tradeo� between power
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dissipation and dominant time constant. By adding a constraint that the area cannot exceed

Amax, and solving the SDP for a sequence of values of Tmax and Amax, we can compute the

exact optimal tradeo� surface between power dissipation, area, and dominant time constant.

Minimum delay subject to area and power constraints

We can also directly minimize the delay subject to limits on area and power dissipation, by

solving the (quasiconvex) optimization problem

minimize T

subject to TG(x)� C(x) � 0

xmin � xi � xmax; i = 1; : : : ; m

fTi x � gi; i = 1; 2

with variables x and T , where the linear inequalities limit area and power dissipation.

4 Experiment design

As a third group of examples, we consider some problems in optimal experiment design.

we consider the problem of estimating a vector x from a measurement y = Ax + w, where

w � N (0; I) is measurement noise. The error covariance of the minimum-variance estimator

is equal to Ay(Ay)T = (ATA)�1. We suppose that the rows of the matrix A = [a1 : : : aq]
T

can be chosen among M possible test vectors v(i) 2 Rp, i = 1; : : : ;M :

ai 2 fv
(1); : : : ; v(M)g; i = 1; : : : ; q:

The goal of experiment design is to choose the vectors ai so that the error covariance (A
TA)�1

is `small'. We can interpret each component of y as the result of an experiment or measure-

ment that can be chosen from a �xed menu of possible experiments; our job is to �nd a set

of measurements that (together) are maximally informative.

We can write ATA = q
PM

i=1 �iv
(i)v(i)

T
, where �i is the fraction of rows ak equal to

the vector v(i). We ignore the fact that the numbers �i are integer multiples of 1=q, and

instead treat them as continuous variables, which is justi�ed in practice when q is large.

(Alternatively, we can imagine that we are designing a random experiment: each experiment

ai has the form v(k) with probability �k.)

Many di�erent criteria for measuring the size of the matrix (ATA)�1 have been pro-

posed. For example, in E-optimal design, we minimize the norm of the error covariance,

�max((A
TA)�1), which is equivalent to maximizing the smallest eigenvalue of ATA. This is

readily cast as the SDP
maximize t

subject to
MX
i=1

�iv
(i)v(i)

T
� tI

MX
i=1

�i = 1

�i � 0; i = 1; : : : ;M
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in the variables �1; : : : ; �M , and t. Another criterion is A-optimality, in which we minimize

Tr(ATA)�1. This can be cast as an SDP:

minimize
pX
i=1

ti

subject to

24 PM
i=1 �iv

(i)v(i)
T

ei

eTi ti

35 � 0; i = 1; : : : ; p;

�i � 0; i = 1; : : : ;M;

MX
i=1

�i = 1;

where ei is the ith unit vector in Rp, and the variables are �i, i = 1; : : : ;M , and ti, i =

1; : : : ; p.

InD-optimal design, we minimize the determinant of the error covariance (ATA)�1, which

leads to the maxdet-problem

minimize log det

 
MX
i=1

�iv
(i)v(i)

T

!�1
subject to �i � 0; i = 1; : : : ;M

MX
i=1

�i = 1:

(15)

Fedorov [Fed71], Atkinson and Donev [AD92], and Pukelsheim [Puk93] give surveys and

additional references on optimal experiment design.

The formulation of optimal design as maxdet-problems or SDPs has the advantage that

we can easily incorporate additional useful convex constraints (see [VBW98]).

5 Problems involving moments

Bounds on expected values via semide�nite programming

Let t be a random real variable. The expected values E tk are called the (power) moments

of the distribution of t. The following classical result gives a characterization of a moment

sequence: There exists a probability distribution on R such that xk = E tk, k = 0; : : : ; 2n, if

and only if x0 = 1 and

H(x0; : : : ; x2n) =

26666666664

x0 x1 x2 : : : xn�1 xn
x1 x2 x3 : : : xn xn+1
x2 x3 x4 : : : xn+1 xn+2
...

...
...

...
...

xn�1 xn xn+1 : : : x2n�2 x2n�1
xn xn+1 xn+2 : : : x2n�1 x2n

37777777775
� 0: (16)
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It is easy to see that the condition is necessary: let xi = E ti, i = 0; : : : ; 2n be the moments

of some distribution, and let y = [y0 y1 � � � yn]
T 2 Rn+1. Then we have

yTH(x0; : : : ; x2n)y =
nX

i;j=0

yiyj E ti+j = E
�
y0 + y1t

1 + � � �+ ynt
n
�2
� 0:

Su�ciency is less obvious. The proof is classical (and based on convexity arguments); see

e.g., Krein and Nudelman [KN77, p.182] or Karlin and Studden [KS66, p.189{199]. There

are similar conditions for distributions on �nite or semi-in�nite intervals.

Note that condition (16) is an LMI in the variables xk, i.e., the condition that x0, . . . ,

x2n be the moments of some distribution on R can be expressed as an LMI in x. Using this

fact, we can cast some interesting moment problems as SDPs and maxdet-problems.

Suppose t is a random variable on R. We do not know its distribution, but we do know

some bounds on the moments, i.e.,

�
k
� E tk � �k

(which includes, as a special case, knowing exact values of some of the moments). Let

p(t) = c0 + c1t+ � � �+ c2nt
2n be a given polynomial in t. The expected value of p(t) is linear

in the moments E ti:

E p(t) =
2nX
i=0

ciE ti =
2nX
i=0

cixi:

We can compute upper and lower bounds for E p(t),

minimize (maximize) E p(t)

subject to �
k
� E tk � �k; k = 1; : : : ; 2n;

over all probability distributions that satisfy the given moment bounds, by solving the SDP

minimize (maximize) c1x1 + � � �+ c2nx2n

subject to �
k
� xk � �k; k = 1; : : : ; 2n

H(1; x1; : : : ; x2n) � 0

with variables x1, . . . , x2n. This gives bounds on E p(t), over all probability distributions

that satisfy the known moment constraints. The bounds are sharp in the sense that there

are distributions, whose moments satisfy the given moment bounds, for which E p(t) takes

on the upper and lower bounds found by these SDPs.

A related problem was considered by Dahlquist, Eisenstat and Golub [DEG72], who

analytically compute bounds on E t�1 and E t�2, given the moments E ti, i = 1; : : : ; n.

(Here t is a random variable in a �nite interval.) Using semide�nite programming we can

solve more general problems where upper and lower bounds on E ti, i = 1 : : : ; n (or the

expected value of some polynomials) are known.

Another application arises in the optimal control of queuing networks (See Bertsimas

[Ber95] and Schwerer [Sch96]).
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Upper bound on the variance via semide�nite programming

As another example, we can maximize the variance of t, over all probability distributions

that satisfy the moment constraints (to obtain a sharp upper bound on the variance of t):

maximize E t2 � (E t)
2

subject to �
k
� E tk � �k; k = 1; : : : ; 2n;

which is equivalent to the SDP

maximize y

subject to

"
x2 � y x1
x1 1

#
� 0

�
k
� xk � �k; k = 1; : : : ; 2n

H(1; x1; : : : ; x2n) � 0

with variables y, x1, . . . , x2n. The 2�2-LMI is equivalent to y � x2�x21. More generally, we

can compute an upper bound on the variance of a given polynomial E p(t)2�(E p(t))
2
. Thus

we can compute an upper bound on the variance of a polynomial p(t), given some bounds

on the moments.

A robust estimate of the moments

Another interesting problem is the maxdet-problem

maximize log detH(1; x1; : : : ; x2n)

subject to �
k
� xk � �k; k = 1; : : : ; 2n

H(1; x1; : : : ; x2n) � 0:

(17)

The solution can serve as a `robust' solution to the feasibility problem of �nding a probability

distribution that satis�es given bounds on the moments. While the SDPs provide lower and

upper bounds on E p(t), the maxdet-problem should provide a reasonable guess of E p(t).

Note that the maxdet-problem (17) is equivalent to

maximize log detE f(t)f(t)T

subject to � � E f(t) � �
(18)

over all probability distributions on R, where f(t) = [1 t t2 : : : tn]
T
. We can interpret this

as the problem of designing a random experiment to estimate the coe�cients of a polynomial

p(t) = c0 + c1t + � � �+ cnt
n.

6 Structural optimization

We consider a truss structure with m bars connecting a set of n nodes. External forces are

applied at each node, which cause a (small) displacement in the node positions. f 2 Rn will

denote the vector of (components of) external forces, and d 2 Rn will denote the vector of
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corresponding node displacements. (By `corresponding' we mean if fi is, say, the z-coordinate

of the external force applied at node k, then di is the z-coordinate of the displacement of

node k.) The vector f is called a loading or load.

We assume damping can be ignored and that the structure is linearly elastic, i.e., the

relation between node displacement and external forces can be described by the di�erential

equation

M �d +Kd = f: (19)

The matrix M = MT � 0 is called the mass matrix of the truss; the matrix K = KT � 0 is

called the sti�ness matrix.

We assume that the geometry (unloaded bar lengths and node positions) of the truss is

�xed; we are to design the cross-sectional areas of the bars. These cross-sectional areas will

be the design variables xi, i = 1; : : : ; m. The sti�ness matrix K and the mass matrix M are

linear functions of x:

K(x) = x1K1 + � � �+ xmKm; M(x) = x1M1 + � � �+ xmMm;

where Ki = KT
i � 0, and Mi = MT

i � 0 depend on the truss geometry. We assume these

matrices are given For simplicity we also assume that K(x) � 0 for all nonnegative x.

The total weight Wtot of the truss also depends on the bar cross-sectional areas:

Wtot(x) = w1x1 + � � �+ wmxm;

where wi > 0 are known, given constants (density of the material times the length of bar i).

Roughly speaking, the truss becomes sti�er, but also heavier, when we increase xi; there is

a tradeo� between sti�ness and weight.

Static measures of sti�ness

We �rst consider the equilibrium state, i.e., static conditions. In equilibrium, we have �d = 0

and d is determined by the set of linear equations

Kd = f:

Our goal is to design the sti�est truss, subject to bounds on the bar cross-sectional areas

and total truss weight:

l � xi � u; i = 1; : : : ; m; Wtot(x) � W; (20)

where W is a given limit on truss weight.

There are several ways to form a scalar measure of how sti� a truss is, for a given load

f . Perhaps the simplest is the norm (squared) of the resulting displacement vector d:

D(x; f)
�
= dTd = fTK(x)�2f:

Another measure is the elastic stored energy,

E(x; f)
�
=

1

2
fTK(x)�1f:

11



Maximizing sti�ness corresponds to minimizing D(x; f) or E(x; f). These measures are

similar (they are both small when K is `large'), but not exactly the same. In particular, we

will see that using the elastic stored energy E leads to SDP problems, while D in general

does not.

We can consider several di�erent scenarios that re
ect our knowledge about the possible

loadings f that can occur. The simplest is that f is a single, �xed, known loading. The

design that minimizes the stored energy is the solution of

minimize fTK(x)�1f

subject to Wtot(x) � W

l � xi � u:

(21)

This problem is convex and can be cast as the following SDP

minimize t

subject to

"
K(x) f

fT t

#
� 0

Wtot(x) � W

l � xi � u

in the variables x, t. It should be noted, however, that the SDP is not the most e�cient

way to solve (21). More e�cient methods that directly solve problems of the form (21) have

been proposed by Nemirovsky and Ben Tal [BTN92, BTN95a].

In more sophisticated formulations, the loading f might vary over a given set of possible

loads, and we are interested in optimizing the sti�ness for the worst case scenario (see

also [BTN95b]). Suppose for example that f is unknown but bounded, i.e., it can take

arbitrary values in a ball B = ff j kfk � �g. The maximum sti�ness as f varies over B can

be written as

max
f2B

E(x; f) =
�2

2
�max(K

�1(x)):

Therefore we can �nd the worst-case design by solving

minimize �maxK(x)�1

subject to Wtot(x) � W

l � xi � u;

or, equivalently, by maximizing the smallest eigenvalue of K. This can be cast as an SDP

maximize t

subject to K(x) � tI

Wtot(x) � W

l � xi � u:

Finally, we can consider situations where the load is random with known statistics. For

example, suppose f is a random variable with known mean and covariance:

E f = bf; E(f � bf)(f � bf)T = �:

12



We are interested in minimizing the expected stored energy, i.e.,

minimize E fTK�1f

subject to Wtot(x) � W

l � xi � u:

This problem can be cast as an SDP, by �rst writing the objective function as

E fTK�1f = bfTK(x)�1 bf +Tr�K(x)�1;

and introducing two new variables t and X = XT :

minimize t+Tr�X

subject to

"
K(x) bfbf t

#
� 0"

K(x) I

I X

#
� 0

Wtot(x) � W

l � xi � u:

Dynamic measure of sti�ness

We now return to the dynamical model (19). Themodal frequencies of the structure described

by (19) are de�ned as the values ! � 0 that satisfy

det(K �M!2) = 0;

i.e., the squareroots of the (generalized) eigenvalues of the pair (M;K). The fundamental

frequency is the smallest modal frequency, i.e.,

!1 = �
1=2
min(M;K):

It is the lowest frequency at which the structure can oscillate. The fundamental period of

the structure is 2�=!1.

To avoid oscillations we would like to make the fundamental frequency higher than the

frequencies of the excitations, i.e., we would like to impose a lower bound !1 � 
. (Equiva-

lently, we impose a maximum fundamental period.) This constraint can be expressed as an

LMI, since

!1 � 
()M(x)
2 �K(x) � 0:

Various interesting design problems with bounds on the fundamental frequency can therefore

be expressed as SDPs. As an example, we can minimize the weight subject to the lower bound

on the fundamental frequency constraint by solving the SDP

minimize Wtot(x)

subject to M(x)
2 �K(x) � 0

li � xi � ui:

13



7 Quasi-Newton updates

In quasi-Newton methods for unconstrained minimization of a convex function f , the Newton

step �r2f(x)�1rf(x) is replaced by �H�1rf(x), where H = HT � 0 is an approximation

of the Hessian matrix, based on prior information and previous gradient evaluations. In each

iteration, as the algorithm moves from x to the next point x+, a new approximation H+ is

determined, based on the current H, and on the di�erence between the gradients at x+ and

x. A good updating rule for H should satisfy several properties: H+ should be close to H, it

should be easy to compute (or, more precisely, the search direction �H+�1rf(x+) should be
easy to compute), and it should incorporate the new information obtained by evaluating the

gradient rf(x+). This last property is usually enforced by imposing the secant condition

H+(x+ � x) = rf(x+)�rf(x): (22)

Byrd and Nocedal [BN89] have proposed to measure the di�erence between H and H+

by using the Kullback-Leibler divergence (or relative entropy), given by

1

2

�
TrH�1=2H+H�1=2 � log detH�1=2H+H�1=2 � n

�
(see also Dennis and Wolkowicz [DW93]). The Kullback-Leibler divergence is nonnegative

for all positive de�nite H and H+, and zero only if H+ = H. The update H+ that satis�es

the secant condition and minimizes the Kullback-Leibler divergence is the solution of the

following optimization problem:

minimize TrH�1=2H+H�1=2 � log detH�1=2H+H�1=2 � n

subject to H+ � 0

H+(x+ � x) = rf(x+)�rf(x):
(23)

Fletcher [Fle91] has shown that the solution is given by

H+ = H �
HssTH

sTHs
+
ggT

sTg
; (24)

assuming that sTg > 0, where s = x+ � x and g = rf(x+) �rf(x). Formula (24) is well

known in unconstrained optimization as the BFGS (Broyden, Fletcher, Goldfarb, Shanno)

quasi-Newton update.

Fletcher's observation opens the possibility of adding more complicated LMI constraints

to (23), and solving the resulting problem numerically. For example, we can impose a certain

sparsity pattern on H+, or we can relax the secant condition as

kH+(x+ � x)�rf(x+) +rf(x)k � �;

where � is a given tolerance.

UpdatingH+ by numerically solving a convex optimization problem will obviously involve

far more computation than the BFGS update. Thus, this formulation for quasi-Newton

updates is only interesting when gradient evaluations are very expensive.
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8 Conclusion

The applications we described are only a few of the many applications of SDP that have

been recently investigated, especially in the areas of combinatorial optimization and control

theory. This recent research has been motivated by the development of interior-point meth-

ods for SDP. Most interior-point methods for linear programming have been generalized to

SDPs. As in linear programming, these methods have polynomial worst-case complexity,

and perform very well in practice. Several implementations have become available in the

last few years. These include a commercial SDP solver [GNLC95], and several public do-

main general-purpose SDP software packages: sdppack [AHNO97], csdp [Bor97], sdpmath

[BPS96], lmitool [END95], sdpa [FK95], sdpt3 [TTT96], sp [VB94], sdpsol [WB96]. An

important di�erence with LP is that most of these codes do not exploit problem structure

(e.g., sparsity), and if they do, only to a limited extent. Larger SDPs can be solved success-

fully with interior-point methods but require specialized techniques that take advantage of

problem structure.
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