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Abstract

We present a new variant of the Chambolle–Pock primal–dual method with Bregman dis-
tances, analyze its convergence, and apply it to the centering problem in sparse semidefinite
programming. The novelty in the method is a line search procedure for selecting suitable step
sizes. The line search obviates the need for estimating the norm of the constraint matrix and the
strong convexity constant of the Bregman kernel. As an application, we discuss the centering
problem in large-scale semidefinite programming with sparse coefficient matrices. The logarith-
mic barrier function for the cone of positive semidefinite completable sparse matrices is used
as the distance-generating kernel. For this distance, the complexity of evaluating the Bregman
proximal operator is shown to be roughly proportional to the cost of a sparse Cholesky factor-
ization. This is much cheaper than the standard proximal operator with Euclidean distances,
which requires an eigenvalue decomposition.

1 Introduction

Optimization methods based on Bregman distances offer the possibility of matching the Bregman
distance to the structure in the problem, with the goal of reducing the complexity per iteration. In
this paper, we apply this idea to the centering problem in sparse semidefinite programming. The
paper is motivated by the difficulty of exploiting sparsity in large-scale semidefinite programming
in general and, for proximal methods, the need for eigendecompositions to compute Euclidean
projections on the positive semidefinite matrix cone. By replacing the Euclidean projection with a
generalized Bregman projection, we take advantage of the efficiency and scalability of algorithms
for sparse Cholesky factorization and several related computations [3, 54].

We consider semidefinite programs (SDPs) in the standard form

primal: minimize tr(CX) dual: maximize bT y
subject to A(X) = b subject to A∗(y) + S = C

X ∈ Sn+ S ∈ Sn+,
(1)

with primal variable X ∈ Sn and dual variables S ∈ Sn, y ∈ Rm, where Sn is the set of symmetric
n× n matrices. The linear operator A : Sn → Rm is defined as

A(X) =
(
tr(A1X), tr(A2X), . . . , tr(AmX)

)
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and A∗(y) =
∑m

i=1 yiAi is its adjoint operator. The coefficients C,A1, . . . , Am are symmetric n×n
matrices. The notation Sn+ is used for the cone of positive semidefinite (PSD) matrices in Sn.

In many large-scale applications of semidefinite programming, the coefficient matrices are sparse.
The sparsity pattern of a symmetric n × n matrix can be represented by an undirected graph
G = (V,E) with vertex set V = {1, 2, . . . , n} and edge set E. The set of matrices with sparsity
pattern E is then defined as

SnE = {Y ∈ Sn | Yij = Yji = 0 if i 6= j and {i, j} 6∈ E}.

In this paper, E will denote the common (or aggregate) sparsity pattern of the coefficient matrices
in the SDP, i.e., we assume that C,A1, . . . , Am ∈ SnE . Note that the sparsity pattern E is not
uniquely defined (unless it is dense, i.e., the sparsity graph G is complete): if the coefficients are
in SnE then they are also in SnE′ where E ⊂ E′. In particular, E can always be extended to make
the graph G = (V,E) chordal or triangulated [14, 54]. Without loss of generality, we will assume
that this is the case.

The primal variable X in (1) generally needs to be dense to be feasible. However, the cost
function and the linear equality constraints only depend on the diagonal entries Xii and the off-
diagonal entries Xij = Xji for {i, j} ∈ E. For the other entries the only requirement is to make the
matrix positive semidefinite. In the dual problem, S ∈ SnE holds at all dual feasible points. These
observations imply that the SDPs (1) can be equivalently rewritten as a pair of primal and dual
conic linear programs

primal: minimize tr(CX) dual: maximize bT y
subject to A(X) = b subject to A∗(y) + S = C

X ∈ K S ∈ K∗,
(2)

with sparse matrix variables X,S ∈ SnE , and a vector variable y ∈ Rm. The primal cone K
in this problem is the set of matrices in SnE which have a positive semidefinite completion, i.e.,
K = ΠE(Sn+) where ΠE stands for projection on SnE . The dual cone K∗ of K is the set of positive
semidefinite matrices with sparsity pattern E, i.e., K∗ = Sn+∩SnE . The formulation (2) is attractive
when the aggregate sparsity pattern E is very sparse, in which case SnE is a much lower-dimensional
space than Sn.

The centering problem for the sparse SDP (2) is

minimize tr(CX) + µφ(X)
subject to A(X) = b,

(3)

where φ is the logarithmic barrier function for the cone K, defined as

φ(X) = sup
S∈intK∗

(− tr(XS) + log detS).

The centering parameter µ > 0 controls the duality gap at the solution. Since the barrier func-
tion φ is n-logarithmically homogeneous, the optimal solution of the centering problem is a (µn)-
suboptimal solution for the original SDP (2). The centering problem (3) is useful as an approxima-
tion to the original problem, because it yields more easily computed suboptimal solutions, with an
accuracy that can be controlled by the choice of barrier parameter. The centering problem is also
a key component of barrier methods, in which a sequence of centering problems with decreasing
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values of the barrier parameter are solved. Traditionally, the centering problem in interior-point
methods is solved by Newton’s algorithm, possibly accelerated via the preconditioned conjugate
gradient method [10,55], but recent work has started to examine the use of proximal methods such
as the alternating direction method of multipliers (ADMM) or the proximal method of multipliers
for this purpose [37,48].

Contributions The contribution of this paper is two-fold. First, we formulate a non-Euclidean
(Bregman) proximal method for the centering problem of the sparse SDP. In the proposed method,
the proximal operators are replaced by generalized proximal operators defined in terms of a Bregman
generalized distance or divergence. We show that if the Bregman divergence generated by the barrier
function φ for the cone K is used, the generalized projections can be computed very efficiently, with
a complexity dominated by the cost of a sparse Cholesky factorization with sparsity pattern E.
This is much cheaper than the eigenvalue decomposition needed to compute a Euclidean projection
on the positive semidefinite cone. Hence, while the method only solves an approximation of the
SDP (2), it can handle problem sizes that are orders of magnitude larger than the problems solved
by standard interior-point and proximal first-order methods.

For the solution of the centering problem, we apply a variant of the primal–dual method pro-
posed by Chambolle and Pock [22]. The version of the algorithm described in [22] requires careful
tuning of primal and dual step size parameters. Acceptable values of the step sizes depend on the
norm of the linear operator A and the strong convexity constants for the distance function. These
parameters are often difficult to estimate in practice. As a second contribution, we propose a new
version of the algorithm, in which the step sizes are not fixed parameters, but are selected using an
easily implemented line search procedure. We give a detailed convergence analysis of the algorithm
with line search and show an O(1/k) ergodic convergence rate, which is consistent with previous
results in [22,39].

Related work Sparse structure in semidefinite programming has been extensively studied by
many authors. The scalability of interior-point methods is limited by the need to form and solve a
set of m linear equations in m variables, known as the Schur complement system, at each iteration.
This system is usually dense. Sparsity in the coefficients Ai can be exploited to reduce the cost of
assembling the Schur complement equations. This process is efficient especially in extremely sparse
problems, where the coefficients Ai may also have low rank. In dual barrier methods, one can also
take advantage of sparsity of dual feasible variables S. These properties are leveraged in the dual
interior-point methods described in [9–13].

In another line of research, techniques based on properties and algorithms for chordal sparsity
patterns have been applied to semidefinite programming since the late 1990s [3, 13, 18, 29, 30, 34,
35, 42, 46, 50, 51, 58]; see [54, 60] for recent surveys. An important tool from this literature is the
conversion or clique decomposition method proposed by Fukuda et al. [30, 42]. It is based on a
fundamental result from linear algebra, stating that for a chordal pattern E, a matrix X ∈ SnE
has a positive semidefinite completion if and only if Xγkγk � 0 for k = 1, . . . , r, where γ1, . . . ,
γr are the maximal cliques in the graph [31]. In the conversion method, the large sparse variable
matrix X in (2) is replaced with smaller dense matrix variables Xk = Xγkγk . Each of these new
variables is constrained to be positive semidefinite. Linear equality constraints need to be added
to couple the variables Xk, as they represent overlapping subblocks of a single matrix X. Thus, a
large sparse SDP is converted in an equivalent problem with several smaller, dense variables Xk,
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and additional sparse equality constraints. This equivalent problem may be considerably easier
to solve by interior-point methods than the original SDP (1). Recent examples where the clique
decomposition is applied to solve large sparse SDPs can be found in [27,58].

Proximal splitting methods, such as (accelerated) proximal gradient methods [7,8,43], ADMM
[16], and the primal–dual hybrid gradient (PDHG) or Chambolle–Pock method [20,28,47], are per-
haps the most popular alternatives to interior-point methods in machine learning, image processing,
and other applications involving large-scale convex programming. When applied to the SDPs (1),
they require at each iteration a Euclidean projection on the positive semidefinite cone Sn+, hence,
a symmetric eigenvalue decomposition of order n. This contributes an order n3 term to the per-
iteration complexity. In the nonsymmetric formulation (2) of the sparse SDP, the projections on
K∗ or (equivalently) K cannot be computed directly, and must be handled by introducing splitting
variables and alternating projection on SnE , which is trivial, and on Sn+, which requires an eigenvalue
decomposition. The clique decomposition used in the conversion method described above, which
was originally developed for interior-point methods, lends itself naturally to splitting algorithms as
well. It allows us to replace the matrix constraint X ∈ K with several smaller dense inequalities
Xk � 0, one for each maximal clique in the sparsity graph. In a proximal method, this means that
projection on the n × n positive semidefinite cone can be replaced by less expensive projections
on lower-dimensional positive semidefinite cones [38, 52, 59, 61]. This advantage of the conversion
method is tempered by the large number of consistency constraints that must be introduced to link
the splitting variables Xk. First-order methods typically do not compute very accurate solutions
and if the residual error in the consistency constraints is not small, it may be difficult to convert
the computed solution of the decomposed problem back to an accurate solution of the original
SDP [27].

Outline The rest of the paper is organized as follows. In Section 2 we describe the Bregman
distance generated by the barrier function and show how generalized projections can be efficiently
computed without expensive eigenvalue decomposition. The primal–dual proximal algorithm and
its convergence are discussed in Section 3. Section 4 contains results of numerical experiments.

2 Barrier proximal operator for sparse PSD matrix cone

2.1 Centering problem

We will assume that the equality constraints in (2) include a constraint tr(NX) = 1, where
N ∈ Sn++ ∩ SnE . To make this explicit we write the centering problem (2) as

minimize tr(CX) + µφ(X)
subject to A(X) = b,

tr(NX) = 1.
(4)

For N = I, the normalized cone {X ∈ K | tr(NX) = 1} is a matrix extension of the probability
simplex {x � 0 | 1Tx = 1}, sometimes referred to as the spectraplex. With minor changes,
the techniques we discuss extend to a normalization in the inequality form tr(NX) ≤ 1, with
N ∈ Sn++ ∩SnE . However, we will discuss (4) to retain the standard form of the centering problem.

The constraints tr(NX) = 1 and tr(NX) ≤ 1 guarantee the boundedness of the primal feasible
set, a common assumption in first-order methods. The added constraint does not diminish the
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generality of our approach. In many applications an equality tr(NX) = 1 is implied by the
contraints A(X) = b and easily derived from the problem data (see Section 4 for two typical
examples). When an equality constraint of this form is not readily available, one can add a bounding
inequality tr(NX) ≤ 1 with N sufficiently small to ensure that the optimal solution is not modified.

To apply first-order proximal methods, we view the problem (4) as a linearly constrained opti-
mization problem

minimize f(X)
subject to A(X) = b,

(5)

where f is defined as

f(X) = tr(CX) + µφ(X) + δH(X), H = {X ∈ SnE | tr(NX) = 1}, (6)

and δH is the indicator function of the hyperplane H. The algorithm we apply to (5) can be
summarized as

z̄k+1 = zk + θk(zk − zk−1) (7a)

Xk+1 = argmin
X

(
f(X) + z̄Tk+1A(X) +

1

τk
d(X,Xk)

)
(7b)

zk+1 = zk + σk(A(Xk+1)− b) (7c)

where d is the Bregman distance generated by the barrier function φ:

d(X,Y ) = φ(X)− φ(Y )− tr(∇φ(Y )(X − Y )).

The choices of θk, σk, and τk, together with the details and origins of the algorithm, will be discussed
in Section 3. In the remainder of this section we focus on the most expensive step in the algorithm,
the optimization problem in the X-update (7b).

In Sections 2.2 and 2.3 we first review some facts from the theory of generalized distances and
the logarithmic barrier functions for the primal and dual cones K and K∗. Sections 2.4 and 2.5
describe the details of the barrier kernel and the associated generalized proximal operator applied
in (7b).

2.2 Bregman distance

Let h be a convex function, defined on a domain that has nonempty interior, and suppose h is
continuously differentiable on int (domh). The generalized distance generated by h is defined as
the function

d(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉,

with domain dom d = domh × int (domh). The function h is called the kernel function that
generates the generalized distance d. For h(x) = ‖x‖22/2 and the standard inner product 〈u, v〉 =
uT v, we obtain d(x, y) = ‖x−y‖22/2. The best known non-quadratic example is the relative entropy

d(x, y) =

n∑
i=1

(xi log(xi/yi)− xi + yi), dom d = Rn
+ ×Rn

++.

This generalized distance is generated by the kernel h(x) =
∑

i xi log xi, if we use the standard
inner product.
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Generalized distances are not necessarily symmetric (d(x, y) 6= d(y, x) in general) but share
some other important properties with the squared Euclidean norm. An important example is the
triangle identity [23, Lemma 3.1]

〈∇h(y)−∇h(z), x− y〉 = d(x, z)− d(x, y)− d(y, z) (8)

which holds for all x ∈ domh and y, z ∈ int (domh). This generalizes the identity

(y − z)T (x− y) =
1

2

(
‖x− z‖22 − ‖x− y‖22 − ‖y − z‖22

)
.

Additional conditions may have to be imposed on the kernel function h, depending on the appli-
cation and the algorithm in which the generalized distance is used [19]. For now we only assume
convexity and continuous differentiability on the interior of the domain. Other properties will be
mentioned when needed.

The proximal operator of a closed convex function f is defined as

proxf (y) = argmin
x

(f(x) +
1

2
‖x− y‖22).

If f is closed and convex, then the minimizer in the definition exists and is unique for all y [40].
We will use the following extension to generalized distances. Suppose f is a convex function with
the property that for every a and every y ∈ int (domh), the optimization problem

minimize f(x) + 〈a, x〉+ d(x, y) (9)

has a unique solution x̂ in int (domh). Then we denote the minimizer x̂ by

proxdf (y, a) = argmin
x

(f(x) + 〈a, x〉+ d(x, y)) (10)

= argmin
x

(f(x) + 〈a, x〉+ h(x)− 〈∇h(y), x〉)

and call the mapping proxdf the generalized proximal operator of f . From the second expression we

see that x̂ = proxdf (y, a) satisfies

∇h(y)−∇h(x̂)− a ∈ ∂f(x̂). (11)

If d = ‖x− y‖22/2, it is easily verified that proxdf (y, a) = proxf (y − a), where proxf is the standard
proximal operator.

In contrast to the Euclidean case, it is difficult to give simple general conditions that guarantee
that for every a and every y ∈ int (domh) the problem (9) has a unique solution in int (domh).
However, we will use the definition only for specific combinations of f and d, for which problem (9)
is particularly easy to solve. In those applications, existence and uniqueness of the solution follow
directly from the availability of a fast algorithm for computing it. A classical example is the
relative entropy distance with f given by the indicator function of the hyperplane {x | 1Tx = 1}.
Problem (9) can be written as

minimize aTx+
n∑
i=1

(xi log(xi/yi)− xi)

subject to 1Tx = 1.
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For any a and any positive y, the solution of (9) is unique and equal to the positive vector

proxdf (y, a) =
1∑n

i=1 yie
−ai

 y1e
−a1

...
yne
−an

 .
Research on proximal methods for semidefinite programming has been largely based on the

standard Euclidean proximal operators and the distance defined by the matrix entropy [6]. For
these distances, projections on the positive semidefinite cone require eigenvalue decompositions,
which limits the size of the variables that can be handled and precludes applications to large
sparse SDPs. In the following sections, we introduce a generalized proximal operator designed for
sparse semidefinite programming. The generalized proximal operator can be evaluated via a simple
iterative algorithm with a complexity dominated by the cost of a sparse Cholesky factorization.

2.3 Primal and dual barrier

The logarithmic barrier functions for the cones K∗ = Sn+ ∩ SnE and K = ΠE(Sn+) are defined as

φ∗(S) = − log detS, φ(X) = sup
S

(
− tr(XS)− φ∗(S)

)
, (12)

with domains domφ∗ = intK∗ and domφ = intK, respectively. Note that φ(X) is the conjugate
of φ∗ evaluated at −X.

In [3, 54] efficient algorithms are presented for evaluating the two barrier functions, their gra-
dients, and their directional second derivatives, when the sparsity pattern E is chordal. The value
of the dual barrier φ∗(S) = − log detS is easily computed from the diagonal entries in a sparse
Cholesky factor of S. The gradient and Hessian are given by

∇φ∗(S) = −ΠE(S−1), ∇2φ∗(S)[V ] =
d

dt
∇φ∗(S + tV ) = ΠE(S−1V S−1). (13)

Given a Cholesky factorization of S, these expressions can be evaluated via one or two recursions
on the elimination tree [3, 54], without explicitly computing the entire inverse S−1 or the matrix
product S−1V S−1. The cost of these recursions is roughly the same as the cost of a sparse Cholesky
factorization with the sparsity pattern E [3, 54].

The primal barrier function φ and its gradient can be evaluated by solving the optimization
problem in the definition of φ(X). The optimal solution ŜX is the matrix in Sn++∩SnE that satisfies

ΠE(Ŝ−1X ) = X. (14)

Its inverse Ŝ−1X is also the maximum determinant positive definite completion of X, i.e., Z = Ŝ−1X
is the solution of

maximize log detZ
subject to ΠE(Z) = X

(15)

(where we take Sn++ as the domain of the cost function). From ŜX , one obtains

φ(X) = log det ŜX − n, ∇φ(X) = −ŜX , ∇2φ(X) = ∇2φ∗(ŜX)−1. (16)
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Comparing the expressions for the gradients of φ and φ∗ in (16) and (13), and using (14), we see
that ∇φ and ∇φ∗ are inverse mappings, up to a change in sign:

∇φ(X) = −ŜX = −(∇φ∗)−1(−X), ∇φ∗(S) = −(∇φ)−1(−S).

For general sparsity patterns, the determinant maximization problem (15) or the convex opti-
mization problem in the definition of φ must be solved by an iterative optimization algorithm. If
the pattern is chordal, these optimization problems can be solved by finite recursive algorithms,
again at a cost that is comparable with the cost of a sparse Cholesky factorization for the same
pattern [3, 54].

2.4 Barrier kernel

The primal barrier function φ is convex, continuously differentiable on the interior of the cone, and
strongly convex on intK ∩ {X | tr(NX) = 1}. It generates the Bregman divergence

d(X,Y ) = φ(X)− φ(Y )− tr (∇φ(Y )(X − Y ))

= φ(X)− log det ŜY + n+ tr (ŜY (X − Y ))

= φ(X)− log det ŜY + tr (ŜYX).

On line 2 we used the properties (16) to express φ(Y ) and ∇φ(Y ). The generalized proximal
operator (10) for the function f defined in (6), which is the key step in the X-update (7b) of
algorithm (7), then becomes

X̂ = proxdf (Y,A)

= argmin
tr(NX)=1

(tr(CX) + µφ(X) + tr(AX) + d(X,Y ))

= argmin
tr(NX)=1

(
tr
(
(C +A−∇φ(Y ))X

)
+ (µ+ 1)φ(X)

)
= argmin

tr(NX)=1
(tr(BX) + φ(X))

where

B =
1

1 + µ
(C +A+ ŜY ).

To compute X̂ we therefore need to solve an optimization problem

minimize tr(BX) + φ(X)
subject to tr(NX) = 1,

(17)

where B ∈ SnE and N ∈ Sn++ ∩ SnE . If we introduce a Lagrange multiplier ν for the equality
constraint in (17), the optimality condition can be written as

∇φ(X) +B + νN = 0, tr(NX) = 1.

Equivalently, since ∇φ∗(S) = −(∇φ)−1(−S),

X = −∇φ∗(B + νN) = ΠE((B + νN)−1), tr(NX) = 1.
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Figure 1: Left. The function ζ(ν) =
∑

i 1/(ν + λi) for λ = (−5, 0, 5, 10). We are interested in the
solution of ζ(ν) = 1 larger than −λmin = 5. Right. The function 1/ζ(ν)− 1.

Eliminating X we obtain a nonlinear equation in ν:

tr(N(B + νN)−1) = 1. (18)

(The projection in tr(NΠE((B + νN)−1)) can be omitted because the matrix N has the sparsity
pattern E.) The unique solution ν that satisfies B + νN � 0 defines the solution X = ΠE((B +
νN)−1) of (17).

The equation (18) is also the optimality condition for the Lagrange dual of (17), which is a
smooth unconstrained convex optimization problem in the scalar variable ν:

maximize −φ∗(B + νN)− ν. (19)

2.5 Newton method for barrier proximal operator

In this section we discuss in detail Newton’s method applied to the dual problem (19) and the
equivalent nonlinear equation (18). We write the equation as ζ(ν) = 1 where

ζ(ν) = tr(N(B + νN)−1), ζ ′(ν) = − tr(N(B + νN)−1N(B + νN)−1). (20)

The function ζ and its derivative can be expressed in terms of the generalized eigenvalues λi of
(B,N) as

ζ(ν) =

n∑
i=1

1

ν + λi
, ζ ′(ν) = −

n∑
i=1

1

(ν + λi)2
. (21)

Figure 1 shows an example with n = 4, N = I, and eigenvalues 10, 5, 0,−5.
We are interested in computing the solution of ζ(ν) = 1 that satisfies B + νN � 0, i.e.,

ν > −λmin, where λmin = mini λi is the smallest generalized eigenvalue of (B,N). We denote this
interval by J = (−λmin,∞). The equation ζ(ν) = 1 is guaranteed to have a unique solution in J
because ζ is monotonic and continuous on this interval, with

lim
ν→−λmin

ζ(ν) =∞, lim
ν→∞

ζ(ν) = 0.
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Furthermore, on the interval J , the function ζ and its derivative can be expressed as

ζ(ν) = − tr(N∇φ∗(B + νN)), ζ ′(ν) = − tr(N(∇2φ∗(B + νN)[N ])).

Therefore ζ(ν) and ζ ′(ν) can be evaluated by taking the inner product of N with

∇φ∗(B + νN) = −ΠE

(
(B + νN)−1

)
∇2φ∗(B + νN)[N ] = −ΠE

(
(B + νN)−1N(B + νN)−1

)
.

Since B,N ∈ SnE , these quantities can be computed by the efficient algorithms for computing the
gradient and directional second derivative of φ∗ described in [3, 54].

We note a few other properties of ζ. First, the expressions in (21) show that ζ is convex,
decreasing, and positive on J . Second, if ν ∈ J , then ν̃ ∈ J for all ν̃ that satisfy

ν̃ > ν − 1√
|ζ ′(ν)|

. (22)

This follows from

|ζ ′(ν)| =
n∑
i=1

1

(ν + λi)2
≥ 1

(ν + λmin)2
,

and is also a simple consequence of the Dikin ellipsoid theorem for self-concordant functions [44,
Theorem 2.1.1.b].

The Newton iteration for the equation ζ(ν)− 1 = 0 is

ν+ = ν + α
1− ζ(ν)

ζ ′(ν)
, (23)

where α is a step size. The same iteration can be interpreted as a damped Newton method for the
unconstrained problem (19). If ν+ ∈ J for a unit step α = 1, then

ζ(ν+) > ζ(ν) + ζ ′(ν)(ν+ − ν) = 1,

from strict convexity of ζ. Hence after one full Newton step, the Newton iteration with unit steps
approaches the solution monotonically from the left. If ζ(ν) < 1 then in general a non-unit step
size must be taken to keep the iterates in J . From the Dikin ellipsoid inequality (22), we see that
ν+ ∈ J for all positive α that satisfy

α <

√
|ζ ′(ν)|

1− ζ(ν)
.

The theory of self-concordant functions provides a step size rule that satisfies this condition and
guarantees convergence:

α =

√
|ζ ′(ν)|√

|ζ ′(ν)|+ 1− ζ(ν)
if

1− ζ(ν)√
|ζ ′(ν)|

< η, α = 1 otherwise,

where η is a constant in (0, 1). As an alternative to this fixed step size rule, a standard backtracking
line search can be used to determine a suitable step size α in (23). Checking whether ν+ ∈ J can
be done by attempting a sparse Cholesky factorization of B + ν+N .
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Figure 1 shows that the function ζ can be quite nonlinear around the solution of the equation
if the solution is near −λmin. Instead of applying Newton’s method directly to (20), it is useful to
rewrite the nonlinear equation as ψ(ν) = 0 where

ψ(ν) =
1

ζ(ν)
− 1. (24)

The negative smallest eigenvalue −λmin is a pole of ζ(ν), but a zero of 1/ζ(ν). Also the derivative
of ψ changes slowly near this zero point; in Figure 1, the function ψ is almost linear in the region
of interest. This implies that Newton’s method applied to (24), i.e.,

ν+ = ν + β
ψ(ν)

ψ′(ν)
= ν + β

ζ(ν)(1− ζ(ν))

ζ ′(ν)
,

should be extremely efficient in this case. Starting the line search at β = 1 is equivalent to starting
at α = ζ(ν) in (23). This often requires fewer backtracking steps than starting at α = 1.

Newton’s method requires a feasible initial point ν0 ∈ J . Suppose we know a positive lower
bound γ on the smallest eigenvalue of N . Then ν̂0 ∈ J where

ν̂0 > max {0, −λmin(B)

γ
}.

A lower bound on λmin(B) can be obtained from the Gershgorin circle theorem, which states that
the eigenvalues of B are contained in the disks{

s
∣∣∣ |s−Bii| ≤∑

j 6=i
|Bij |

}
, i = 1, . . . , n.

Thus, λmin(B) ≥ mini (Bii −
∑

j 6=i |Bij |). Apart from the above initialization, we find another

practically useful initial point ν̃0 = n− trB/ trN , which is the solution for tr(N(B + νN)−1) = 1
when B happens to be a multiple of N . This choice is efficient in many practical examples but,
unfortunately, not guaranteed to be feasible. Thus, in the implementation, we use ν̃0 if it is feasible
and ν̂0 otherwise.

3 Bregman primal–dual method

The proposed algorithm (7) is applicable not only to sparse SDPs, but to more general optimization
problems. To emphasize its generality and to simplify notation, we switch in this section to the
vector form of the optimization problem

minimize f(x)
subject to Ax = b

(25)

where f is a closed convex function. Most of the discussion in this section extends to the more
general standard form

minimize f(x) + g(Ax), (26)

where f and g are closed convex functions. Problem (25) is a special case with g = δ{b}, the
indicator function of the singleton {b}. While the standard form (26) offers more flexibility, it
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should be noted that methods for the equality constrained problem (25) also apply to (26) if this
problem is reformulated as

minimize f(x) + g(y)
subject to Ax− y = 0.

We also note that (25) includes conic optimization problems in standard form

minimize cTx
subject to Ax = b

x ∈ C

if we define f(x) = cTx+ δC(x), where δC is the indicator function of the cone C.
In Section 3.1 we review some facts from convex duality theory. Section 3.2 describes the

algorithm we propose for solving (25), and in Section 3.3 we analyze its convergence.

3.1 Duality theory

The Lagrangian for problem (25) will be denoted by

L(x, z) = f(x) + zT (Ax− b). (27)

This function is convex in x and affine in z, and satisfies

sup
z
L(x, z) = f(x) + δ{b}(Ax) =

{
f(x) Ax = b
+∞ otherwise,

inf
x
L(x, z) = −f∗(−AT z) + bT z,

where f∗(y) = supx (yTx− f(x)) is the conjugate of f . The function f∗(−AT z) is the objective in
the dual problem

maximize −f∗(−AT z) + bT z. (28)

A point (x?, z?) is a saddle point of the Lagrangian if

sup
z
L(x?, z) = L(x?, z?) = inf

x
L(x, z?). (29)

Existence of a saddle point is equivalent to the property that the primal and dual optimal values
are equal and attained. The left-hand equality in (29) holds if and only if Ax? = b. The right-hand
equality holds if and only if −AT z? ∈ ∂f(x?). Hence (x?, z?) is a saddle point if and only if it
satisfies the optimality conditions

Ax? = b, −AT z? ∈ ∂f(x?).

Throughout this section we assume that there exists a saddle point (x?, z?).
Some of the convergence results in Section 3.3 are expressed in terms of the merit function

f(x) + γ‖Ax− b‖2. (30)

It is well known that for sufficiently large γ, the term γ‖Ax− b‖2 is an exact penalty. Specifically,
if γ > ‖z?‖2, where z? is a solution of the dual problem (28), then optimal solutions of (30) are
also optimal for (25).

12



3.2 Algorithm

The algorithm for (25) presented in this section involves a generalized distance d in the primal
space, generated by a kernel function φ. It will be assumed that φ is strongly convex on dom f .
This property can be expressed as

d(x, y) ≥ 1

2
‖x− y‖2 for all x ∈ domφ ∩ dom f , y ∈ int (domφ) ∩ dom f (31)

where ‖ · ‖ is a norm, scaled so that the strong convexity constant in (31) is one. (More generally,
if φ is ρ-strongly convex with respect to ‖ · ‖, then the factor 1/2 is replaced with ρ/2. By scaling
the norm, one can assume ρ = 1.) We denote by ‖A‖ the matrix norm

‖A‖ = sup
x 6=0

‖Ax‖2
‖x‖

= sup
z 6=0, x 6=0

zTAx

‖z‖2‖x‖
. (32)

The algorithm is summarized as follows. Select starting points x0 ∈ int(domφ) ∩ dom f and
z−1 = z0. For k = 0, 1, . . ., repeat the following steps:

z̄k+1 = zk + θk(zk − zk−1) (33a)

xk+1 = proxdτkf (xk, τkA
T z̄k+1) (33b)

zk+1 = zk + σk(Axk+1 − b). (33c)

Step (33b) can be written more explicitly as

xk+1 = argmin
x

(f(x) + z̄Tk+1Ax+
1

τk
d(x, xk)). (34)

The parameters τk, σk, θk are determined by one of two methods.

• Constant parameters: θk = 1, τk = τ , σk = σ, where

√
στ‖A‖ ≤ δ. (35)

The parameter δ satisfies 0 < δ ≤ 1. In practice, δ = 1 can be used, but some convergence
results will require δ < 1; see Section 3.3.4.

• Varying parameters. The parameters τk, σk, θk are determined by a backtracking search. At
the start of the algorithm, we set τ−1 and σ−1 to some positive values. To start the search in
iteration k we choose θ̄k ≥ 1. For i = 0, 1, 2, . . ., we set θk = 2−iθ̄k, τk = θkτk−1, σk = θkσk−1,
and compute z̄k+1, xk+1, zk+1 using (33). If

(zk+1 − z̄k+1)
TA(xk+1 − xk) ≤

δ2

τk
d(xk+1, xk) +

1

2σk
‖z̄k+1 − zk+1‖22, (36)

we accept the computed iterates z̄k+1, xk+1, zk+1 and step sizes τk, σk, and terminate the
backtracking search. If (36) does not hold, we increment i and continue the backtracking
search.
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The constant parameter choice is simple, but it is often overly pessimistic. Moreover it requires
an estimate or tight upper bound for ‖A‖, which is difficult to obtain in large-scale problems.
Using a loose bound for ‖A‖ in (35) may result in unnecessarily small values of τ and σ, and
can dramatically slow down the convergence. The definition of ‖A‖ further depends on the strong
convexity constant for the kernel φ; see (31) and (32). This quantity is also difficult to estimate for
most kernels.

The varying parameters option does not require estimates or bounds on ‖A‖ or the strong
convexity constant of the kernel. It is more expensive because in each backtracking iteration the
three updates in (33) are computed. However, the extra cost is well justified in practice. If the line
search process takes more than a few backtracking iterations, it indicates that the inequality (36)
is much weaker than the conservative step size condition (35), and the algorithm with line search
takes much larger steps than would be used by the constant parameter algorithm. In practice,
the parameter θ̄k can be set to one in most iterations. The backtracking search then first checks
whether the previous step sizes τk−1 and σk−1 are acceptable, and decreases them only when needed
to satisfy (36). The option of choosing θ̄k > 1 allows one to occasionally increase the step sizes.

Algorithm (33) is related to several existing algorithms. With constant parameters, it is a special
case of the primal–dual algorithm in [22, Algorithm 1], which solves the more general problem (26)
and uses generalized distances for the primal and dual variables. Here we take g(y) = δ{b} and use
a generalized distance only in the primal space. The line search condition (36) for selecting step
sizes does not appear in [22].

With standard proximal operators (for squared Euclidean distances), the primal–dual algorithm
of [22] is also known as the primal–dual hybrid gradient (PDHG) algorithm, and has been extensively
studied as a versatile and efficient algorithm for large-scale convex optimization; see [20, 21, 24, 25,
28,33,45,47,49,56,57] for applications, analysis, and extensions. The line search technique for the
primal–dual algorithm proposed by Malitsky and Pock [39] is similar to the one described above,
but not identical, even when squared Euclidean distances are used.

The algorithm can also be interpreted as a variation on the Bregman proximal point algorithm
[19, 26,32], applied to the optimality conditions

0 ∈
[

0 AT

−A 0

] [
x
z

]
+

[
∂f(x)
b

]
.

In each iteration of the proximal point algorithm the iterates xk+1, zk+1 are defined by the inclusion

0 ∈
[

0 AT

−A 0

] [
xk+1

zk+1

]
+

[
∂f(xk+1)

b

]
+∇φpd(xk+1, zk+1)−∇φpd(xk, zk), (37)

where φpd(x, z) is a Bregman kernel. If we choose a kernel of the form

φpd(x, z) =
1

τ
φ(x) +

1

2σ
‖z‖22,

then (37) reduces to

0 ∈
[

0 AT

−A 0

] [
xk+1

zk+1

]
+

[
∂f(xk+1)

b

]
+

[
(∇φ(xk+1)−∇φ(xk))/τ

(zk+1 − zk)/σ

]
.

In the generalized proximal operator notation defined of (10) and (11), this condition can be
expressed as two equations

xk+1 = proxdτf (xk, τA
T zk+1), zk+1 = zk + σ(Axk+1 − b).
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These two equations are coupled and difficult to solve because xk+1 and zk+1 each appear on the
right-hand side of an equality. The updates (33b) and (33c) are almost identical but replace zk+1

with z̄k+1 in the primal update. The iterate z̄k+1 can therefore be interpreted as a prediction of
zk+1. This interpretation also provides some intuition for the step size condition (36). If z̄k+1

happens to be equal to zk+1, then (36) imposes no upper bound on the step sizes τk and σk. This
makes sense because when z̄k+1 = zk+1 the update is equal to the proximal point update, and the
convergence theory for the proximal point method does not impose upper bounds on the step size.

He and Yuan [33] have given an interesting interpretation of the primal–dual algorithm of [20]
as a “pre-conditioned” proximal point algorithm. For the algorithm considered here, their inter-
pretation corresponds to choosing

φpd(x, z) =
1

τ
φ(x) +

1

2σ
‖z‖22 + zTAx (38)

as the generalized distance in (37). It can be shown that under the strong convexity assumptions
for φ mentioned at the beginning of the section, the function (38) is convex if

√
στ‖A‖ ≤ 1. With

this choice of Bregman kernel, the inclusion (37) reduces to

0 ∈
[

0 AT

−A 0

] [
xk

2zk+1 − zk

]
+

[
∂f(xk+1)

b

]
+

[
(∇φ(xk+1)−∇φ(xk))/τ

(zk+1 − zk)/σ

]
,

which can be written as

zk+1 = zk + σ(Axk − b), xk+1 = proxdτf (xk, τA
T (2zk+1 − zk)).

Except for the indexing of the iterates, this is identical to (33) with constant step sizes (θk = 1,
τk = τ , σk = σ).

3.3 Convergence analysis

In this section we analyze the convergence of the algorithm following the ideas in [22, 39, 49]. The
main result is an ergodic convergence rate, given in equation (49).

3.3.1 Algorithm parameters

We first prove two facts about the step sizes in the two versions of the algorithm.

Constant parameters If θk = 1, τk = τ , σk = σ, where τ and σ satisfy (35), then the iterates
z̄k+1, xk+1, zk+1 satisfy (36).

Proof. We use the definition of the matrix norm ‖A‖, the arithmetic–geometric mean inequality,
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and strong convexity of the Bregman kernel:

(zk+1 − z̄k+1)
TA(xk+1 − xk) ≤ ‖A‖‖xk+1 − xk‖‖zk+1 − z̄k+1‖2

=

√
σkτk‖A‖
δ

(
δ2‖xk+1 − xk‖2

τk

‖zk+1 − z̄k+1‖22
σk

)

)1/2

≤
√
σkτk‖A‖
δ

(
δ2‖xk+1 − xk‖2

2τk
+
‖zk+1 − z̄k+1‖22

2σk

)
≤
√
σkτk‖A‖
δ

(
δ2d(xk+1, xk)

τk
+
‖zk+1 − z̄k+1‖22

2σk

)
≤ δ2d(xk+1, xk)

τk
+
‖z̄k+1 − zk+1‖22

2σk
.

The last inequality follows from (35).

The result implies that we can restrict the analysis to the algorithm with varying parameters. The
constant parameter variant is a special case with θ̄k = 1, τ−1 = τ , and σ−1 = σ.

Varying parameters In the varying parameter variant of the algorithm the step sizes are
bounded below by

τk ≥ τmin , min {τ−1,
δ

2
√
β‖A‖

}, σk ≥ σmin , βτmin, (39)

where β = σ−1/τ−1.

Proof. We proved in the previous paragraph that the exit condition (36) in the backtracking search
certainly holds if √

σkτk‖A‖ ≤ δ.

From this observation one can use induction to prove the lower bounds (39). Suppose τk−1 ≥ τmin

and σk−1 ≥ σmin. This holds at k = 0 by definition of τmin and σmin. The first value of θk tested
in the search is θk = θ̄k ≥ 1. If this value is accepted, then

τk = θ̄kτk−1 ≥ τk−1 ≥ τmin, σk = θ̄kσk−1 ≥ σk−1 ≥ σmin.

If θk = θ̄k is rejected, one or more backtracking steps are taken. Denote by θ̃k the last rejected
value. Then θ̃k

√
σk−1τk−1‖A‖ > δ, and the accepted θk satisfies

θk =
θ̃k
2
>

δ

2
√
σk−1τk−1‖A‖

=
δ

2τk−1
√
β‖A‖

.

Therefore

τk = θkτk−1 >
δ

2
√
β‖A‖

≥ τmin, σk = βτk ≥ βτmin.

3.3.2 Analysis of one iteration

We now analyze the progress in one iteration of the varying parameter variant of algorithm (33).
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Duality gap For i ≥ 1, the iterates xi, zi, z̄i satisfy

L(xi, z)− L(x, z̄i) ≤
1

τi−1

(
d(x, xi−1)− d(x, xi)− (1− δ2)d(xi, xi−1)

)
+

1

2σi−1

(
‖z − zi−1‖22 − ‖z − zi‖22 − ‖z̄i − zi−1‖22

)
(40)

for all x ∈ dom f ∩ domφ and all z.

Proof. The second step (33b) defines xk+1 as the minimizer of

f(x) + z̄Tk+1Ax+
1

τk
d(x, xk) = f(x) + z̄Tk+1Ax+

1

τk

(
φ(x)− φ(xk)− 〈∇φ(xk), x− xk〉

)
.

By assumption the solution is uniquely defined and in the interior of domφ. Therefore xk+1

satisfies the optimality condition

1

τk
(∇φ(xk)−∇φ(xk+1))−AT z̄k+1 ∈ ∂f(xk+1).

Equivalently, the following holds for all x ∈ domφ ∩ dom f :

f(x)− f(xk+1) ≥ −z̄Tk+1A(x− xk+1) +
1

τk
〈∇φ(xk)−∇φ(xk+1), x− xk+1〉

= −z̄Tk+1A(x− xk+1)−
1

τk
(d(x, xk)− d(x, xk+1)− d(xk+1, xk)). (41)

(The triangle identity (8) is used on the second line.) The dual update (33c) implies that

(z − zk+1)
T (Axk+1 − b) =

1

σk
(z − zk+1)

T (zk+1 − zk) for all z. (42)

This equality at k = i− 1 is

(z − zi)T (Axi − b) =
1

σi−1
(z − zi)T (zi − zi−1)

=
1

2σi−1

(
‖z − zi−1‖22 − ‖z − zi‖22 − ‖zi − zi−1‖22

)
. (43)

The equality (42) at k = i− 2 is

(z − zi−1)T (Axi−1 − b) =
1

σi−2
(z − zi−1)T (zi−1 − zi−2)

=
θi−1
σi−1

(z − zi−1)T (zi−1 − zi−2)

=
1

σi−1
(z − zi−1)T (z̄i − zi−1).

We evaluate this at z = zi and add it to the equality at z = zi−2 multiplied by θi−1:

(zi − z̄i)T (Axi−1 − b) =
1

σi−1
(zi − z̄i)T (z̄i − zi−1)

=
1

2σi−1

(
‖zi − zi−1‖22 − ‖zi − z̄i‖22 − ‖z̄i − zi−1‖22

)
. (44)
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Now we combine (41) for k = i− 1, with (43) and (44). For i ≥ 1,

L(xi, z)− L(x, z̄i)

= f(xi) + zT (Axi − b)− f(x)− z̄Ti (Ax− b)

≤ 1

τi−1
(d(x, xi−1)− d(x, xi)− d(xi, xi−1)) + z̄Ti A(x− xi) + zT (Axi − b)− z̄Ti (Ax− b)

=
1

τi−1
(d(x, xi−1)− d(x, xi)− d(xi, xi−1)) + (z − z̄i)T (Axi − b)

=
1

τi−1
(d(x, xi−1)− d(x, xi)− d(xi, xi−1)) + (zi − z̄i)TA(xi − xi−1)

+ (z − zi)T (Axi − b) + (zi − z̄i)T (Axi−1 − b)

=
1

τi−1
(d(x, xi−1)− d(x, xi)− d(xi, xi−1)) + (zi − z̄i)TA(xi − xi−1)

+
1

2σi−1
(‖z − zi−1‖22 − ‖z − zi‖22 − ‖z̄i − zi−1‖22 − ‖z̄i − zi‖22). (45)

The first inequality follows from (41). In the last step we substitute (43) and (44). Next we note
that the line search exit condition (36) implies that

(zi − z̄i)TA(xi − xi−1) ≤
δ2

τi−1
d(xi, xi−1) +

1

2σi−1
‖z̄i − zi‖22.

Substituting this in (45) gives the bound (40).

Monotonicity properties Suppose x? ∈ domφ, and x?, z? satisfy the saddle point prop-
erty (29). Then

d(x?, xi) +
1

2β
‖z? − zi‖22 ≤ d(x?, xi−1) +

1

2β
‖z? − zi−1‖22 (46)

where β = σ−1/τ−1. Moreover

k∑
i=1

(
(1− δ2)d(xi, xi−1) +

1

2β
‖z̄i − zi−1‖22

)
≤ d(x?, x0) +

1

2β
‖z? − z̄0‖22. (47)

These inequalities hold for any value δ ∈ (0, 1] in the line search condition (36). The second
inequality implies that z̄i − zi−1 → 0. If δ < 1 it also implies that d(xi, xi−1) → 0 and, by the
strong convexity assumption on φ, that xi − xi−1 → 0.

Proof. We substitute x = x?, z = z? in (40) and note that L(xi, z
?) − L(x?, z̄i) ≥ 0 (from the

saddle-point property (29)):

0 ≤ L(xi, z
?)− L(x?, z̄i)

≤ 1

τi−1
(d(x?, xi−1)− d(x?, xi)− (1− δ2)d(xi, xi−1))

+
1

2σi−1

(
‖z? − zi−1‖22 − ‖z? − zi‖22 − ‖z̄i − zi−1‖22

)
.
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With β = σi−1/τi−1 = σ−1/τ−1, this gives the inequality

(1− δ2)d(xi, xi−1) +
1

2β
‖z̄i − zi−1‖22 ≤ d(x?, xi−1)− d(x?, xi) +

1

2β
(‖z? − zi−1‖22 − ‖z? − zi‖22).

Since the left-hand side is nonnegative, the inequality (46) follows. Summing from i = 1 to k
gives (47).

3.3.3 Ergodic convergence

We define averaged primal and dual sequences

xavgk =
1∑k

i=1 τi−1

k∑
i=1

τi−1xi, zavgk =
1∑k

i=1 τi−1

k∑
i=1

τi−1z̄i.

We first show that the averaged sequences satisfy

L(xavgk , z)− L(x, zavgk ) ≤ 1∑k
i=1 τi−1

(d(x, x0) +
1

2β
‖z − z0‖22) (48)

for all x ∈ dom f ∩ domφ and all z. This holds for every choice for δ ∈ (0, 1] in (36).

Proof. From (40),

L(xi, z)− L(x, z̄i) ≤
1

τi−1

(
d(x, xi−1)− d(x, xi) +

1

2β
‖z − zi−1‖22 −

1

2β
‖z − zi‖22

)
.

Since L is convex in x and affine in z,

(
k∑
i=1

τi−1)(L(xavgk , z)− L(x, zavgk )) ≤
k∑
i=1

τi−1(L(xi, z)− L(x, z̄i))

≤ d(x, x0)− d(x, xk) +
1

2β
(‖z − z0‖22 − ‖z − zk‖22)

≤ d(x, x0) +
1

2β
‖z − z0‖22.

Dividing by
∑k

i=1 τi−1 gives (48).

If we substitute in (48) an optimal x = x? (which satisfies Ax? = b), we obtain that

f(xavgk ) + zT (Axavgk − b)− f(x?) ≤ 1∑k
i=1 τi−1

(d(x?, x0) +
1

2β
‖z − z0‖22)

for all z. Maximizing both sides over z subject to ‖z‖2 ≤ γ shows that

f(xavgk ) + γ‖Axavgk − b‖2 − f(x?) ≤ 1∑k
i=1 τi−1

(
d(x?, x0) +

1

2β
sup
‖z‖2≤γ

‖z − z0‖22

)

=
1∑k

i=1 τi−1

(
d(x?, x0) +

1

2β
(γ + ‖z0‖2)2

)
. (49)

The first two terms on the left-hand side form the merit function (30). For γ > ‖z?‖2, the penalty
function in the merit function is exact, so f(x) + γ‖Ax − b‖2 − f(x?) ≥ 0 with equality only
if x is optimal. (The use of an exact penalty function to express a convergence result is inspired
by [49, page 287].) Since τi ≥ τmin, the inequality shows that the merit function decreases as O(1/k).
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3.3.4 Convergence of the iterates

We now make two additional assumptions about the Bregman kernel φ [19].

1. For fixed x, the sublevel sets {y | d(x, y) ≤ α} are closed. In other words, the distance d(x, y)
is a closed function of y.

2. If yk ∈ int (domφ) converges to x ∈ domφ, then d(x, yk)→ 0.

These two assumptions are not restrictive, and in particular, they are satisfied by the logarithmic
barrier φ (12). We also make the (minor) assumptions that δ < 1 in (36) and that θk is bounded
above (which is easily satisfied, since the user chooses θ̄k). With these additional assumptions it
can be shown that the sequences xk, zk converge to optimal solutions.

Proof. The inequality (46) and strong convexity of φ show that the sequences xk, zk are bounded.
Let (xki , zki) be a convergent subsequence with limit (x̂, ẑ). With δ < 1, (47) shows that d(xki+1, xki)
converges to zero. By strong convexity of the kernel, xki+1−xki → 0 and therefore the subsequence
xki+1 also converges to x̂. Since zki+1 − zki → 0, the subsequence zki+1 converges to ẑ. Since θk is
bounded above, z̄ki+1

= zki + θk(zki − zki−1) also converges to ẑ.
The dual update (33c) can be written as

Axki+1 − b =
1

σki
(zki+1 − zki). (50)

Since zki+1 − zki → 0 and σki ≥ σmin, the left-hand side converges to zero, so Ax̂ = b.
From (46), d(x?, xki) is bounded above. Since the sublevel sets {y | d(x?, y) ≤ α} are closed

subsets of int (domφ), the limit x̂ is in int (domφ). The left-hand side of the optimality condition

1

τki
(∇φ(xki)−∇φ(xki+1))−AT z̄ki+1 ∈ ∂f(xki+1) (51)

converges to −AT ẑ, because τk ≥ τmin and ∇φ is continuous on int (domφ). By maximal mono-
tonicity of ∂f , this implies that −AT ẑ ∈ ∂f(x̂) (see [17, page 27] [53, lemma 3.2]). We conclude
that x̂, ẑ satisfy the optimality conditions Ax̂ = b and −AT ẑ ∈ ∂f(x̂).

To show that the entire sequence converges, we substitute x = x̂, z = ẑ in (40):

L(xk, ẑ)− L(x̂, z̄k) ≤
1

τk−1
(d(x̂, xk−1)− d(x̂, xk)) +

1

2βτk−1
(‖ẑ − zk−1‖22 − ‖ẑ − zk‖22).

The left-hand side is nonnegative by the saddle point property (29). Therefore

d(x̂, xk) +
1

2β
‖ẑ − zk‖22 ≤ d(x̂, xk−1) +

1

2β
‖ẑ − zk−1‖22

for all k. This shows that

d(x̂, xk) +
1

2β
‖ẑ − zk‖22 ≤ d(x̂, xki) +

1

2β
‖ẑ − zki‖

2
2

for all k ≥ ki. By the second additional kernel property mentioned above, the right-hand side
converges to zero. Therefore d(x̂, xk) → 0 and zk → ẑ. If d(x̂, xk) → 0, then the strong convexity
property of the kernel implies that xk → x̂.
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4 Numerical experiments

In this section we evaluate the performance of algorithm (7), the Bregman PDHG algorithm (33)
applied to the centering problem (5). The numerical results illustrate that the cost for evaluating
the Bregman proximal operator (17) is comparable to the cost of a sparse Cholesky factorization
with sparsity pattern E. This prox-evaluation dominates the computational cost in each iteration
of (7), since A and A∗ are usually easy to evaluate for large-scale problems with sparse or other
types of structure. In particular, the proposed method does not need to solve linear equations
involving A or A∗, an important advantage over ADMM and interior-point methods.

In this section we consider the centering problem for two sets of sparse SDPs, the maximum
cut problem and the graph partitioning problem. The experiments are carried out in Python 3.6
on a laptop with an Intel Core i5 2.4GHz CPU and 8GB RAM. The Python library for chordal
matrix computations CHOMPACK [4] is used to compute chordal extensions (with the AMD
reordering [1]), sparse Cholesky factorizations, the primal barrier φ, and the gradient and directional
second derivative of the dual barrier φ∗. Other sparse matrix computations are implemented using
CVXOPT [2].

In the experiments, we terminate the iteration (33) when the relative primal and dual residuals
are less than 10−6. These two stopping conditions are sufficient for our algorithm, as suggested by
the convergence proof, in particular, equations (50) and (51). The two residuals are defined as

primal residual =
‖zk − zk−1‖2

σk max{1, ‖zk‖∞}
, dual residual =

‖∇φ(Xk)−∇φ(Xk−1)‖2
τk max{1, ‖Xk‖max}

,

where ‖Y ‖max = maxi,j |Yij |.

4.1 Maximum cut problem

Given an undirected graph G = (V,E), the maximum cut problem is to partition the set of vertices
into two sets in order to maximize the total number of edges between the two sets. (If every
edge {i, j} ∈ E is associated with a nonnegative weight wij , then the maximum cut problem is to
maximize the total weight of the edges between the two sets.) One can show that the maximum
cut problem can be represented as a binary quadratic optimization problem

maximize (1/4)xTLx
subject to x ∈ {±1}n,

where L ∈ Sn is the Laplacian of an undirected graph G = (V,E) with vertices V = {1, 2, . . . , n}.
The SDP relaxation of the maximum cut problem is

maximize (1/4) tr(LX)
subject to diag(X) = 1

X � 0,
(52)

with variable X ∈ Sn. The operator diag : Sn → Rn returns the diagonal elements of the input
matrix as a vector: diag(X) = (X11, X22, . . . , Xnn). If moderate accuracy is allowed, we can solve
the centering problem of the SDP relaxation

minimize −(1/4) tr(LX) + µφ(X)
subject to diag(X) = 1

X ∈ ΠE′(S
n
+)

(53)
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n p?sdp p?sdp −
1

4
tr(LX)

primal
residual

dual
residual

maxG51 1000 4.0039× 103 3.12× 10−4 2.24× 10−7 6.43× 10−8

maxG32 2000 1.5676× 103 6.95× 10−4 6.48× 10−7 2.23× 10−7

maxG55 5000 1.1039× 104 1.02× 10−4 5.32× 10−7 7.13× 10−7

maxG60 7000 1.5222× 104 9.91× 10−5 1.21× 10−7 2.33× 10−7

Table 1: Results for four instances of the MAXCUT problem from SDPLIB [15]. Column 3 is
the optimal value computed by MOSEK. Column 4 is the difference with the optimal value of the
centering problem computed by algorithm (33). The last two columns give the primal and dual
residuals in the computed solution.

with optimization variable X ∈ SnE′ where E′ is a chordal extension of E. Note that tr(X) = n for
all feasible X. The centering problem has the form of (5) with

C = −1

4
L, N =

1

n
I, A(X) = diag(X).

The Lagrangian of (53) is in the form of (27) where f is defined in (6), and z is the Lagrange
multiplier associated with the equality constraint diag(X) = 1. Thus we have

1

4
tr(LX?) ≤ p?sdp ≤ 1T z?, −1

4
tr(LX?) + 1T z? = µn, (54)

where X? and z? are the primal and dual optimal solutions of the centering problem (53), and p?sdp
is the optimal value of the SDP (52).

Numerical results We first collect four MAXCUT problems of moderate size from SDPLIB [15].
The SDP relaxation (52) is solved using MOSEK [41] and the optimal value computed by MOSEK is
denoted by p?sdp. (Note that the source file for the graph maxcutG55 was unfortunately incorrectly
converted into SDPA sparse format. Thus the objective value for the maxG55 problem obtained
from the original data file is 1.1039× 104 instead of 9.9992× 103 as reported in SDPLIB.)

In (53), we set µ = 0.001/n, and report in column 4 of Table 1 the difference between p?sdp
and the cost function (1/4) tr(LX) at the suboptimal solution returned by the algorithm. The last
two columns of Table 1 give the relative primal and dual residuals. These results show that the
proposed algorithm is able to solve the centering SDP (53) with the desired accuracy. A comparison
of the third and fourth columns of Table 1 confirms (54), i.e., the objective value of the SDP at X
is within µn = 10−3 of the optimal value. Considering the values of p?sdp, we see that the computed
points on the central path are close to the optimal solutions of the SDPs.

To test the scalability of algorithm (33), we add four larger graphs from the SuiteSparse collec-
tion [36]. In Table 2 we report the time per Cholesky factorization, the number of Newton steps per
iteration, the time per PDHG iteration, and the number of iterations in the primal–dual (PDHG)
algorithm for the eight test problems. As can be seen from the table, the number of Newton it-
erations per prox-evaluation remains small even when the size of the problem increases. Also, we
observe that the time per PDHG iteration is roughly the cost of a sparse Cholesky factorization
times the number of Newton steps. This means that the backtracking in Newton’s method does
not cause a significant overhead. Since the evaluations of A and A∗ in this problem are very cheap,
the cost per prox-evaluation is the dominant term in the per-iteration complexity.
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n
time per Cholesky

factorization
Newton steps
per iteration

time per PDHG
iteration

PDHG
iterations

maxG51 1000 0.05 2.45 0.12 267
maxG32 2000 0.12 1.56 0.18 240
maxG55 5000 0.29 2.10 0.58 249
maxG60 7000 0.60 2.55 1.22 279
barth4 6019 0.42 3.57 1.55 346
tuma2 12992 0.48 4.36 1.89 375
biplane-9 21701 0.95 2.58 2.12 287
c-67 57975 0.76 3.58 3.56 378

Table 2: The four MAXCUT problems from SDPLIB plus four larger graphs from the SuiteSparse
collection [36]. The last column (‘PDHG iterations’) gives the number of iterations in the primal–
dual algorithm. Columns 3–5 describe the complexity of one iteration of the algorithm. The CPU
time is measured in seconds.

4.2 Graph partitioning

The problem of partitioning the vertices of a graph G = (V,E) in two subsets of equal size (here
we assume an even number of vertices), while minimizing the number of edges between the two
subsets, can be expressed as

minimize (1/4)xTLx
subject to 1Tx = 0

x ∈ {−1, 1}n,

where L is the graph Laplacian. The ith entry of the n-vector x indicates the set that vertex i is
assigned to. To obtain an SDP relaxation we introduce a matrix variable Y = xxT and write the
problem in the equivalent form

minimize (1/4) tr(LY )
subject to 1TY 1 = 0

diag(Y ) = 1
Y = xxT ,

and then relax the constraint Y = xxT as Y � 0. This gives the SDP

minimize (1/4) tr(LY )
subject to 1TY 1 = 0

diag(Y ) = 1
Y � 0.

(55)

The dual SDP is
maximize 1T z
subject to diag(z) + ξ11T � (1/4)L,

with variables ξ ∈ R and z ∈ Rn.
The aggregate sparsity pattern of the SDP (55) is completely dense, because the equality con-

straint 1TY 1 = 0 has a coefficient matrix of all ones. We therefore eliminate the dense constraint
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using the technique described in [30, page 668]. Let P be the n× (n− 1) matrix

P =



1 0 · · · 0 0
−1 1 · · · 0 0

0 −1 · · · 0 0
...

...
...

...
0 0 · · · 1 0
0 0 · · · −1 1
0 0 · · · 0 −1


.

The columns of P form a sparse basis for the orthogonal complement of the multiples of the vector 1.
Suppose Y is feasible in (55) and define[

X u
uT v

]
=
[
P 1

]−1
Y
[
P 1

]−T
. (56)

From 1TY 1 = 0, we see that

0 = 1TY 1 = 1T
[
P 1

] [ X u
uT v

] [
P 1

]T
1 = n2v,

and therefore v = 0. Since the matrix (56) is positive semidefinite, we also have u = 0. Hence every
feasible Y can be expressed as Y = PXP T , with X � 0. If we make this substitution in (55) we
obtain

minimize (1/4) tr(P TLPX)
subject to diag(PXP T ) = 1

X � 0.

The (n− 1)× (n− 1) matrix P TLP has elements

(P TLP )ij =

{
Lii − 2Li,i+1 + Li+1,i+1 i = j
Lij − Li+1,j − Li,j+1 + Li+1,j+1 i 6= j.

Thus the sparsity pattern E′ of the matrix P TLP is denser than E, i.e., E ⊆ E′. The n constraints
diag(PXP T ) = 1 reduce to

X11 = 1, Xi−1,i−1 +Xii − 2Xi,i−1 = 1, i = 2, . . . , n− 1, Xn−1,n−1 = 1.

To apply algorithm (33), we first rewrite the graph partitioning problem as

minimize (1/4) tr(P TLPX)
subject to diag(PXP T ) = 1

X ∈ ΠE′′(S
n−1
+ )

(57)

where E′′ is a chordal extension of the aggregate sparsity pattern E′. Note that tr(P TPX) = n−1
for all feasible X. The centering problem for this sparse SDP is of the form (5) with

C =
1

4
P TLP, N =

1

n− 1
P TP, A(X) = diag(PXP T ), A∗(y) = P T diag(y)P.
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n p?sdp p?sdp −
1

4
tr(P TLPX)

primal
residual

dual
residual

gpp100 100 −44.943551 3.78× 10−4 3.24× 10−7 8.34× 10−7

gpp124-1 124 −7.3430761 4.02× 10−4 3.86× 10−8 7.45× 10−8

gpp250-1 250 −45.444917 8.23× 10−4 1.28× 10−7 8.39× 10−7

gpp500-1 500 −25.320544 5.17× 10−4 7.42× 10−8 7.12× 10−7

Table 3: Results for four graph partitioning problems from SDPLIB. Column 3 is the optimal
value computed by MOSEK. Column 4 is the difference with the optimal value of the centering
problem computed by algorithm (33). The last two columns give the primal and dual residuals in
the computed solution.

n
time per Cholesky

factorization
Newton steps
per iteration

time per PDHG
iteration

PDHG
iterations

gpp100 100 0.01 2.43 0.02 305
gpp124-1 124 0.01 2.00 0.02 392
gpp250-1 250 0.01 2.65 0.03 365
gpp500-1 500 0.02 3.01 0.07 394
delaunay n10 1024 0.37 4.36 1.76 403
delaunay n11 2048 0.48 4.70 2.54 420
delaunay n12 4096 0.60 4.43 3.05 367
delaunay n13 8192 1.02 4.42 4.98 375

Table 4: The four graph partitioning problems from SDPLIB plus four larger graphs from the Suite-
Sparse collection. The last column gives the number of iterations in the primal–dual algorithm.
Columns 3–5 describe the complexity of one iteration of the algorithm. The CPU time is measured
in seconds.

Numerical results Table 3 shows the numerical results for four problems from SDPLIB [15]. The
SDP relaxation (55) is solved by MOSEK and its optimal value is denoted by p?sdp. In solving (57),

we set µ = 0.001/n, and report in Table 3 the value (1/4) tr(P TLPX), where X is the solution
returned by the algorithm (33). As in the first experiment, the numerical results show that the
algorithm is able to solve the centering SDP (57) with desired accuracy.

In addition, we test the algorithm for four additional graphs from the SuiteSparse collection [36].
Table 4 reports the time per Cholesky factorization, the number of Newton steps per iteration, the
time per PDHG iteration, and the number of iterations in the primal–dual algorithm. The same
observations as in Section 4.1 apply: the number of Newton steps remains moderate as the size
of the problem increases, and the cost per iteration is roughly linear in the cost of a Cholesky
factorization.

5 Conclusions

We presented a Bregman proximal algorithm for the centering problem in sparse semidefinite pro-
gramming. The Bregman distance used in the proximal operator is generated by the logarithmic
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barrier function for the cone of sparse matrices with a positive semidefinite completion. With this
choice of Bregman distance, the per-iteration complexity of the algorithm is dominated by the
cost of a Cholesky factorization with the aggregate sparsity pattern of the SDP, plus the cost of
evaluating the linear mapping in the constraints and its adjoint.

The proximal algorithm we used is based on the primal–dual method proposed by Chambolle
and Pock [22]. An important addition to the algorithm is a new procedure for selecting the primal
and dual step sizes, without knowledge of the norm of the linear mapping or the strong convexity
of the Bregman kernel. In the current implementation the ratio of the primal and dual step sizes
is kept fixed throughout the iteration. An interesting further improvement would be to relax this
condition, choosing β = σk/τk adaptively [5, 39].

The standard primal–dual hybrid gradient algorithm is known to include several important
algorithms as special cases. The Bregman extension of the algorithm is equally versatile. We
mention one interesting example. Suppose the matrix A in (25) is a product of two matrices
A = CB. Then (25) is equivalent to

minimize f(x) + g(y)
subject to Bx = y

(58)

where g(y) = δ{b}(Cy). The standard (Euclidean) proximal operator of g is the mapping

proxg(u) = argmin
Cy=b

‖y − u‖22. (59)

The PDHG algorithm applied to the reformulated problem requires in each iteration an evaluation
of the Bregman proximal operator of f , matrix–vector products with B and BT , and the solution
of the least norm problem in the definition of proxg. For C = A, B = I, this can be interpreted
as a Bregman extension of the Douglas–Rachford algorithm, or of Spingarn’s method for convex
optimization with equality constraints.
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[56] B. C. Vũ. A splitting algorithm for dual monotone inclusions involving cocoercive operators.
Advances in Computational Mathematics, 38:667–681, 2013.

[57] M. Yan. A new primal–dual algorithm for minimizing the sum of three functions with a linear
operator. Journal of Scientific Computing, 76(3):1698–1717, September 2018.

[58] R. Y. Zhang and J. Lavaei. Sparse semidefinite programs with guaranteed near-linear time
complexity via dualized clique tree conversion. Mathematical Programming, 188(1):351–393,
2021.

[59] Y. Zheng, G. Fantuzzi, A. Papachristodolou, P. Goulart, and A. Wynn. Fast ADMM for
semidefinite programs with chordal sparsity. In 2017 American Control Conference (ACC),
pages 3335–3340, 2017.

[60] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. Chordal and factor-width decompositions
for scalable semidefinite and polynomial optimization. arXiv, 2021.

[61] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn. Chordal decompo-
sition in operator-splitting methods for sparse semidefinite programs. Mathematical Program-
ming, 180:489–532, 2020.

30


	Introduction
	Barrier proximal operator for sparse PSD matrix cone
	Centering problem
	Bregman distance
	Primal and dual barrier
	Barrier kernel
	Newton method for barrier proximal operator

	Bregman primal–dual method
	Duality theory
	Algorithm
	Convergence analysis
	Algorithm parameters
	Analysis of one iteration
	Ergodic convergence
	Convergence of the iterates


	Numerical experiments
	Maximum cut problem
	Graph partitioning

	Conclusions

