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SEMIDEFINITE PROGRAMMING*
LIEVEN VANDENBERGHEt AND STEPHEN BOYD*

Abstract. In sernidefinite programming, one minimizes a linear function subject to the constraint that an affine
combination ofsynunetric matrices is positive semidefinite. Such a constraint is nonlinear and nonsmooth, but convex,
so semidefinite programs are convex optimization problems. Semidefinite programming unifies several standard
problems (e.g., linear and quadratic programming) and finds many applications in engineering and combinatorial
optimization.

Although semidefinite programs are much more general than linear programs, they are not much harder to solve.
Most interior-point methods for linear programming have been generalized to semidefinite programs. As in linear
programming, these methods have polynomial worst-case complexity and perform very well in practice.

This paper gives a survey of the theory and applications of semidefinite programs and an introduction to primal-
dual interior-point methods for their solution.
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1. Introduction.

1.1. Semidefinite programming. We consider the problem of minimizing a linear func-
tion of a variable x Rm subject to a matrix inequality:

(1)
minimize crx
subject to F(x) > O,

where

m

F(x) Fo + Exi Fi.
i=1

The problem data are the vector c 6 Rm and m + 1 symmetric matrices F0 Fm Rnxn.
The inequality sign in F(x) > 0 means that F(x) is positive semidefinite, i.e., zT F(x)z >_ 0
for all z Rn.

We call the inequality F(x) > 0 a linear matrix inequality and the problem (1) a semidef-
inite program. A semidefinite program is a convex optimization problem since its objective
and constraint are convex: if F(x) >_ 0 and F(y) >_ O, then, for all ), 0 _< ,k _< 1,

F(.x 4- (1 ,y)) ),.F(x) 4- (1 ,k)F(y) > O.

Figure 1 depicts a simple example with x e R2 and Fi R7X7. Our goal here is to give
the reader a generic picture that shows some of the features of semidefinite programs, so the
specific values of the data are not relevant. The boundary of the feasible region is shown as
the dark curve. The feasible region, i.e., {xlF(x) > 0}, consists of this boundary curve along
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F(x)

_
FIt. 1. A simple semidefinite program with x R2, F(x) R7x7.

with the region it encloses. Very roughly speaking, the semidefinite programming problem is
to move as far as possible in the direction -c, while staying in the feasible region. For this
semidefinite program there is one optimal point, Xopt.

This simple example demonstrates several general features of semidefinite programs. We
have already mentioned that the feasible set is convex. Note that the optimal solution Xopt
is on the boundary of the feasible set, i.e., F(xopt) is singular; in the general case there is
always an optimal point on the boundary (provided the problem is feasible). In this example,
the boundary of the feasible set is not smooth. It is piecewise smooth: it consists of two
line segments and two smooth curved segments. In the general case the boundary consists of
piecewise algebraic surfaces. Skipping some technicalities, the idea is as follows. At a point
where the boundary is smooth, it is defined locally by some specific minors ofthe matrix F(x)
vanishing. Thus the boundary is locally the zero set of some polynomials in X Xm, i.e.,
an algebraic surface.

Although the semidefinite program (1) may appear quite specialized, we will see that it
includes many important optimization problems as special cases. For instance, consider the
linear program (LP)

minimize crx
(2)

subject to Ax + b > O,

in which the inequality denotes componentwise inequality. Since a vector v > 0 (compo-
nentwise) if and only if the matrix diag(v) (i.e., the diagonal matrix with the components of v
on its diagonal) is positive semidefinite, we can express the LP (2) as a semidefinite program
with F(x) diag(Ax + b), i.e.,

Fo diag(b), Fi diag(ai), 1 m,

where A [al... am] - Rnxm. In this case, of course, the feasible set is polyhedral; the
boundary cannot be curved as in the general semidefinite program or the example shown in
Fig. 1.

Semidefinite programming can be regarded as an extension of linear programming where
the componentwise inequalities between vectors are replaced by matrix inequalities, or, equiv-
alently, the first orthant is replaced by the cone of positive semidefinite matrices. We can also
view the semidefinite program (1) as a semi-infinite LP, since the matrix inequality F(x) > 0
is equivalent to an infinite set of linear constraints on x, i.e., zr F(x)z >_ 0 for each z e Rn.

Thus x < y denotes componentwise inequality when x and y are vectors and matrix inequality when x and y
are (symmetric) matrices. In this paper, the context will always make it clear which is meant.
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It is therefore not surprising that the theory of semidefinite programming closely parallels the
theory of linear programming, or that many algorithms for solving LPs should have general-
izations that handle semidefinite programs. There are some important differences, however.
Duality results are weaker for semidefinite programs than for LPs, and there is no straightfor-
ward or practical simplex method for semidefinite programs.2

Before proceeding further we give a simple example ofa nonlinear (convex) optimization
problem that can be cast as a semidefinite program, but not as an LP. Consider the problem

(3)
(Tx)2

minimize
dTx

subject to Ax + b > O,

where we assume that drx > 0 whenever Ax + b > O. We start with the standard trick of
introducing an auxiliary variable that serves as an upper bound on the objective:

minimize

subject to Ax + b > 0,
(4)

(cTx)2

<t.
drx

In this formulation, the objective is a linear function of the variables x and t; the nonlinear
(convex) objective in (3) shows up as a nonlinear (convex) constraint in (4). These constraints,
in turn, can be expressed as a linear matrix inequality in the variables x and t"

minimize

(5)
subject to

diag(Ax + b) 0 0 ]
0 crx >_ O.
0 crx drx

Thus we have reformulated the nonlinear (convex) problem (3) as the semidefinite program (5).
The linear matrix inequality in the constraint ofthe semidefinite program (5) demonstrates

two standard tricks: representing multiple linear matrix inequalities as one block-diagonal
matrix inequality and using Schur complements to represent a nonlinear convex constraint as
a linear matrix inequality. Of course the 2 2 matrix inequality

(6) I CrX ] > ocrx drx

is equivalent to drx >_ 0 and (cTx)2/dTx >_ 0 (with > O, cTx 0 if drx 0). Since
we have assumed that Ax + b >_ 0 implies drx > 0, we see that the constraints in (4) are
equivalent to the matrix inequality in (5). The expression (cTx)E/dTx is called the Schur
complement ofdrx in the matrix inequality (6). Recognizing Schur complements in nonlinear
expressions is often the key step in reformulating nonlinear convex optimization problems as
semidefinite programs.

There are good reasons for studying semidefinite programming. First, positive semidef-
inite (or definite) constraints directly arise in a number of important applications. Second,
many convex optimization problems, e.g., linear programming and (convex) quadratically

2See, however, Anderson and Nash [9] for simplex-like methods in semi-infinite linear progamming and
Pataki [86] and Lasserre [62] for extensions of the simplex method to semidefinite programming.
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constrained quadratic programming, can be cast as semidefinite programs, so semidefinite
programming offers a unified way to study the properties of and derive algorithms for a wide
variety of convex optimization problems. Most importantly, however, semidefinite programs
can be solved very efficiently, both in theory and in practice.

Theoretical tractability follows from convexity, along with the observation that we can
construct, in polynomial time, a cutting plane for the constraint set through any given infeasible
point (see, e.g., [17, 2.3] or [101]). One can therefore apply the ellipsoid method of Yudin
and Nemirovsky and Shor (see 115, 99]) to solve problem (1) in polynomial time. In practice,
however, the ellipsoid method is slow.

Some general methods for nondifferentiable convex optimization are described by Shor
100], Kiwiel [57], and Hiriart-Urruty and Lemar6chal [47]. These methods are more efficient

in practice than the ellipsoid method and can be used to solve semidefinite programs.
In this paper we consider recently developed interior-point methods for semidefinite pro-

gramming. These methods enjoy several properties that make them especially attractive.
Practical efficiency. It is now generally accepted that interior-point methods for
LPs are competitive with the simplex method and even faster for problems with
more than 10, 000 variables or constraints (see, e.g., [66]). Similarly, our experi-
ence with system and control applications suggests that interior-point methods for
semidefinite programs are competitive with other methods for small problems and
substantially faster for medium and large-scale problems. As a very rough rule-of-
thumb, interior-point methods solve semidefinite programs in about 5-50 iterations;
each iteration is basically a least-squares problem of the same size as the original
problem.
Theoretical efficiency. A worst-case analysis of interior-point methods for semidef-
inite programming shows that the effort required to solve a semidefinite program to
a given accuracy grows no faster than a polynomial of the problem size.

Ability to exploitproblem structure. Most of the computational effort in an interior-
point method for semidefinite programming is in the least-squares problems that must
be solved at each iteration. These least-squares problems can be solved by iterative
methods such as conjugate-gradients, which can take advantage ofproblem structure.
Sparsity is one well-known example of structure; in engineering applications many
other types arise (e.g., Toeplitz structure).

1.2. Historical overview. An early paper on the theoretical properties of semidefinite
programs is by Bellman and Fan 13]. Other references discussing optimality conditions are
by Craven and Mond [20], Shapiro [97], Fletcher [31], Allwright [7], Wolkowicz 112], and
Kojima, Kojima, and Hara [58].

Many researchers have worked on the problem ofminimizing the maximum eigenvalue of
a symmetric matrix, which can be cast as a semidefinite program (see 2). See, for instance,
Cullum, Donath, and Wolfe [21], Goh and Teo [41], Panier [84], Allwright [8], Overton
[78, 79], Overton and Womersley [81, 80], Ringertz [93], Fan and Nekooie [27], Fan [26],
Hiriart-Urruty and Ye [48], Shapiro and Fan [98], and Pataki [85].

Interior-point methods for LPs were introduced by Karmarkar in 1984 [55], although
many of the underlying principles are older (see, e.g., Fiacco and McCormick [29], Lieu and
Huard [63], and Dikin [23]). Karmarkar’s algorithm and the interior-point methods developed
afterwards combine a very low, polynomial, worst-case complexity with excellent behavior
in practice. Karmarkar’s paper has had an enormous impact, and several variants of his
method have been developed (see, e.g., the survey by Gonzaga [42]). Interior-point methods
were subsequently extended to handle convex quadratic programming and to certain linear
complementarity problems (see, e.g., Kojima et al. [59]).
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An importam breakthrough was achieved by Nesterov and Nemirovsky in 1988 [71-
74]. They showed that interior-point methods for linear programming can, in principle, be
generalized to all convex optimization problems. The key element is the knowledge ofa barrier
function with a certain property: self-concordance. To be useful in practice, the barrier (or
really, its first and second derivatives) must also be computable. Nesterov and Nemirovsky
show that a self-concordant barrier function exists for every convex set, but unfortunately their
universal self-concordant barrier is not readily computable.

Semidefinite programs are an important class of convex optimization problems for which
readily computable self-concordant barrier functions are known and, therefore, interior-point
methods are applicable. At the same time, they offer a simple conceptual framework and make
possible a self-contained treatment of interior-point methods for many convex optimization
problems.

Independently of Nesterov and Nemirovsky, Alizadeh [3] and Kamath and Karmarkar
[52, 53] generalized interior-point methods from linear programming to semidefinite program-
ming. Other recent articles on interior-point methods for semidefinite programming are by
Jarre [50], Vandenberghe and Boyd 108], Rendl, Vanderbei, and Wolkowicz [92], Alizadeh,
Haeberly, and Overton [5], Kojima, Shindoh, and Hara [61], Faybusovich [28], Gahinet and
Nemirovsky [36], and Freund [34]. An excellent reference on interior-point methods for
general convex problems is by den Hertog [22].

1.3. Outline. In 2 we describe several applications of semidefinite programming. Sec-
tion 3 covers duality theory for semidefinite programs, emphasizing the similarities and differ-
ences with linear programmingduality. In 4 we introduce a barrier function for linear matrix
inequalities and the concepts of central points and central path. In 5 we describe several
primal-dual interior-point methods for semidefinite programming. These methods require
feasible primal and dual initial points; 6 describes some methods for finding such points or
modifying the algorithms to remove this requirement. In 7 we describe a few extensions of
semidefinite programming, including techniques for exploiting problem structure.

In this survey we emphasize primal-dual methods and do not consider several important
and useful algorithms, such as the projective method of Karmarkar (or, rather, its general-
ization to semidefinite programs given in [76, 4.3]) and the projective method of Nesterov
and Nemirovsky [76, 4.4] and Nemirovsky and Gahinet [69]. Our motivation for the re-
striction to primal-dual methods is twofold. First, primal-dual methods are generally more
efficient in practice and, second, their behavior is often easier to analyze. Finally, all interior-
point methods for semidefinite programs are based on similar principles, so we hope that
this paper can serve as a tutorial introduction to other interior-point methods not covered
here.

2. Examples. In this section we list a few examples and applications of semidefinite
programming. The list is not exhaustive, and our treatment of the two most prominent ap-
plication areas--combinatorial optimization and control theory--is only cursory. Surveys of
semidefinite programming in both fields have already appeared; see 17] for control theory
and [4] for combinatorial optimization. Our purpose is to give an idea of the generality of the
problem, to point out the connections between applications in different areas, and to provide
references for further reading.

See Nesterov and Nemirovsky [76, 6.4] for more examples.
Quadratically constrained quadratic programming. A convex quadratic constraint

(Ax + b)r (Ax + b) crx d < O, with x 6 Ri, can be written as

I Ax+b 1>0.(Ax + b)r crx + d
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The left-hand side depends affinely on the vector x" it can be expressed as

F(x) Fo + X1 F1 q- "q- XkFk O,

with

I b 0 ai
i=1 k,F0= br d Fi= a ci

where A [al... akl. Therefore, a general (convex) quadratically constrained quadratic
program (QCQP)

minimize fo(x)
subject to fi(x)<O, i=l L,

where each 3 is a convex quadratic function fi(x) (Aix -!- b)r (Aix -I- b) cfx di, can
be written as

minimize

I
subject to

(Aox + bo)r

I

(Aix -+- bi) T

Aox+bo ] >0,cx +do+t

Aix-i-bi l>0, i=1 L
+d, J

which is a semidefinite program with variables x e Rk and e R. This semidefinite program
has dimensions m k + 1 and n no + + nL, where Ai Rni xk.

While it is interesting to note that QCQPs can be cast as semidefinite programming
problems, it may not be a good idea algorithmically. Indeed, a more efficient interior-point
method for QCQPs can be developed by using the Nesterov and Nemirovsky formulation
as a problem over the second-order cone (see [76, 6.2.3]). The semidefinite programming
formulation will be less efficient, especially when the matrices Ai have high rank.

Maximum eigenvalue and matrix norm minimization. Suppose the symmetric matrix
A(x) depends affinely onx e Rk" A(x) Aoq-XlA1 -I-" .d-XkAk, where Ai A Rpp.
The problem of minimizing the maximum eigenvalue of the matrix A (x) can be cast as the
semidefinite program

minimize

subject to I A(x) > 0,

with variables x Rk and e R. Problems of this type arise in control theory, structural
optimization, graph theory and combinatorial optimization, and other fields. See Overton [79],
Mohar and Poljak [67], and Gr6tschel, Lovhsz, and Schrijver [44, Chap. 9] for surveys.

Several interesting related problems can be solved using semidefinite programming. For
example, to minimize the sum of the r largest eigenvalues of A(x), one solves the semidefinite
program in t, X Xr, and x"

minimize rt + TrX
(7) subject to tl + X A(x) > 0,

X>0.

Here TrX denotes the trace of a symmetric matrix X Rpxp, i.e., TrX Xll + -- Xpp.
For a proof, see Nesterov and Nemirovsky [76, p. 238] or Alizadeh 1, 2.2]. The semidefinite
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program (7) has dimensions rn 1 + k + p(p + 1)/2 and n 2p. These results can also
be extended to problems involving absolute values of the eigenvalues or weighted sums of
eigenvalues (see Alizadeh 1, Chap. 2]).

Another related problem is the minimization of the (spectral, or maximum singular value)
norm IIA(x)ll of a matrix A(x) Ao + x1A1 +"" "l- xkAk Rpxq. (Here the Ai need not be
symmetric.) This can be cast as the semidefinite program

minimize

[ tl a(x) ] > O,
(8)

subject to
A(x)r tl

with variables x Rk and R. The semidefinite program (8) has dimensions rn k + 1
and n p + q.

Note that the objectives in these problems, i.e., the maximum eigenvalue, the sum of the
largest eigenvalues, and the norm, are nondifferentiable (but of course convex) functions of x.

Logarithmic Chebychev approximation. Suppose we wish to solve Ax b approx-
imately, where A [al...ap]T Rpx/ and b Rp. In Chebychev approximation we
minimize the e-norm of the residual, i.e., we solve

minimize max lafx bi l.

This can be cast as an LP, with x and an auxiliary variable as variables:

minimize

subject to -t < afx bi < t, l p.

In some applications bi has the dimension ofa power or intensity and is typically expressed
on a logarithmic scale. In such cases the more natural optimization problem is

(9) minimize max llog(a/rx) log(bi)l

(assuming bi > 0 and interpreting log(a/rx) as -o when arix < 0).
This logarithmic Chebychevapproximation problem canbe cast as a semidefinite program.

To see this, note that

log(afx) log(bi)l logmax(afx/bi, bi/aTi x)

(assuming a/rx > 0). Problem (9) is therefore equivalent to

minimize

subject to lit < afx/bi < t, 1 p

or

minimize

t-arix/bi 0 0 1subject to 0 afx/bi 1 >_ 0, 1 p,
0 1

which is a semidefinite program. This example illustrates two important points. First, it
shows that semidefinite programming includes many optimization problems that do not look
like (1) at first sight. And, second, it shows that the problem is much more general than linear
programming, despite the close analogy.
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Structural optimization. Ben-Tal and Bendsoe in 14] consider the following problem
from structural optimization. A structure of k linear elastic bars connects a set of p nodes.
The geometry (topology and lengths ofthe bars) and the material (Young’s modulus) are fixed;
the task is to size the bars, i.e., determine appropriate cross-sectional areas for the bars. In
the simplest version of the problem we consider one fixed set of externally applied nodal
forces 3, 1 p. (More complicated versions consider multiple loading scenarios.)
The vector of (small) node displacements resulting from the load forces f will be denoted d.
The objective is the elastic stored energy (1/2)frd, which is a measure of the inverse of the
stiffness of the structure. We also need to take into account constraints on the total volume
(or equivalently, weight) and upper and lower bounds on the cross-sectional area of each bar.

The design variables are the cross-sectional areas xi. The relation between f and d is
linear: f A(x)d, where

k

A(x) A xiAi
i=1

is called the stiffness matrix. The matrices Ai are all symmetric positive semidefinite and
depend only on fixed parameters (Young’s modulus, length of the bars, and geometry). The
optimization problem then becomes

minimize frd
subject to f--A(x)d,

k

lixi <_ V,
i=1

<xi <i, i= 1 k,

where d and x are the variables, v is maximum volume, li are the lengths of the bars, and /,
x--/are the lower and upper bounds on the cross-sectional areas. For simplicity, we assume that. > 0 and that A(x) > 0 for all positive values of xi. We can then eliminate d and write

or

minimize frA(x)- f

subject to
k

i=1

i <_Xi_<Y-i, i-- 1 k

minimize

subject to fr ]>0,f A(x)
k

liXi <_ 13,

i=l

which is a semidefinite program in x and t. (Note that we have used Schur complements to
express frA(x)-1 f < as a linear matrix inequality.)
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Pattern separation by ellipsoids. The simplest classifiers in pattern recognition use hy-
perplanes to separate two sets of points {x xK and {yl yL in Rp. The hyperplane
defined by arx + b 0 separates these two sets if

arx +b<O, i= K,

aryj +b >O, j l L.

This is a set of linear inequalities in a Re and b R which can be solved by linear
programming. If the two sets cannot be separated by a hyperplane, we can try to separate them
by a quadratic surface. In other words, we seek a quadratic function f(x) xrAx + brx + c
that satisfies

(10) (X TAx at brx -Jl- c < O, 1 K,

(11) (yj)TAyJ + bTyj + c > O, j 1 L.

These inequalities are a set of linear inequalities in the variables A AT Rpx p, b 6 Rp,
and c R. (So the total number of variables is (p(p + 1)/2) + p + 1.) Again the problem
can be solved using linear programming.

We can place further restrictions on the quadratic surface separating the two sets. As an
example, for cluster analysis we might try to find an ellipsoid that contains all the points x
and none of the yJ (see Rosen [95]). This constraint imposes the condition A > 0, in addition
to the linear inequalities (10) and (11), on the variables A, b, and c. Thus, we can find an
ellipsoid that contains all the x but none of the yJ (or determine that no such ellipsoid exists)
by solving a semidefinite programming feasibility problem.

We can optimize the shape and the size ofthe ellipsoid by adding an objective function and
other constraints. For example, we can search for the "most spherical" ellipsoid as follows.
The ratio of the largest to the smallest semi-axis length is the square root of the condition
number of A. To make the ellipsoid as spherical as possible, one can introduce an additional
variable ,, add the constraint

(12) I <A<yI,

and minimize ?’ over (10), (11), and (12). This is a semidefinite program in the variables,, A, b, and c. This semidefinite program is feasible if and only if there is an ellipsoid that
contains all the x and none of the yJ; its optimum value is 1 if and only if there is a sphere
that separates the two sets of points. A simple example is shown in Fig. 2.

Statistics. Semidefinite programs arise in minimum trace factor analysis (see Bentler and
Woodward 15], Fletcher [30, 31], Shapiro [96], and Watson 110]).

Assume x 6 Rp is a random vector, with mean 2 and covariance matrix Z. We take
a large number of samples y x + n, where the measurement noise n has zero mean, is
uncorrelated with x, and has an unknown but diagonal covariance matrix D. It follows that

Z / D, where 2 denotes the covariance matrix of y. We assume that we can estimate
with high confidence, i.e., we consider it a known, constant matrix.
We do not know E, the covariance of x, or D, the covariance matrix of the measurement

noise. But they are both positive semidefinite, so we know that E lies in the convex set

ZA{-DI-D>0, D>0, D diagonal }.

This fact allows us to derive bounds on linear functions of E by solving semidefinite program-
ming problems over the set Z.
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FIG. 2. Cluster analysis using ellipsoids. The ellipsoid shown minimizes condition number among all ellipsoids
containing all the x (shown as stars) and none ofthe yJ (shown as circles). Finding such an ellipsoid can be cast
as a semidefinite program, hence efficiently solved.

As an example, consider the sum of the components of x, i.e., erx where e is the vector
with all components equal to 1. The variance of erx is given by

er Ee ere TrD.

We do not know E, and so cannot say exactly what er Ee is. But by determining the maximum
and minimum of er Ee over the set E, we can determine an interval in which it lies. In other
words, we can compute upper and lower bounds on er Ee.

It is easy to see that the upper bound is er e. A lower bound can be computed by solving
the semidefinite program

(13)

maximize

subject to

p

diag(d) > 0,
d>0.

Fletcher [30] calls (13) the educational testing problem. The vector y gives the scores of a
random student on a series of p tests, and ery gives the total score. One considers the test to
be reliable if the variance of the measured total scores ery is close to the variance of erx over
the entire population. The quantity

eT Ee
/9=

erEe

is called the reliability of the test. By solving the semidefinite program (13) one can compute
a lower bound for/9.

Semidefinite programming also has applications in optimal experiment design (see
Pukelsheim [88]).

Geometrical problems involving quadratic forms. Many geometrical problems involv-
ing quadratic functions can be expressed as semidefinite programs. We will give one simple
example. Suppose we are given k ellipsoids 1 k described as the sublevel sets of the
quadratic functions

fi (x) xTAix -1- 2bfx + i, k,

i.e., i {xlf/(x) < 0}. The goal is to find the smallest ball that contains all k of these
ellipsoids (or equivalently, contains the convex hull of their union).
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The condition that one ellipsoid contain another can be expressed in terms of a matrix
inequality. Suppose that the ellipsoids {xlf(x) < 0} and {xlf(x) _< 0}, with

f(x) xtAx + 2brx + c, f(x) xrx + 2[rx + ,
have nonempty interior. Then it can be shown that contains if and only if there is a r > 0
such that

< " Tbr c

(The "if" part is trivial; the "only if" part is less trivial. See 17, 105].)
Returning to our problem, consider the ball S represented by f(x) xrx 2xrx+, < O.

S contains the ellipsoids 1 k if and only if there are nonnegative Z’I k such that

<’i i=1 k.-Xrc , bri C

Note that these conditions can be considered one large linear matrix inequality in the variables
Xc, ,, and rl

Our goal is to minimize the radius of the ball S, which is r v/XcrxC ’. To do this we
express the condition r2 < as the matrix inequality

I Xc ]>0Xrc + y

and minimize the variable t.

Putting it all together, we see that we can find the smallest ball containing the ellipsoids
1 k by solving the semidefinite program

minimize

<ri i=1 k,subject to -Xrc , bf C

ri>0, i=1 k,

I Xc ]>0.Xcr t+?’

The variables here are Xc, l1 "t’k, 9/, and t.
This example once again demonstrates the breadth of problems that can be reformulated

as semidefinite programs. It also demonstrates that the task of this reformulation can be
nontrivial.

A simple example is illustrated in Fig. 3.
Combinatorial and nonconvex optimization. Semidefinite programs play a very use-

ful role in nonconvex or combinatorial optimization. Consider, for example, the quadratic
optimization problem

minimize fo(x)
(14)

subject to 3 (x) < 0, 1 L,

where 3(x) xr Aix q- 2bfx + Ci, 0, 1 L. The matrices Ai can be indefinite,
and therefore problem (14) is a very hard, nonconvex optimization problem. For example,
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FIG. 3. Smallest ball containingfive ellipsoids. Finding such a ball can be cast as a semidefiniteprogram, hence
efficiently solved.

it includes all optimization problems with polynomial objective function and polynomial
constraints (see [76, 6.4.4], 101]).

For practical purposes, e.g., in branch-and-bound algorithms, it is important to have good
and cheaply computable lower bounds on the optimal value of (14). Shor and others have
proposed to compute such lower bounds by solving the semidefinite program (with variables
and ri)

maximize

[ ] [ al bl ] [ AL bL ]A0 b0 + rl +... + r. > 0,(15) subject to b co-t b cl br cL

ri>0, i=1 L.

One can easily verify that this semidefinite program yields lower bounds for (14). Suppose x
satisfies the constraints in the nonconvex problem (14), i.e.,

fi(x)
X Ai bi x
1 bf ci 1

< 0

for 1 L, and t, r r. satisfy the constraints in the semidefinite program (15).
Then

[ ]T([ ] [AI bl] [ax A0 b0 + rl +... + rO<
1 b co-t b Cl br ct 1

fo(x) A- rlfl(x) -f-... q- rLft.(x)

<_ fo(x) t.

Therefore < fo(x) for every feasible x in (14), as desired. Problem (15) can also be
derived via Lagrangian duality; for a deeper discussion, see Shor 101] or Poljak, Rendl, and
Wolkowicz [87].

Most semidefinite relaxations of NP-hard combinatorial problems seem to be related to
the semidefinite program (15) or the related one,

minimize TrXA0 / 2bx -4- co

(16)
subject to TrXAi + 2bfx + ci < O, 1 L,

xr 1
> 0,
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where the variables are X Xr Rkxk and x 6 Rk. We will see in 3 that (16) is the dual
of Shor’s relaxation (15); the two problems (15) and (16) yield the same bound.

Note that the constraint

(17)
xr 1

> 0

is equivalent to X > xxr The semidefinite program (16) can therefore be directly interpreted
as a relaxation of the original problem (14), which can be written as

minimize TrXA0 + 2bgx + co
(18) subject to TrXAi + 2bfx + C O, 1 L,

X --xxT

The only difference between (18) and (16) is the replacementofthe (nonconvex) constraint X
xxr by the convex relaxation X >_ xxr. It is also interesting to note that the relaxation (16)
becomes the original problem (18) if we add the (nonconvex) constraint that the matrix on the
left-hand side of (17) is rank one.

As an example, consider the (- 1, 1)-quadratic program

minimize xtAx + 2brx
(19)

subject to x/2 1, 1 k,

which is NP-hard. The constraint xi {-1, 1} can be written as the quadratic equality con-
straint x/2 1 or, equivalently, as two quadratic inequalities x/2 _< I andx2 >_ 1. Applying (16),
we find that the semidefinite program in X Xr and x,

minimize TrXA + 2brx

subject to Xii 1, 1 k
(20)

xr 1
>_0

yields a lower bound for (19). In a recent paper on the MAX-CUT problem, which is a specific
case of (19) where b 0 and the diagonal of A is zero, Goemans and Williamsonproved that
the lower bound from (20) is at most 14% suboptimal (see [39, 40]). This is much better than
any previously known bound. Similar strong results on semidefinite programming relaxations
of NP-hard problems have been obtained by Karger, Motwani, and Sudan [54].

The usefulness of semidefinite programming in combinatorial optimization was recog-
nized more than twenty years ago (see, e.g., Donath and Hoffman [24]). Many people seem
to have developed similar ideas independently. We should however stress the importance of
the work by Gr6tschel, Lov/sz, and Schrijver [44, Chap. 9], [64], who have demonstrated
the power of semidefinite relaxations on some very hard combinatorial problems. The recent
development of efficient interior-point methods has turned these techniques into powerful
practical tools; see Alizadeh 1-3], Kamath and Karmarkar [52, 53], and Helmberg et al. [46].

For a more detailed survey of semidefinite programming in combinatorial optimization,
we refer the reader to the recent paper by Alizadeh [4].

Control and system theory. Semidefinite programming problems frequently arise in
control and system theory; Boyd et al. catalog many examples in 17]. We will describe one
simple example here.

Consider the differential inclusion

dx
(21) Ax(t) + Bu(t), y(t) Cx(t), lui(t)l < lYi(t)l, p,

dt
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where x(t) R/, u(t) Rp, and y(t) Rp. In the terminology of control theory, this is
described as a linear system with uncertain, time-varying, unity-bounded, diagonal feedback.

We seekan invariant ellipsoid, i.e., an ellipsoid such that for any x and u that satisfy (21),
x(T) implies x(t) for all >_ T. The existence of such an ellipsoid implies, for
example, that all solutions of the differential inclusion (21) are bounded.

The ellipsoid {x xr Px _< 1}, where P pr > 0, is invariant if and only if the
function V(t) x(t)r Px(t) is nonincreasing for any x and u that satisfy (21). In this case
we say that V is a quadratic Lyapunov function that proves the stability of the differential
inclusion (21).

We can express the derivative of V as a quadratic form in x(t) and u(t):

(22) d-- V(x(t)) u(t) Br P 0 u(t)

We can express the conditions lui(t)[ <_ lyi(t)l as the quadratic inequalities

u(t) 0 Eii u(t)

where i is the th row of C and Eii is the matrix with all entries zero except the entry,
which is 1.

Putting it all together, we find that is invariant if and only if (22) holds whenever (23)
holds. Thus the condition is that one quadratic inequality should hold whenever some other
quadratic inequalities hold, i.e.,

for all z 6 R +p,(24)

where

zrTiz <0, 1 p === zrToz _<0,

[ ATP+PA PB ] [-cci 0 j,i--1 p.To Br P 0 Ti 0 Eii

In the general case, simply verifying that (24) holds for a given P is very difficult. But
an obvious sufficient condition is

(25) there exist 151 0 15p > 0 such that To < 151 T1 --... -+- 15p Tp.

Replacing the condition (24) with the stronger condition (25) is called the S-procedure in
the Soviet literature on control theory and dates back to at least 1944 (see [17, p. 33], [33],
[65]). Note the similarity between Shor’s bound (see (14) and (15)) and the S-procedure ((24)
and (25)). Indeed Shor’s bound is readily derived from the S-procedure and vice versa.

Returning to our example, we apply the S-procedure to obtain a sufficient condition for
the invariance of the ellipsoid S: for some D diag(151 15p),

ATp + PA + CTDC PB ] < O.(26)
Br P -D

This is a linear matrix inequality in the (matrix) variables P Pr and (diagonal) D. Hence,
by solving a semidefinite feasibility problem we can find an invariant ellipsoid (if the problem
is feasible). One can also optimize various quantities over the feasible set; see [17]. Note
that (26) is really a convex relaxation of the condition that be invariant, obtained via the
S-procedure.

The close connections between the S-procedure, used in control theory to form semidef-
inite programming relaxations of hard control problems, and the various semidefinite relax-
ations used in combinatorial optimization do not appear to be well known.
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3. Duality.

3.1. The dual semidefinite program. The dualproblem associated with the semidefinite
program (1) is

maximize -TrFoZ
(27) subject to TrFi Z ci 1 m,

Z>0.

Here the variable is the matrix Z Zr Rnxn, which is subject to m equality constraints
and the matrix nonnegativity condition. Note that the objective function in (27) is a linear
function of Z. We will say that Z Zr Rnxn is dualfeasibleifTrZFi ci, 1 m
and Z > 0. We will also refer to the original semidefinite program (1) as the primal problem.

The dual problem (27) is also a semidefinite program, i.e., it can be put in the same form
as the primal problem (1). For simplicity, let us assume that the matrices F1 Fm are
linearly independent. Then we can express the affine set

{Z IZ:ZT Rnxn, TrFiZ--ci, i--1 m}
in the form

G(y) Go -t- ylG1 +... + ypGp Y RP}
where p (n(n + 1)/2) m and the Gi are appropriate matrices. We define d 6 Rp by
di TrFoGi, so that dry TrFo(G(y) Go). Then the dual problem becomes (except
for a constant term in the objective and a change of sign to transform maximization into
minimization)

minimize dry
subject to G(y) > 0,

which is a semidefinite program. It is possible to use notation that, unlike ours, emphasizes the
complete symmetry between the primal and dual semidefinite programs (see, e.g., Nesterov
and Nemirovsky [76, 4.2]). Our notation is chosen to make the primal problem as "explicit"
as possible, with x denoting a "free" variable.

As an illustration, let us apply the definition ofthe dual semidefinite program to the LP (2),
i.e., take F0 diag(b) and Fi diag(ai). The dual semidefinite program (27) becomes

maximize -Tr diag(b)Z

(28) subject to Tr diag(ai)Z ci, 1 m,

Z>0.

This semidefinite program can be simplified. The objective function and the equality con-
straints involve only the diagonal elements of Z. Moreover, if Z > 0 we can always replace
the off-diagonal elements of Z by zeros and still retain a positive semidefinite matrix. Instead
ofoptimizing over all symmetric n x n matrices Z, we can therefore limit ourselves to diagonal
matrices Z diag(z). Problem (28) then reduces to

maximize -brz
(29) subject to z > 0,

afz--ci, i-- 1 m,

which is the familiar dual of the LP (2).
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In this example, the diagonal structure ofthe semidefinite program allows us to reduce the
dual problem to one with fewer variables. In general, the dual problem can often be simplified
when the matrices Fi are structured. For example, if the matrix F(x) is block diagonal, the
dual variables Z can be assumed to have the same block-diagonal structure.

Linear programming duality is very strong as a result of the polyhedral character of the
feasible set: The optimum values of (2) and (29) are always equal, except in the pathological
case where both problems are infeasible. (We adopt the standard convention that the optimum
value of (2) is +x if the problem is infeasible and the optimum value of (29) is -x if the
dual problem is infeasible.) However, duality results for general semidefinite programs are
weaker, as we will see below.

Let us return to our discussion of the dual semidefinite program. The key property
of the dual semidefinite program is that it yields bounds on the optimal value of the primal
semidefinite program (and vice versa). Suppose that Z is dual feasible andx is primal feasible.
Then

(30)
tn

cTx "[- TZF0 TZFix -- TrZFo TrZF x >_ 0,
i=1

in which we use the fact that TrAB > 0 when A Ar > 0 and B Br > 0. Thus we have

(31) TrFoZ <_ crx,
i.e., the dual objective value of any dual feasible point Z is smaller than or equal to the primal
objective value of any primal feasible point x. We refer to the difference as the duality gap rl
associated with x and Z:

A(32) 0 crx + TrFoZ TrF(x) Z.

Note that the duality gap is a linear function of x and Z, even though the second expression
in (32) looks bilinear.

Let p* denote the optimal value of the semidefinite program (1), i.e.,

p* inf{ crx F(x) > 0},
and let Z be dual feasible. Since (31) holds for any feasible x, we conclude that -TrZF0 < p*.
In other words, dual feasible matrices yield lower bounds for the primal problem.

Similarly, primal feasible points yield upper bounds for the dual problem d* < crx,
where d* is the optimal value of the dual semidefinite program (1),

=sup -TrFoZ Z Zr >0, TrFi Z =ci, i= 1 rn

It follows that d* < p*, i.e., the optimal value of the dual problem is less than or equal to the
optimal value of the primal problem. In fact, equality usually holds. Let Xopt and Zopt denote
the primal and dual optimal sets, i.e.,

Xopt A {x IF(x) >_ 0 and crx p*},

Zopt A__ {Z Z >_ 0, TFiz ci, 1 m, and -TrFoZ d* }.
Note that Xopt (or Zopt) can be empty, even if p* (or d*) is finite, as in the semidefinite program

minimize

subjectt [ xl tl ] >0"-

THEOREM 3.1. We have p* d* ifeither ofthefollowing conditions holds.



SEMIDEFINITE PROGRAMMING 65

1. The primalproblem (1) is strictlyfeasible, i.e., there exists an x with F(x) > O.
2. The dual problem (27) is strictly feasible, i.e., there exists a Z with Z Zr > O,

TrFi Z ci, 1 m.

Ifboth conditions hold, the optimal sets Xopt and Zopt are nonempty.
For a proof, see Nesterov and Nemirovsky [76, 4.2] or Rockafellar [94, 30]. Theo-

rem 3.1 is an application of standard duality in convex analysis, so the constraint qualification
is not surprising or unusual. Wolkowicz 112] and Ramana [89-91] have formulated two dif-
ferent approaches to a duality theory for semidefinite programming that do not require strict
feasibility. For our present purposes, the standard duality outlined above will be sufficient.

Assume the optimal sets are nonempty, i.e., there exist feasible x and Z with

crx -TrFoZ p* d*.

From (30), we have TrF(x)Z 0. Since F(x) >_ 0and Z >_ 0, we conclude that ZF(x) O.
(Here we use the fact that if A and B are symmetric positive semidefinite and TrAB 0, then
AB 0.) The condition ZF(x) 0 is the complementary slackness condition; it states that
the ranges of the symmetric matrices Z and F(x) are orthogonal. This generalizes the familiar
complementary slackness condition for the LP (2) and its dual (29). Taking Z diag(z) and
F(x) diag(Ax + b), we see that ZF(x) = 0 if and only if zi (Ax + b) 0 for 1 n,
i.e., the zero patterns in z and Ax + b are complementary. (See [6] for a detailed analysis of
complementarity in semidefinite programming.)

Theorem 3.1 gives us optimality conditions for the semidefinite program (1) if we assume
strict primal and dual feasibility: x is optimal if and only if there is a Z such that

F(x) > O,
(33) Z>_O, TrFiZ=ci, i=1 m,

ZF(x)= O.

Example. We first consider a simple example where p* d*:

minimize

subject to

x1

X1 X2 0 >_. O.
0 0 Xl -f" 1

The feasible set is [Xl X2]T Xl 0, X2 >_.. 0 }, and therefore p* 0. The dual problem can
be simplified to

-z2

Zl (1 Z2)/2 0 ]subject to (1 z2)/2 0 0 _> 0,
0 0 z2

which has feasible set [zl z2]r Zl >_ 0, z2 1 }. The dual problem therefore has optimal
value d* 1. Of course, this semidefinite program violates both conditions in Theorem 3.1.
Both problems are feasible, but not strictly feasible. Also note the contrast with linear pro-
gramming, where it is impossible to have a finite nonzero duality gap at the optimum.

Example. The educational testing problem (13) can be written as

minimize -erd

subjectto [ -diag(d)0 ]0 diag(d)
> O,

maximize
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where e is a vector with all components equal to 1. In other words, problem (13) is a semi-
definite program with c -e,

Fo= 0
andF/= i=1 p

0 0 0 diag(ei)

(e stands for the th unit vector). Applying (27), we find as the dual problem

maximize

subject to
-TrZ
(-Zll -- Z22)ii ---1,

[ Zal Z12 ] >0.Z Z2

Without loss of generality, we can assume the off-diagonal block Z12 is zero and Z:: is
diagonal. These simplifications result in a more compact form of the dual:

minimize

subject to

TrQ
Q=Qr>_.O,
aii >_. 1, 1 p.

Example. Consider the matrix norm minimization problem mentioned in 2:
minimize IIA(x) II,

(34)
x R

where A(x) Ao + XlA1 h-... q- xkAk. We remind the reader that IIA(x)ll is the maximum
singular value of A(x).

The problem (34) is (an instance of) a basic problem that arises in the study of normed
vector spaces; its optimum value is the norm of (the image of) A0 in the quotient space of
Rpq modulo span{A1 Ak}. In this context we encounter the following dual of (34):

maximize

(35) subject to
TrAQ
TrAQ--O, i-- 1 k,

Ilall. _< 1.

Here Q II, is the norm dual to the maximum singular value norm, i.e.,

Q II, sup TrYQ Y < 1 }.

It can be shown that Q II, is the sum of the singular values of Q. It is also known that the
optimal values of (34) and (35) are always equal.

Let us verify that this (normed vector space) notion of duality coincides with semidefinite
programming duality. The dual semidefinite program of problem (8) is

maximize 2TrAZ12
subject to TrA/r ZI: 0, 1 k,

(36) TrZll --TrZ22 1,

[ Zll Z12 ] >0.
Z2 Z22
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This can be simplified. We have the following property: given a matrix Z12, there exist Zll

Z22 such that

Zll Z12 ] > 0(37) TrZll -" TI’Z22 1,
Z2 Z22

if and only if IIZ1211, 1/2.
To see this, let Z12 U VT be the singular value decomposition of Z12. The matrix

is square, diagonal, and of size min{p, q}, and its trace TrE is equal to
First assume that ZI and Z22 satisfy (37). Then

-vuT vvT Z2 Z22

because the trace of the product of two positive semidefinite matrices is always nonnegative.
As a consequence,

0 <_ -2TrUVr Z(2 + TrUUrZx + TrVVr Z22

_< -2TrE + TI’Zll + TI’Z22

-2 IIZ211, + TI’Zll - TI’Z22

-2 IIZ1211. + 1.

So IIZ211, 1/2.
To prove the converse, suppose that z12 II, _< 1/2. Then one can verify that

Zll UEUT + FI, Z22 VEVT
nI--

with ?’ (1 211Z1211.)/(p -t- q), satisfy (37).
Problem (36) therefore reduces to

maximize -2TrAZ12
subject to TrA ZI2 O, 1 k,

1z12 II. _< ,
which is the same as (35) with Q 2Z12.

Problem (8) is always strictly feasible; it suffices to choosex 0 and > A011. Applying
Theorem 3.1, we conclude that the optimal duality gap is always zero.

We refer the reader to the papers by Zietak 116, 117] and Watson 111] for more details
and additional references on duality in matrix norm minimization.

Example. In 2 we claimed that the sum of the r largest eigenvalues of a matrix A(x) can
be minimized by solving the semidefinite program (7). This formulation is due to Alizadeh [3,
2.2] and Nesterov and Nemirovsky [76, 6.4.3]. Duality provides an elegant way to derive
this result.

It is well known that the sum of the r largest eigenvalues of a matrix A Ar Rpxp

can be expressed as the optimal value of the problem

maximize TrWrAW
(38) subject to W Ipxr,

WrW=I.
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This result is attributed to Fan [25]. Overton and Womersley [80] have observed that (38) can
be expressed as the semidefinite program

maximize TrAZ
subject to TrZl r,

(39) ZI + Z22 I,

z1T2 Z22

The equivalence can be seen as follows. The matrix Z12 can be assumed to be zero without
loss of generality. The matrix Z22 acts as slack variable and (39) simplifies to

maximize TrAZ
(40) subject to TrZI r,

0 _< Z < I.

Overton and Womersley have shown that the extreme points of the feasible set of (40) are
precisely the matrices that have the form Zx WWr for some W 6 Rpxr, with WTW I.
The solution of (40) will be at one of those extreme points, and therefore (39) and (38) are
equivalent.

The semidefinite program (39) is in the dual form (27). The dimensions are n 2p and
m 1 + p(p + 1)/2. After a calculation, we obtain the corresponding primal problem:

minimize rt + TrX
subject to tI+X-A>0,

X>0,

which is precisely the expression used in (7).

3.2. Primal-dual problem formulation. In most semidefinite program problems that
we encounter the hypothesis of Theorem 3.1 holds, so that d* p*. (When the conditions
do not hold it is possible, at least in principle, to reduce the original problem to one for which
one of the conditions holds; see 17, 2.5]. See also the recent paper by Freund [34] for an
interior-point method that does not require strict feasibility.)

Primal-dual methods forsemidefinite programs, whichwe describe in detail in 5, generate
a sequence of primal and dual feasible points xk) and Zk), where k 0, 1 denotes
iteration number. We can interpret xk) as a suboptimal point that gives the upper bound
p* <_ cTx (k) and Z(k) as a certificate that proves the lower bound p* >_ -TrFoZ(k). We can
bound how suboptimal our current point x (k) is in terms of the duality gap r/()"

cTx(,) p, <_ (k) cTx(k) + TrFoZ(k).

Therefore the stopping criterion

cTx (k) + TrFoZ() < e,

where e > 0 is some prespecified tolerance, guarantees e-suboptimality on exit. Indeed, the

algodthm produces not only an e-suboptimal point, but also a certificate (i.e., a dual feasible
Z) that proves is e-suboptimal.

This idea is illustrated in the left plot of Fig. 4, which shows the values of the primal and
dual objectives of the iterates of a primal-dual algorithm as a function of iteration number.
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FIG. 4. Convergence of a primal-dual algorithm. The problem is a matrix norm minimization problem (10
matrices in R1 lO), and the algorithm is described in 5.3. The plot on the left shows how the primal and dual
objectives converge to the optimal value. The solid curve in the right plot is the duality gap, i.e., the difference
between the primal and dual objectives. The dashed line is the difference between the current (primal) objective and
the optimal value. At the kth iteration, we know the value ofthe duality gap (i.e., the solid curve); we do not know
the value ofthe actual error (i.e., the dashed curve).

The optimal value is shown as the dashed line. The particular semidefinite program is a matrix
norm minimization problem; the algorithm used will be explained later (in 5.3), but is not
relevant here.

From this plot we can draw some interesting conclusions that illustrate some of the basic
ideas behind primal-dual algorithms. After one iteration, we have found a point x (1) with
objective value crx (1) 0.5. In fact, this point is only 0.04 suboptimal, but we don’t know
this after one iteration: we only know that the optimal value exceeds -TrFoZ(1 0.26. After
three iterations our primal point x(3, with objective value 0.46, is very nearly optimal, but we
don’t yet know it. All we can guarantee after three iterations is that the optimal value exceeds
0.36. Over the next few iterations our dual point steadily improves; by thefifth iteration we
can now conclude that our first (primal) iterate was at most 10% suboptimal! This example
illustrates the important distinction between converging to a given tolerance and knowing (i.e.,
guaranteeing) convergence to a given tolerance. The possibility ofterminating an optimization
algorithm with a guaranteed accuracy of, say, 10%, is very useful in engineering applications.

The duality gap 0(k) measures the width of our "uncertainty interval" for the optimal
value p* at iteration k. It is plotted at right in Fig. 4 as the solid curve, along with the actual
difference between the current (primal) objective value and the optimal value, shown as the
dotted curve. The important point is that after k iterations we know the duality gap, which is
an upper bound on crx(k) p*, which of course we don’t know.

Primal-dual methods can also be interpreted as solving the primal-dual optimization
problem

minimize crx + TrFoZ
(41) subject to F(x) >_ 0, Z >_ 0,

TrFiZ=ci, i= 1 m.

Here we minimize the duality gap crx + TrFoZ over all primal and dual feasible points; the
optimal value is known in advance to be zero. The duality gap is a linear function of x and Z,
and therefore problem (41) is a semidefinite program in x and Z.

At first glance there seems to be no benefit in considering the primal-dual optimization
problem (41). Since the variables x and Z are independent (i.e., the feasible set is the Cartesian
product ofthe primal and dual feasible sets) and the objective in (41) is the sum ofthe primal and



70 LIEVEN VANDENBERGHE AND STEPHEN BOYD

FIG. 5. Contour lines of the barrier function (incremented in unit steps), x* is the minimizer of the barrier
function, i.e., the analytic center ofthe linear matrix inequality (see 4.2).

dual objectives, we can just as well solve the primal and dual problems separately. However,
we shall see later that there is a benefit: in each step we use dual information (i.e., Zk) to
help find a good update for the primal variable xk and vice versa.

4. The central path. From now on we assume strict primal and dual feasibility, i.e., we
assume there exists an x with F(x) > 0 and a Z Zr > 0 with TrFi Z ci, 1 m.
We will also assume that the matrices Fi, 1 rn are linearly independent.

4.1. Barrier function for a linear matrix inequality. The function

/ log det F(x)-1 if F(x) > O,
(42) (x)

/ +cx otherwise

is a barrierfunction for X - {x F(x) > 0}, i.e., q(x) is finite if and only if F(x) > 0 and
becomes infinite as x approaches the boundary of X. There are many other barrier functions
for X (for example, TrF(x)-1 can be substituted for log det F(x)-1 in (42)), but this one
enjoys many special properties. In particular, when F(x) > 0, it is analytic, strictly convex,
and self-concordant (see [76]).

Figure 5 shows the contour lines of the barrier function for the semidefinite program of
Fig. 1. It illustrates that the function is quite tlat in the interior of the feasible set and sharply
increases toward the boundary.

The gradient Vq (x) and the Hessian V2(X) of q at x are given by

(V) (X )i -TrF(x)-1Fi -TrF(x) -1/2 Fi F(x) -1/2(43)

and

(44) (V2dp(x))ij TrF(x)-l Fi F(x)-l Fj

Tr (F(x)-l/2Fi F(x)-1/2) (F(x)-l/2Fj F(x)-1/2)
for i, j 1 m. Here F(x) 1/2 denotes the symmetric square root of F(x); similar
formulas that use Cholesky factors of F(x) are also easily derived. Expressions (43) and (44)
follow from the second-order expansion oflog det X-1. IfX and Y are symmetric with X > 0,
then for small Y

(45) log det(X + y)-i

logdetX-1 TrX-1y + TrX-1yx-1y + o (IIYII2).
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For a set of linear inequalities afx + bi >_ 0, 1 n, the barrier function b reduces
to the familiar logarithmic barrier function used in interior-point linear programming:

log(a/rx + bi)
t(x) i=1

ifafx + bi > 0, 1 n,

otherwise.

In this case we can interpret q as the potential function associated with a repelling force from
each constraint plane, directed away from the plane and inversely proportional to the distance
from the plane. To see this we simply note that

Vqb (x)
aTi X --F bi

ai
i=1 i=1 ri Ilai

ai,

where ri is the distance from x to the ith constraint plane. Thus, the contribution from the ith
constraint is a force pointing away from the ith constraint plane (i.e., in the direction -ai /[[ai
with magnitude 1/ri.

4.2. Analytic center of a linear matrix inequality. In this section and in 4.3 we sup-
pose that X is bounded. Since q is strictly convex, it has a unique minimizer, which we denote

(46) x* A argmin q (x).

We will refer to x* as the analytic center of the linear matrix inequality F(x) >_ 0.
It is important to note that the analytic center depends on the matrix inequality rather than

the (strict) solution set X. The same set X can be represented by different matrix inequalities,
which have different analytic centers. Simply adding redundant constraints to the semidefinite
program depicted in Fig. 5, for example, will move x* to another position.

From (43) we see that x* is characterized by

(47) TrF(x*)-lFi O, 1 m.

Thus, F(x*)- is orthogonal to the span of F1 Fm. Note the similarity ofthe condition (47)
and the equality constraints TrFiZ ci, 1 m arising in the dual semidefinite
program (27). We will soonsee a close connectionbetween analytic centers and dual feasibility.

In the case of a set of linear inequalities, the definition (46) coincides with Sonnevend’s
definition 102, 103], i.e.,

n

x* argmax H(afx + bi)
i----1

subject to afx + bi >_ O, l n.

From this formula we see a simple geometric interpretation of the analytic center of a set of
linear inequalities: x* is the feasible point that maximizes the product of the distances to the
constraint planes (i.e., the planes defined by arx +bi 0). Ofcourse, we can also interpret the
analytic center of a set of linear inequalities as the equilibrium point for the inverse-distance
force field mentioned in 4.1.

4.3. Computing the analytic center. In this section we consider the problem of com-
puting the analytic center of a linear matrix inequality. We do this for several reasons. First,
the analysis we will encounter here will give us a good interpretation of a quantity that will
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play a key role in the algorithms we will later describe. Second, the algorithm described here
foreshadows the primal-dual interior-point algorithms we will see later.

Newton’s method with line search can be used to efficiently compute the analytic center,
given an initial strictly feasible point, i.e., x such that F(x) > 0. By definition, the Newton
direction xN at x is the vector that minimizes the second-order expansion of (x + v) (x)
over all v e Rm. From (45) we obtain (with F F(x))

(48)

argmin viTrF-1/2Fi F-1/2

v Rm
i---1

rn m

-I- " iE l)il)jTr (f-1/2 fi f-1/2 f-1/2fj f-1/2)
’= j=l

argmin -I + vF-/FF-/
v .R i= F

The norm used in equation (48) is the Frobenius norm i.e., IIAIIF (TrATA) 1/2

(ij A2ij) 1/2" Thus, the Newton direction xN is found by solving (48), which is a least-
squares problem with m variables and n (n + 1)/2 equations.

A line search is used to determine the length of the step to be made in the direction dxs.
We compute a step length that (approximately) minimizes q (x +pxv) over all p R, which
can be done efficiently by using standard methods such as bisection. A simple precomputation
makes the line search quite efficient. With F Ei%l (XiN Fi, we have

n

(x + p3x) q(x) log det (I + pF-U26FF-1/2) 4(x) E log(1 + pll,i),
i=1

where/zi are the eigenvalues of F-1/2FF-1/2. The last expression shows that once we
have computed the eigenvalues/zi, the derivatives of dp (x + pxN) can be computed in O (n)
operations. This idea will resurface in 5.5.

The algorithm is as follows.

Newton method for computing the analytic center

given strictly feasible x.

repeat

1. Compute the Newton direction xN by solving the least-squares problem (48).
2. Find/3 argmin (x + pxV).
3. Update: x := x +/3xv.
Of course it is well known that the asymptotic convergence will be quadratic. Nesterov

and Nemirovsky in [76, 2.2] give a complete analysis of the global speed of the convergence
of this algorithm.
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THEOREM 4.1. Let x (k) denote the value of x in the previous algorithm after the kth
iteration and assume 0 < < 0.5. For

(49) k>_ 1 l((x()) q(x*)) + log2 log2 ()
we have (x(k)) q(x*) _< e.

Note that the fight-hand side of (49) does not depend on the problem size (i.e., m or n)
at all. It only depends on the problem data (i.e., F0 Fm) through the difference between
the value of the barrier function at the initial point and the analytic center. For all practical
purposes the term log2 log2(1/) can be considered a constant, say, five (which guarantees an
accuracy of e 2-32).

We should mention two points. First, Theorem 4.1 holds for an "implementable" version
of the algorithm as well, in which an appropriate approximate line search is used instead of
the exact line search. Second, Nesterov and Nemirovsky give an explicit, readily computable
stopping criterion that guarantees b(x()) (x*) < ..

4.4. The central path: Objective parametrization. Let us return to the primal semi-
definite program (1). Consider the linear matrix inequality

F(x) > O,
(50) cTx /,

where p* < , < p sup{crx F(x) > 0}. It can be shown that the solution set to (50)
is nonempty and bounded under our assumption that the semidefinite program (1) is strictly
primal and dual feasible. Therefore, the analytic center of (50), defined as

(51) Ax* (?’) argmin
subject to

log det F(x)-
F(x) > O,

cTx /

exists for p* < , < ft. The curve described by x*(,) is called the central path for the
semidefinite program (1). The central path passes through the analytic center of the constraint
F(x) >_ 0; as , approaches p* from above, the central point x*(,) converges to an optimal
point; as , approaches ff from below, it converges to a maximizer of crx subject to F(x) >_ 0.
This is illustrated in Fig. 6, which shows the central path for the semidefinite program ofFig. 1.

Writing out the optimality conditions for (51), we find that x* (?’) satisfies

(52) TrF(x*(?’)) -1Fi i, 1 m,

where . is a Lagrange multiplier. It can be shown that Z is positive on the part of the central
path between the analytic center and the optimal point to which the path of centers converges.
From (52) we see that the matrix F(x*(,))-I/. is dual feasible when . > 0. Thus, points on
the primal central path yield dual feasible matrices.

The duality gap associated with the primal-dual feasible pair x x*(,), Z
F(x*(y))-/. is

0 TrF(x)Z TrF(x*(?’))F(x*(y))-l/, n/).

Thus, the Lagrange multiplier . appearing in (52) is simply related to the duality gap of the
point on the path of centers and the associated dual feasible point.
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FIG. 6. The central pathfor the semidefinite program ofFig. 1. The dashed lines represent level sets crx ,
for six values , in the interval [p*, p-]. The heavy dots are the analytic centers x*(,) ofthe linear matrix inequal-
ity (50). The central path isformed by the analytic centers x* (y) when , varies between p* and-.

In fact, the matrix F(x*())-1/, is not only dual feasible, but is itself on the central path
for the dual semidefinite program, i.e., it solves

minimize log det Z-1
subject to TrFi Z ci, 1 m,

Z>0,
n

-FoZ

In other words, among all dual feasible Z with dual objective value , n/., the matrix
F(x*(,))-l/. minimizes the barrier function log det Z-1. Thus, we have a natural pairing
between points on the primal central path and points on the dual central path; moreover, for
these primal-dual central pairs x, Z, the matrices F(x) and Z are inverses of each other up to
a scale factor.

Almost all interior-point methods approach the optimal point by following the central
path. They either literally return to the central path periodically or keep some measure for the
deviation from the central path below a certain bound. The most natural measure has already
been hinted at in 4.3. For every strictly feasible x, we define the deviation from the central
path p(x) as

ap(x) & log det F(x)- log det F(x*(crx))-.
p(x) is the difference between the value ofthe barrier function at the point x and the minimum
ofthe barrier function over all points with the same value of cost function as x. Figure 7 shows
the contour lines of (x) for our example semidefinite program. The central path, on which

(x) 0, is shown as a solid curve.
From 4.3, we have the following interpretation. The deviation from centrality (x)

bounds above the number of Newton steps needed to compute the point x*(cTx), starting at x
(to an accuracy exceeding 2-32):

#Newton steps _< 5 + 1 l(log det F(x)-1 log det F(x*(crx))-)

5 + ll(x).
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lilts//

FIG. 7. Contour lines ofthe deviationfrom centrality (x), in increments ofO.5. The solid line is the central
path, on which r(x) is zero.

Thus, $ (x) bounds the effort required to center the point x. In Fig. 7 the two curves on which
ap 0.5 define a wide region surrounding the central path. For any point in this region, no
more than eleven Newton steps are required to compute a central point with the same objective
value.

4.5. The central path: Duality gap parametrization. In 4.4 we parametrized the
central path by the primal objective value V. We found that the dual central path is also
indirectly parametdzed by V as F(x*(v))-1/). It turns out that both central paths can be very
conveniently parametdzed by the duality gap. This will be more convenient when describing
primal-dual algorithms.

The primal-dual parametdzation of the central path (x*(r/), Z*()) is defined by

(53) (x*(r/), Z*(o)) A argmin
subject to

log det F(x) log det Z
F(x) > O, Z>0,
TrFiz ci, 1 m,

crx + TrFoZ O

for r/> 0. Thus, among all feasible pairs x, Z with the duality gap r/, the pair (x* (r/), Z*(0))
minimizes the primal-dual barrier function log det F(x)-1 + log det Z-It can be shown that the pair (x* (r/), Z* (r/)) is characterized by

(54)

F(x*(o)) _> 0,

Z*(O) >_. 0, TrFiZ*(/]) ci, 1 m,

Z*(o)F(x*()) () I.

Comparing this to (33), we can interpret the central path as defining a homotopy with the duality
gap as homotopy parameter. The homotopy perturbs the optimality condition ZF(x) 0
to the condition ZF(x) (o/n)I. The pair (x*(0), Z*(O)) converges to a primal and dual
optimal pair as 0 -* 0. This interpretation is well known for LPs.

Now consider a feasible pair (x, Z) and define r/= crx + TrFoZ TrF(x)Z. Then
(x* (0), Z* (r/)) is the central pair with the same duality gap as x, Z. Therefore,

logdet F(x*(rl))Z*(rl) -n log n logn n log TrF(x)Z.
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As in 4.4, we can say that the difference

t(x, Z) A log det F(x)Z + log det F(x*(o))Z*(o)

log det F(x)Z + n log TrF(x)Z n log n

is a measure of the deviation of (x, Z) from centrality: $(x, Z) is, up to a constant, an upper
bound on the computational effort required to "center" (x, Z) (meaning, compute the central
pair with the same duality gap). Of course, (x, Z) is nonnegative for all primal and dual
feasible x, Z; it is zero only when x and Z are central, i.e., F(x) and Z are inverses of each
other up to a scale factor.

It is interesting to note that the deviation from centrality, (x, Z), can be evaluated for
any primal feasible x and dual feasible Z without computing the central pair with the same
duality gap, i.e., (x*(r/), Z*(r/)), where 0 TrF(x)Z.

The function is not convex or quasiconvex (except ofcourse when restricted to TrF(x)Z
constant). We also note that depends only on the eigenvalues ,1 ,n of F(X)Z:

(X, Z) = nlog
(=! ,Li) /n
(H=! ’’)1/n

Thus, (x, Z) is n times the logarithm of the ratio of the arithmetic to the geometric mean of
the eigenvalues of F(x)Z. (From this we again see that p is nonnegative and zero only when
F(x)Z is a multiple of the identity.) We can also think of as a smooth measure of condition
number of the matrix F(x)Z since

log- 2 log 2 < (x, Z) < (n- 1)log z,

where/ ,max/,min is the condition number of F(x)Z (see also [11, p. 576]).
We should mention that several other measures of deviation from centrality have been

used, especially in the linear programming literature, for analyzing and constructing interior-
point algorithms. One possible choice is IIA (o/n)IliF, where A = diag()l n).
An advantage of the measure p is the simplicity of the (global) analysis of algorithms
based on it.

5. Primal-dual potential reduction methods.

5.1. General description. Potential reduction methods are based on the potential func-
tion

(55) (p(x, Z) & vVCfflog (TrF(x)Z) + (x, Z)

(n + vV) log (TrF(x)Z) log det F(x) log det Z n log n,

which combines the duality gap of the pair x, Z with the deviation from centrality of the pair
x, Z. The constant v __. 1 is a parameter that sets the relative weight of the term involving
duality gap and the term which is the deviation from centrality.

Since (x, Z) > 0 for all primal and dual feasible x, Z, we have

//< exp (v-)
Therefore, if the potential function is small, the duality gap must be small.
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Potential reduction methods start at a pair of strictly feasible points x(), Z() and reduce
99 by at least a fixed amount in every step:

(56) 99(x (k+l), Z(k+l)) <_ 99(x (), Z()) 8,

where is an absolute constant. As a consequence, the iterates remain feasible and converge
to the optimum. Moreover, the convergence is polynomial, in a sense that is made precise in
the following theorem.

THEOREM 5.1. Assume that (56) holds with some > 0 that does not depend on n or 6,

where 0 < < 1. Thenfor
v/-ff log(1/) + (x(), Z()

k>
d

we have TrF(x(g)Z() < eTrF(x()Z(.
Roughly speaking, we have convergence in O(/-ff) steps, provided the initial pair is

sufficiently centered.
A general outline of a potential reduction method is as follows.

Potential reduction algorithm
given strictly feasible x and Z.
repeat

1. Find a suitable direction x and a suitable dual feasible direction Z.
2. Find p, q R that minimize o(x + px, Z + qdZ).
3. Update: x "= x + px and Z := Z + qZ.

until duality gap < 6.

By dual feasible direction, we mean a Z ZT that satisfies TrFi Z O, 1 m,
so that Z + q Z satisfies the dual equality constraints for any q R.

We refer to the second step as the plane search since we are minimizing the potential
function over the plane defined by the (current) points x, Z and the (current) search directions
x, 8Z. We will see in 5.5 that the plane search can be carried out very efficiently.

There are several possibilities for generating suitable descent directions x and Z; each
choice leads to a different algorithm. The basic computations are all very similar, however.
The search directions x and 8Z are obtained from a set of linear equations of the form

m

S(ZS -21- E (x Fi D
(57) i=1

TrFj3Z O, j= 1 m.

The matrices D DT and S ST > 0 depend on the particular algorithm and change in
every iteration. Problem (57) is a set ofm + n (n + 1)/2 equations in m +n(n + 1)/2 variables.
If the linear matrix inequality F(x) is block diagonal, with L blocks of size Hi, 1 L,
then we only have m + /L=I Hi(Hi + 1)/2 equations and variables.

Equations (57) arise as the optimality conditions of two quadratic minimization prob-
lems:

(58) x argminl)cRm ("I’DS-l(vifi)S-1i=I
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(59) Z argmin
1

TrDV + -TrVSVSsubject to V VT,

TrFiV =0, 1 m.

Problem (57) can be solved in several ways depending on how much structure in the
matrices Fi one wishes to exploit. We will briefly discuss different possibilities in 7.6. If the
matrices Fi are dense or unstructured, then (57) can be solved efficiently via a least-squares
problem:

(60) x=argmin S- D+ vi Fi S-
v ERm i=1 F

This can be shown by eliminating Z from the two equations in (57). After a simplification
we obtain

(61)
m

Z (xiTr S-1/2Fj S-1/2) (S-1/2Fi S-1/2)
i=1

-Tv (S-1/2Fj S-1/2) (s-x/2DS-1/2)
for j 1 m. These equations are precisely the normal equations for (60). Once 8x is
known from (60), the matrix 8Z follows from the first equation in (57).

Let us consider the LP (2) as an example, i.e., assume F(x) diag(Ax + b). In this
case, all matrices in (57) are diagonal. If we write D diag(d) and 8Z diag(Sz), then
(57) reduces to

S2 A
(62) [AT 0 ][ z

5.2. Potential reduction method 1. An obvious way to compute search directions 8x
and Z is to apply Newton’s method to go. The potential go is not a convex function, however.
The first term, (n + vq/-ff) log(cTx + TrFoZ), is concave in x and Z and hence contributes a
negative semidefinite term to the Hessian of go. One simple modification of Newton’s method
is to ignore the second derivative of this concave term.

Assume the current iterates are x, Z and set F F(x) for simplicity. As in New-
ton’s method, we choose directions x and Z that minimize a quadratic approximation of
go(x + v, Z + V) over all v E Rm and all V Vr, TrFi V 0, 1 m.

The primal direction xp is computed as

xP argminvRm (pcTv-TrF-I(vifi)i=l
"t- T(i__l uiFi) F-1 (j:l uJFJ) F-1)

"4- T(i__l uiFi) F-1 (j=l ujFj) F-1)
with p (n + vcff) (crx + TrFoZ).
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The quadratic function in (63) is the second-order expansion of log det F(x + V)-1 plus
a linear approximation of the concave term (n + v/-ff) log(cr (x + v) + ’IYFoZ). Thus, 8xp

is the minimizer of a local quadratic approximation to o(x, Z). It is not the exact Newton
direction, however, because the second derivative of log(crx -+- TrFoZ) is ignored.

Note that (63) is of the form (58) with D pFZF F and S F. Applying (57), we
see that 8xp can be computed from

(64)
FZPF + Z 3xf Fi -pFZF + F,

i=1

TrFjSZp O, j= 1 m.

In a similar way, 3Zd is computed as the minimizer of the second-order approximation of
log det(Z + V)-1 plus a linear approximation of (n + vv/-ff)log(crx + TrFo(Z + V)):

1
Z-Zd argmin pTrFoV TZ-1V -- -TZ-1V V

subject to V Vr,
TrFiV O, 1 rn

(65)
1

argmin pTrFV TrZ-1 V -Jc- -TZ-1 VZ-1 V

subject to V Vr,
TrFiV =0, 1 m.

The second formulation follows because TrFoV TrFV if TrFi V 0, 1 m.
Problem (65) is of the form (59) with S Z-1 and D pF Z-1. From (57), we see that
8Zd can be computed from

(66)

in

z-lzdz-1 + Z txdi Fi -pF + Z-1,
i=1

TrFjZd O, j= 1 m.

The first potential reduction method follows the general outline given in 5.1, with the
pair 8x p, 3Zd as search directions. Using these directions, it is always possible to reduce q9

by at least a fixed amount.
THEOREM 5.2. Let x (k) and Z( denote the values ofx and Z after the kth iteration of

the potential reduction algorithm with search directions 6xP, Zd. We have

(/9(X (k+l) Z(k+l)) (/9(x (k), Z(k)) 0.78.

From Theorem 5.1 it follows that the algorithm has a polynomial worst-case complexity.
For a proofofTheorem 5.2 see Vandenberghe and Boyd 108]. The method is a generalization
of the Gonzaga and Todd method for linear programming [43]. We should mention that
the theorem holds for an implementable version of the algorithm, in which an appropriate
approximate plane search is used to determine the step lengths.

Let us consider the LP (2) as an illustration. The linear systems (64) and (66) reduce to
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and

Ar 0 xd 0

5.3. Potential reduction method 2. The algorithm of 5.2 has the disadvantage of re-
quiring the solution of two systems, (64) and (66), per iteration. It turns out that a complete
primal-dual algorithm can be based on the primal system only, by choosing 8Zp as the dual
search direction. In linear programming this primal-dual method is due to Ye [114]; the
extension to semidefinite programs is due to Nesterov and Nemirovsky [76] and Alizadeh 1 ].

Again it is possible to reduce o by at least a fixed amount.
THEOREM 5.3. Let x (k) and Z) denote the values ofx and Z after the kth iteration of

the potential reduction algorithm with search directions dxp, Zp. We have

(/9(X (k+l), Z(k+l)) _< qg(x (k), Z(k)) -0.05.

Several comments are in order. First, the value of the guaranteed reduction in potential
per iteration,--0.05whas no practical significance. Although this bound is more than 25
times smaller than the bound given in Theorem 5.2, this second potential reduction method
seems to perform better in practice than the first one does. Second, Theorem 5.3 holds for an
implementable version of the algorithm, in which an appropriate approximate plane search is
used to determine the step lengths. A slight variation of Theorem 5.3 is proved by Nesterov
and Nemirovsky [76, 4.5.3].

These considerations can be repeated for the dual problem (66). A complete primal-dual
algorithm can be based on xd and Zd. We will call this method potential reduction method
2*. Polynomial complexity follows from Theorem 5.3 by duality.

Theorem 5.3*. Let x () and Z( denote the values ofx and Z after the kth iteration of
the potential reduction algorithm with search directions xd, Zd. We have

qg(X (k+l), Z(k/l)) < (/9(x (k), Z(k)) -0.05.

5.4. Potential reduction method 3. The first potential reduction method treats the primal
and dual semidefinite program symmetrically, but requires the solution of two linear systems
per iteration, one for xp and one for Zd. The second method is not symmetrical (we had a
primal and a dual variant) but computes primal and dual directions from a single linear system,
which is a great advantage in practice.

Nesterov and Todd have recently proposed another variation which preserves the primal-
dual symmetry yet avoids solving two systems per iteration. In their method, primal and dual
search directions are computed from

symRRTZsymRRT + OX 1" --oF + Z
i=1

TrFjZsym 0, j m.

The matrix R satisfies

RrF-1R A-1/2 and RrZR A1/2

and can be constructed as R F1/2UA-1/4, where F1/2ZF 1/2 UAUT is the eigenvalue
decomposition of F 1/2 ZF 1/2. If F and Z are a central pair, i.e., if F 1/2ZF1/2 (0/n) I, then
A is a multiple of the identity, A (rl/n)I.
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Nesterov and Todd [77] have shown that the worst-case complexity of this algorithm is
polynomial. They prove the following theorem.

THEOREM 5.4. Let x (k) and Z(k denote the values ofx and Z after the kth iteration of
the potential reduction algorithm with search directions tXsym, tZsym. We have

(/9(X (k+l), Z(k+l)) _< qg(x (k), Z(k)) 0.24.

Once again, the theorem holds for an algorithm that uses an appropriate approximate plane
search. In the case of an LP, with F diag(Ax + b) and Z diag(z), this symmetric scaling
coincides with the primal-dual symmetric scaling used by Kojima, Mizuno, and Yoshise in
[60], for example, where search directions are computed from

AT 0 tXsym 0

The three algorithms we discussed so far differ only in the scaling matrices S used in (57).
In linear programming, the equivalent ofmethod 3 is usually preferred, since it is more efficient
and has better numerical properties (see, e.g., Wright 113]).

We should however mention two other possibilities that generalize (67). Alizadeh, Hae-
berly, and Overton [5] have pointed out the potential numerical difficulties in (64) and (66)
and have proposed to compute 6x and 3Z from

F’Z+’ZF+Z(-’xiFi)+(-’xiFi)Z=-p(FZ-t-ZF)+2I,i=I
i=1

TrFjZ O, j= 1 m.

Helmberg et al. [46] and Kojima, Shindoh, and Hara [61] have proposed to solve

m

F3ZZ-x + xiF -pF + Z-1,
i=1

TrFj3Z O, j m

and to replace the resulting, nonsymmetric matrix 6Z by its symmetric part.

5.5. Plane search. Once we have selected primal and dual directions 6x and 3Z, the
problem is reduced to a two-dimensional problem, i.e., the selection of lengths of the steps
made in the directions 3x and Z. In this section we show that the computational effort of
this plane search can be greatly reduced by first diagonalizing the matrices involved. The cost
of this diagonalization and subsequent plane search is usually small compared to the cost of
computing the search directions themselves, so in these cases the plane search accounts for a
small, often negligible, fraction of the total computational effort.

In the plane defined by the directions 6x and 6 Z, the potential function can be written as

o(x + p3x, Z + q3Z) o(x, Z) + (n + v/-ff) log(1 + Clp at- czq)

(68) log det(l + pF-1/2FF-1/2) log det(l + qZ-1/2ZZ-1/2),

where F A F(x) 6F zx tnYi=I Xi Fi, and

crux TrFo3Z
c TrF(x)Z’ 2 TrF(x)Z
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Equation (68) can be expressed in terms of the eigenvalues ]Z1 /Zn of the matrix
F-1/23FF-1/2 and the eigenvalues v Vn of Z-1/23ZZ-1/2 (i.e., the generalized
eigenvalues of the matrix pairs (3 F, F) and (3Z, Z)):

o(x q- p3x, Z + q3Z) o(x, Z)

-q- (n -1- v/-)log(1 -+- clp -1- c2q) log(1 -+- plzi) log(1 q- qvi).
i=1 i=1

The set of feasible p, q is the rectangle defined by Pmin < P < Pmax, qrnin < q < qmax, where

-1
Pmin max

/zi

min /Prnax
/

{-1qmin max
1)

min / 1
qmax

/ I)

]L >0},
b/,i <0},
Pi >0},
Pi <0}.

Thus, once we have computed the eigenvalues//i, 1)i and the constants cl, c2, the plane search
problem becomes

(69)
minimize

subject to

n

(n q-- vq/ff) log(1 -1- clp -b c2q) log(1 -+- plzi) log(1 -I- qvi)
i=1 i=1

Pmin < P < Pmax, qmin < q < qmax.

It can be shown (see, e.g., [49]) that the objective, i.e., o(x + p3x, Z + q3Z), is a
quasiconvex function of p and q; in particular, it has a unique local minimum in the feasible
rectangle which is the global minimum. Therefore, the problem (69) can be solved by using
standard methods, e.g., a guarded Newton method. Note that the objective and its derivatives
with respect to p and q can be computed in O (n) operations.

We can also mention that once we have computed the constants c, c2, Pmin, Pmax, qmin,

and qmax, it is trivial to minimize the duality gap over the feasible plane. The solution of course
lies at one of the comers of the rectangle. The value of the gap at this comer will be smaller
than the value corresponding to the solution at the minimizer ofthe potential function over the
rectangle, i.e., at the next iterates of the primal-dual algorithm. It is possible to terminate the
entire algorithm at this point if the gap at the minimum-gap comer is smaller than the required
tolerance.

An example of a plane search is illustrated in Fig. 8, which shows the contour lines of
o in the p, q plane. Note that its sublevel sets are convex, which is a consequence of the
quasiconvexity of o(x + p3x, Z + q3Z).

We should mention one more point about general plane searches. Instead ofdiagonalizing
the matrices F-1/23FF-1/2 and Z-/23ZZ-1/2, we can instead tridiagonalize them. With this
preprocessing, we can still compute the derivatives for the reduced two-dimensional problem
in O (n) operations. In practice, diagonalization and tridiagonalization do not differ too much
since the bulk of the effort of computing the eigenvalues is the initial tridiagonalization. In
a careful complexity analysis, tridiagonalization has the advantage of requiring only a finite
number of exact arithmetic steps.
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qmax

q=0

qmin
Pmin

FIG. 8. Example ofa plane search. The intersection ofthefeasible set with a plane (x + px, Z + qZ) is a
rectangle. The dashed lines are the contour lines ofthe potentialfunction o. The plane search replaces the current
(x, Z) by (x + p+Sx, Z + q+,Z), where (p+, q+) minimizes the potentialfunction in this plane. The upper right
corner minimizes the duality gap over allpoints (x + px, Z / qZ).
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FI6. 9. The potentialfunction o and the duality gap O versus the iteration number k for two values of v. The
problem is a matrix norm minimization problem with 10 matrices in RI 10. The dashed line in the left-hand plot
shows the upper bound given by Theorem 5.3, i.e., a reduction of 0.05 per iteration.

5.6. Numerical examples. We consider the matrix norm minimization problem de-
scribed in 2. We take a specific problem involving 10 matrices in R1 10, so the semidefinite
program has dimensions rn 11 and n 20. We use potential reduction method 2. Ex-
perimentation with other problems (not shown here) shows that the results for this particular
problem and this algorithm are quite typical.

In Fig. 9 we compare the actual potential function with the upper bound guaranteed by
the theory for the two-parameter values v 1 and v 5. Note that, especially for the larger
value of v, the actual reduction in potential per iteration is much larger than the lower bound
of 0.05 given by Theorem 5.2. The nearly regular and linear decrease of the potential function
is typical.

The right plot shows the duality gap during the iteration. We see that the duality gap
decreases at a very regular, linear rate. The number of iterations required depends on the value
of v. For v 1, 28 iterations are needed to reduce the duality gap from the initial value of
1 to 0.0001; for v 5, the number of iterations is 10. These numbers are typical and, as we
will see later, very insensitive to the problem size.

Another view of the algorithm is given in Fig. 10, which shows the trajectories of the
duality gap r/and the deviation from centrality k on a two-dimensional plot. The left plot
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r/() r/() I0

FIG. 10. Trajectories ofthe duality gap 0 and the deviationfrom centrality for v (at left) and v 5 (at
right), with two different starting points. The first starting point lies on the central path (a# 0); the second point
lies at # 10. The dashed lines are level curves ofthe primal-dual potentialfunction p.

shows the trajectories for v 1 and in the right plot we have v 5. Each plot shows the
trajectories for two different starting points: one on the central path (a# 0) and one at 10
(the starting point at V 10 was also used in Fig. 9). The central path is the horizontal line
qr 0. The dashed lines are .the level curves of p vVrff log + . Since the duality
gap is plotted on a logarithmic scale, these level curves appear as straight lines, with slope
determined by u.

Several features can be seen in the plots. After a few iterations the trajectories that started
at poorly centered points (i.e., qr (x, Z) 10) have been centered to the same rough level as the
trajectories that started from the central path. Thereafter the deviation from centrality remains
roughly constant, with the constant depending on the value of v, which sets the relative weight
between the deviation from centrality and duality gap. For example, with v 5 the iterates
remain at a deviation of approximately 2.5. Recall that this means that the iterates
could be centered in no more than about 33 Newton steps. One consequence of V remaining
approximately constant is that the reduction in potential at each iteration is completely due to
duality gap reduction.

5.7. Dependence on problem size. A natural question is: What is the computational
effort required to solve a semidefinite program using the methods described above? And,
more specifically, how does the effort grow with problem size? In terms of iterations required,
all the methods we have described have the same worst-case complexity: The number of
iterations required to solve a semidefinite program to a given accuracy grows with problem size
as 0(nl/2). In practice the algorithms behave very similarly and much better than predicted
by the worst-case complexity analyses. It has been observed by many researchers that the
number of iterations required grows much more slowly than n 1/2, perhaps like log n or n 1/4,
and can often be assumed to be almost constant (see Nesterov and Nemirovsky [76, 6.4.4]
or Gonzaga and Todd [43] for comments on the average behavior). For a wide variety of
problems and a large range of problem sizes, the methods described above typically require
between 5 and 50 iterations.

This phenomenon is illustrated in Fig. 11, which shows duality gap versus iterations for
three instances of the matrix norm minimization problem, using potential reduction method 2,
with v 10. The smallest problem involves 10 matrices of size 10 x 10 (i.e., m 11,
n 20); another problem involves 10 matrices of size 70 x 70 (m 11, n 140); and the
last problem involves 100 matrices of size 20 x 20 (m 101, n 40). The total size of the
problem data for the two larger problems is about 50 times larger than it is for the smaller
problem. Nevertheless, the plots look remarkably similar. In all three cases, we observe the
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FIG. 11. Duality gap versus iteration number k for three instances of the matrix norm minimization problem
with different dimensions m and n, using potential reduction method 2. Although the (total) problem sizes vary over
a 50" range, the convergence is quite similar. The stopping criterion is O. 1% relative accuracy.

steady, nearly linear convergence of the duality gap that we have observed before. In fact, this
behavior is typical for general semidefinite programs, not just matrix norm problems.

The stopping criterion is 0.1% relative accuracy, i.e., the algorithm was terminated when
the duality gap became smaller than 0.1% of the primal objective value. (A stopping criterion
based on relative accuracy is natural for matrix norm minimization. For other problems, one
may prefer an absolute, or a combination of an absolute and a relative criterion.)

With this stopping criterion, the smaller problem required only six iterations and the larger
problems only eight iterations. We should note that while the number of iterations required
to solve the three problems varied only from six to eight, the total solution time varied by a
factor exceeding 500:1 due to the range in size of the least-squares problems solved in each
iteration.

To give a more convincing illustration of the regularity of the convergence and the insen-
sitivity to problem size, we generated and solved 340 matrix norm problems. The matrices
Ai were chosen from a normal distribution and then scaled so that A0 0.5. As a starting
point, we take t 1, x 0, and Z (1/2p) I. As in the examples above, we use the method
of 5.3 with v 10. The stopping criterion is a relative duality gap of less than 0.1%. In one
experiment, we take a fixed number of matrices, 10, and vary the size of Ai from 10 x 10 to
70 x 70. In the other experiment, the size of the matrices is fixed at 20 x 20, and we vary the
number of matrices from 10 to 100. For each combination of sizes we generate and solve 20
problems.

Figure 12 shows the average number of iterations required as a function of the dimension,
along with bars indicating the standard deviation. For the 340 problems solved, the algorithm
never needed less than six or more than ten iterations.

Since the numberofiterations required is quite insensitive to problem size, the next natural
question is: What is the work required per iteration? Unfortunately (or perhaps, fortunately),
there is no simple answer to this question since it largely depends on the amount of structure
in the matrices Fi that the user will exploit. We will come back to this question in 7.6.

While the methods described above perform quite similarly in practice, we can still
make a few comments comparing them. Our experience, mostly with problems arising in
control theory, suggests that potential reduction method 1 often takes a few more iterations
than methods 2, 2", and 3, and also requires the solution of two sets of equations per iteration.
Methods 2, 2", and 3 appear to be quite comparable and have some practical advantage over
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Fro. 12. The average number of iterations required to solve the matrix norm minimization problem with k
matrices in Rpp, which yields a semidefinite program ofdimension m k + 1, n 2p. In the left plot k 10
(m 11) isfixed and we vary p (n). In the rightplot p 20 (n 40) isfixed and we vary k (m). Each point is the
average of20 random instances. The error bars show the standard deviation.

method 1. (Moreover, the distinction between methods 2 and 2* is merely convention, since
we could just as well refer to the dual problem as the primal and vice versa.)

Finally, we note that since the algorithms all reduce the same potential function, we can
arbitrarily switch among them. For example, we can use method 2 for the even iterations and
method 2* for the odd iterations. Although the possibility of switching is interesting, we do
not know whether it yields any practical advantage.

6. Phase I and combined phase I-phase II methods. We have assumed so far that
initial strictly feasible primal and dual points are known. That is often the case, as in the
minimum matrix norm problem of 2. This section describes what to do when an initial
primal strictly feasible or dual strictly feasible point is not known.

6.1. Big-M method. The "big-M" method is standard in nonlinear programming; see,
e.g., Bazaraa, Sherali, and Shetty 12] or Anstreicher 10]. We distinguish three cases.

Case 1. A strictly feasible x is known, but no strictly feasible Z.
Case 2. A strictly feasible Z is known, but no strictly feasible x.
Case 3. Neither a strictly feasible x nor a strictly feasible Z is known.
Case 1. Assume that a strictly feasible x () is given, but no strictly feasible dual point.

In this case one can modify the primal problem by introducing an upper bound on the trace of
F(x)"

minimize

(70) subject to

cTx
F(x) >__ O,
TrF(x) < M.

If M is big enough, this entails no loss of generality" the solutions of (70) and the original
semidefinite program (1) are the same (assuming p* > -o). The initial point x() will still
be strictly feasible if TrF(x()) < M.

The dual of the modified problem (70) is

maximize TrF0(Z zI) Mz
(71) subject to TrFi(Z zI) ci, 1 m,

Z>O,z>_O,

where z is a scalar variable that did not appear in the dual (27) of the original semidefinite
program. It is easy to compute strictly feasible points for problem (71). First compute any
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solution U ur to the underdetermined set of equations

TrF U ci 1 m.

Take z(0) > min{.min(U), 0} and then set Z() U / z() I. One can verify that Z<, z<
are strictly feasible for (71). Any of the primal-dual methods described above can now be
used, starting at the initial points x<) and Z, z()

The difficulty with this scheme is the choice of M. Sometimes it is possible to (analyti-
cally) determine an appropriate value for M from the problem data. In other cases we need
to check that the extra constraint TrF(x) < M is not active at the solution of the modified
problem (70), i.e., we have TrF(x) < M. If this is the case then we have actually solved
the original semidefinite program (1); if not, we can increase M and again solve the modified
problem (70).

Note that M serves as an upper bound on F(x) (e.g., it implies F(x)II _< M), which in
turn bounds the (primal) feasible set. As a very rough rule of thumb, simple bounds on the
primal variables often lead to the easy identification of strictly feasible dual points.

Case 2. This is dual to the previous case. Assume we have a dual strictly feasible point
Z<), but no primal strictly feasible point. One can then add "big-M" terms to the primal
problem:

minimize

(72) subject to

cTx + Mt
F(x) + tl > O,
t>0.

To obtain a strictly feasible solution to (72), choose any x() and take

(0) > min{,kmin(F(x())), 0}.

The dual of problem (72) is

maximize

subject to
-TrFoZ
TrFiZ ci, i= 1 m,

TrZ+z=M,
Z>O,z>O,

or, if we eliminate the slack variable z,

maximize

subject to
-TrFoZ
TgFiZ--ci, i-- 1 m,

TrZ < M.

From this we see that we have modified the dual semidefinite program (27) by adding an upper
bound on the trace of Z.

Case 3. When no primal or dual strictly feasible points are known, one can combine the
two cases above and introduce two coefficients, M1 and M2. The primal problem becomes

minimize

subject to

cTx -[- Ml
F(x) + tI > O,
TrF(x) < M2,
t>O,
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and the dual becomes

maximize

subject to

-TrFo(Z zI) M2z,
TrFi(Z zI) ci, 1 m,

TrZ <_ M,
Z>O,z>O.

6.2. Other methods, Several methods are known that can start at infeasible points and
do not require big-M terms. Examples are the Nesterov andNemirovsky projective method [76]
and the primal-dual methods described by Helmberg et al. [46], Alizadeh, Haeberly, and Over-
ton [5], Kojima, Shindoh, and Hara [61], and Nesterov [70].

7. Some extensions. We mention a few interesting extensions of and variations on the
semidefinite programming problem.

7.1. Generalized linear-fractional programming. In 2 we saw that the problem of
minimizing the maximum eigenvalue of a symmetric matrix A (x) can be cast as a semidefinite
program:

minimize

subject to I A(x) > 0.

Now suppose we have a pair of matrices (A(x), B(x)), both affinely dependent on x. To
minimize their maximum generalized eigenvalue, we can solve the optimization problem

minimize

(73) subject to tB(x) A(x) > O,
B(x) > O.

This is called a generalized linear-fractional problem. It includes the linear-fractional problem

as a special case.

crx +d
minimize erx+ f
subject to Ax + b > O, erx+f >O

Problem (73) is not a semidefinite program, however, because of the bilinear term B(x).
It is a quasiconvex problem and can still be efficiently solved. See Boyd and E1 Ghaoui 16],
Haeberly and Overton [45], and Nesterov and Nemirovsky [75, 68] for details.

7.2. Determinant maximization. In 4.3 we discussed the problem of minimizing the
barrier function log det F(x) or, equivalently, of maximizing the determinant of F(x) over
all x such that F(x) > 0. This problem often arises in combination with additional linear
matrix inequality constraints:

minimize

(74) subject to

log det F(x)-
F(x) > O,
C(x) >_ O,

where C(x) A Co + X1 C1 -- - xmCm. This problem is a convex programming problem
and can be solved very efficiently. In fact, Nesterov and Nemirovsky [76, 6.4.3] have showed
that (74) can be cast as a semidefinite program, although it is more efficient to solve it directly.
An important application is the computation of the maximum volume ellipsoid contained in
a polytope; see Nesterov and Nemirovsky [76, 6.5] or Khachiyan and Todd [56] for interior-
point methods to solve this problem.
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7.3. Rank minimization. If the semidefinite program (1) is solvable, its solution lies
on the boundary of the feasible set, i.e., at a point where F(x) is singular. This observation
motivates the second extension: minimizing the rank of a positive semidefinite symmetric
matrix:

minimize rank B(x)
subject to A(x) > 0, B(x) > 0,

where A and B are symmetric matrices that depend affinely on x. Many problems in control
theory, statistics, and other fields can be reduced to this problem.

In contrast with semidefinite programs, generalized fractional problems, and determinant
maximization problems, however, this problem is hard. One knows that general rank con-
straints can greatly increase the complexity of the problem; we saw in 2 that the difference
between the NP-hard indefinite quadratic problem (14) and the semidefinite relaxation (16) is
exactly the constraint that a matrix have rank one.

As another example, we can formulate Boolean linear programming as a rank minimiza-
tion problem. Consider the problem of determining whether there is an x e Rm such that
Cx + d > 0 and xi {0, 1 }, which is NP-hard. It can be formulated as the rank minimization
problem with

A(x) diag(Cx + d), B(x) diag(xl Xm, 1 X1 1 Xm).

Here the rank of B is always at least rn and is rn only when X {0, 1}.
Some special problems involving rank contraints can be solved efficiently; see 104].

7.4. General conic formulation. Semidefinite programming can be considered as an
extension oflinear programming in whichthe positive orthant is replacedby the cone ofpositive
definite matrices. Semidefinite programming, in turn, can be further generalized to the case of
a general, pointed cone. This general conic formulation is discussed by Wolkowicz 112] and
Nesterov and Nemirovsky [76]. The methods described here can be extended to the general
conic formulation; see Chapters 4-6 of [76].

7.5. More efficient barriers. One can also replace the barrier function by several others
that result in better worst-case complexity estimates. Nesterov and Nemirovsky [76, 5.5]
have generalized Vaidya’s volumetric and combined volumetric barriers to the cone of positive
semidefinite matrices. We do not know of any experimental results that indicate whether these
improved barrier functions are better in practice than the standard barrier log det F(x)-l.

7.6. Exploiting problem structure. It is possible to modify the semidefinite program
methods described above to exploit problem structure. The dominant part in every itera-
tion is the solution of a linear system of the form (57) or a least-squares problem of the
form (60). Problem (60) has m variables and n(n + 1)/2 equations and can be solved in
O (mEn2) operations using direct methods. Important savings are possible when the matrices

Fi are structured. The easiest type of structure to exploit is block-diagonal structure. Assume
F(x) consists of L diagonal blocks of size hi, 1 L. Then the number of equations
in (60) is /=1 hi(hi -Jr- 1)/2, which is often an order less than n(n + 1)/2. For instance, in
the LP case (diagonal matrix F(x)) the number of variables is n, and solving the least-squares
problem requires only O(mEn) operations.

Usually much more can be gained by exploiting the internal structure (e.g., sparse,
Toeplitz, etc.) of the diagonal blocks in Fi. In this section we give an overview of sev-
eral techniques that have been used for exploiting structure in LPs and point out the parallels
and differences with semidefinite programming.
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As in linear programming, we can distinguish between direct and iterative methods.
Direct sparse-matrix techniques Several strategies have been proposed to solve sys-

tems (62) when the matrix A is large and sparse.
The most popular and fastest approach consists of reducing the system to

(75) Ar S-2A,$x -Ar S-:Zd.

Since S is diagonal, the product in (75) is usually still sparse. This depends on the sparsity
pattern of A, however. Dense rows in A, for example, have a catastrophic effect on sparsity.
Equation (75) can be solved using a sparse Cholesky decomposition [66].

The second strategy is to solve the sparse system (62) directly. Several researchers have
argued that this method has better numerical properties (see Fourer and Mehrotra [32], Gill et
al. [38], and Vanderbei and Carpenter 109]). Moreover, directly solving (62) avoids the loss
of sparsity caused by squaring A.

Unfortunately, neither of these techniques works for semidefinite programs because they
lead to systems with large dense blocks, even if the matrices Fi are sparse.

A third possibility that avoids this difficulty introduces new variables W Rnxn and
writes (57) as

-Wr + 8ZS O,

(76)
gn1 j-’(X --D,- WS -1- SWT) -1- Fi
i=1

"IYFj ($Z O, j 1 m

This is a sparse, symmetric indefinite system that can be solved using sparse-matrix techniques.
Iterative techniques A second group of methods solves the equations (61), (57), or (76)

iteratively.
For (61) or (60) the conjugate gradients method or the LSQR algorithm of Paige and

Saunders [83] appears to be very well suited. In exact arithmetic, these algorithms solve (60)
in rn + 1 iterations, where each iteration requires an evaluation of the two (adjoint) linear
mappings

(77)
m

(l) l)m) t- 1) F and W - (TrF1W ’rrFm W)
i=1

for some vector v and matrix W Wr. When the matrices Fi are unstructured, these two
operations take mn2 operations. Hence, the cost of solving (60) using LSQR is O(n2m2), and
nothing is gained over direct methods.

In most cases, however, the two operations (77) are much cheaper thanmn2 because ofthe
special structure ofthe matrices Fi. The equations are often dense, but still highly structured in
the sense that the two linear functions (77) are easy to evaluate. References 18, 108] discuss
iterative methods for exploiting structure in semidefinite programs arising in engineering.

One can also consider solving the symmetric systems (57) or (76) iteratively by using
the SYMMLQ method of Paige and Saunders [82] or the symmetric quasi-minimal residual
(QMR) method of Freund and Nachtigal [351. Working on (57) or (76) has the advantage of
allowing more freedom in the selection of preconditioners [38].

In practice, i.e., with round-off error, the convergence of these methods can be slow and
the number of iterations can be much higher than m + 1. There are techniques to improve the
practical performance, but the implementation is very problem specific and falls outside the
scope of this paper.
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8. Conclusions. Semidefinite programming can be considered an extension oflinear pro-
gramming that includes a wide variety of interesting nonlinear convex optimization problems.
We have described several primal-dual interior-point methods for semidefinite programs that
generalize interior-point methods devised for LPs.

While the details of the primal-dual algorithms are different, they have similar structures
and worst-case complexity analyses and behave similarly in practice.

Common structure. Each iteration involves the solution of one (or two) least-squares
problems to determine suitable primal and dual search directions. Suitable step
lengths are determined by solving a (smooth, quasiconvex) two-dimensional opti-
mization problem that involves only the duality gap and the deviation from centrality.
The computational effort of this plane search is greatly reduced by first diagonalizing
(or tridiagonalizing) the matrices involved.
Worst-case complexity. One can prove that each of the algorithms reduces a potential
function by at least some fixed amount at each iteration. Hence, the number of
iterations required to solve a semidefinite program to a given accuracy can grow no
faster than the square root of the problem size.
Practical performance. In practice, the algorithms perform much better than the
worst-case bound. The decrease in potential function at each iteration is usually
much more than the guaranteed minimum. The convergence of the duality gap is
quite regular and nearly linear. The required number of iterations appears to grow
much more slowly with problem size than the square root bound given by the theory.
For practical purposes, the required number of iterations can be considered almost
independent of problem size, ranging between 5 and 50.

In summary, primal-dual algorithms for semidefinite programs share many of the features
and characteristics of the corresponding algorithms for LPs. Our final conclusion is therefore
that it is not much harder to solve a rather wide class ofnonlinear convex optimization problems
than it is to solve LPs.
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