
Noname manuscript No.
(will be inserted by the editor)

Total variation image deblurring with space-varying kernel

Daniel O’Connor · Lieven Vandenberghe

Abstract Image deblurring techniques based on convex optimization formulations, such as total-variation de-
blurring, often use specialized first-order methods for large-scale nondifferentiable optimization. A key property
exploited in these methods is spatial invariance of the blurring operator, which makes it possible to use the fast
Fourier transform (FFT) when solving linear equations involving the operator. In this paper we extend this approach
to two popular models for space-varying blurring operators, the Nagy-O’Leary model and the Efficient Filter Flow
model. We show how splitting methods derived from the Douglas-Rachford algorithm can be implemented with a
low complexity per iteration, dominated by a small number of FFTs.
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1 Introduction

In many popular approaches to non-blind image deblurring, a deblurred image is computed by solving an optimiza-
tion problem of the form

minimize
x

φf(Kx−b)+φr(Dx)+φc(x) (1)

where φf,φr, and φc are convex penalty or indicator functions [21,40]. Here b is a vector containing the pixel
intensities of an M×N blurry, noisy image, stored as a vector of length n = MN, for example, in column-major
order. The optimization variable x ∈ Rn is the deblurred image. The matrix K models the blurring process, and is
assumed to be known. The first term in (1) is often called the “data fidelity” term and encourages Kx≈ b. Typical
choices for the penalty function φf in the data fidelity term include the squared L2 norm, the L1 norm, and the Huber
penalty. The second term in the cost function is a regularization term. In total-variation (TV) deblurring [38,39],
the matrix D represents a discrete gradient operator, and φr is an L1 norm or the isotropic norm∥∥∥∥[u

v

]∥∥∥∥
iso

=
n

∑
i=1

√
u2

i + v2
i . (2)

In tight frame regularized deblurring [30,27], D represents the analysis operator for a tight frame and φr is the
L1 norm. The last term φc(x) can be added to enforce constraints on x such as 0≤ x≤ 1 by choosing φc to be the
indicator function of the constraint set.

When devising efficient methods for solving (1), a key requirement is to exploit structure in K. Most work on
image deblurring has modeled the blur as being spatially invariant, in which case K represents a convolution with
a spatially invariant point spread function. This allows efficient multiplication by K and KT by means of the fast
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Fourier transform. Additionally, linear systems involving K can be solved efficiently because K can be expressed as
a product of the 2-dimensional DFT matrix, a diagonal matrix, and the inverse of the 2-dimensional DFT matrix.
In combination with fast Fourier transform techniques, methods such as the Chambolle-Pock algorithm [9,44],
the Douglas-Rachford algorithm [29,12,36,33], and the alternating direction method of multipliers (ADMM) or
split Bregman method [19,10,1] are very effective for solving (1). By exploiting the space-invariant convolution
structure, these methods achieve a very low per-iteration complexity, equal to the cost of a small number of FFTs.

In this paper we address the problem of solving (1) under the assumption of spatially variant blur. We consider
two models of spatially variant blur: the classical model of Nagy and O’Leary [32] and the related “Efficient Filter
Flow” (EFF) model [24]. The Nagy-O’Leary model expresses a spatially variant blur operator as a sum

K =
P

∑
p=1

UpKp, (3)

where each Kp represents a spatially invariant convolution operator, and the matrices Up are nonnegative diagonal
matrices that add up to the identity. The EFF model uses a model of the form

K =
P

∑
p=1

KpUp, (4)

with similar assumptions on Kp and Up. Unlike the space-invariant convolution operator, the space-varying
models (3) and (4) cannot be diagonalized using the DFT. This renders standard Douglas-Rachford-based methods
for space-invariant deblurring unusable. The contribution of the paper is to present Douglas-Rachford splitting
methods for solving (1), for the two spatially variant blur models, with an efficiency that is comparable with
FFT-based methods for spatially invariant blurring operators. Specifically, for many common types of fidelity and
regularization terms, the cost per iteration is O(PN2 logN) for N by N images.

Our approach is to use the structure of the blur operator to write deblurring problems in the canonical form

minimize
x

f (x)+g(Ax) (5)

in such a way that the convex functions f and g have inexpensive proximal operators, and linear systems involving
A can be solved efficiently. Problem (5) can then be solved by methods based on the Douglas-Rachford splitting
algorithm, yielding algorithms whose costs are dominated by the calculation of order P fast Fourier transforms at
each iteration. The key point is to recognize the correct choices of f , g, and A. The most obvious ways of expressing
the deblurring problem (1) in the form (5) do not lead to an efficient Douglas-Rachford iteration; in particular, for
the spatially variant blur models we consider, one must not include the entire blur operator in A. Rather, the blur
operator must be dissected, included partially in g and partially in A. Our method for the Nagy-O’Leary model
requires that φf be a separable sum of functions with inexpensive proximal operators; this is a nontrivial restriction,
but still allows us to handle most of the standard convex data fidelity terms, such as those using an L1 or squared L2
norm or the Huber penalty. For the Efficient Filter Flow model, our method requires that φf is the squared L2 norm.
Both methods can handle TV and tight frame regularization.

While much of the literature on image deblurring has assumed a spatially invariant blur, recent work has
increasingly focused on restoring images degraded by spatially variant blur [32,2,24,22,20,23,28,3,5,4,25,15,
41]. Most of the effort has gone towards modeling and estimating spatially variant blur. In contrast, the problem
of TV or tight frame regularized deblurring with a known spatially variant blur operator has not received much
attention. In the original Nagy and O’Leary paper [32], non-blind deblurring is achieved by solving Kx = b by
the preconditioned conjugate gradient method, stopping the iteration early to mitigate the effects of noise. The
same approach is taken in [2], where the Nagy-O’Leary model is used in a blind deblurring algorithm. The paper
[24], which introduced the Efficient Filter Flow model, recovers x given K and b by finding a nonnegative least
squares solution to Kx = b. (Note that [35] independently introduced a similar model.) A Bayesian framework with
a hyper-Laplacian prior is used in [25] and [41], leading to non-convex optimization problems which are solved by
iteratively re-weighted least squares or by adapting the method of [11]. [28] performs the non-blind deblurring step
using the Richardson-Lucy algorithm. [17] models a spatially variant blur operator as being sparse in a wavelet
domain and solves a standard L2-TV deblurring problem, but does not discuss the optimization algorithm used.
[20] uses the Forward-Backward algorithm to solve a spatially variant deblurring problem, but the method is
restricted to the case where φf is the squared L2 norm, φc is 0, and tight frame regularization is used. Most relevant
to us, [3] uses the Nagy-O’Leary model and solves a TV deblurring problem using a method based on the domain
decomposition approach given in [18], and [4] takes a similar domain decomposition approach to TV deblurring
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using the Efficient Filter Flow model. However, [3] requires that φf be the squared L2 norm, whereas our treatment
of the Nagy-O’Leary model is able to handle other important data fidelity penalties such as the L1 norm and the
Huber penalty. Moreover, the papers [3,4] consider only total variation regularization, whereas our approach is able
to handle tight frame regularization as well as total variation regularization. Our approach allows for constraints
on x, enforced by the term φc(x); such constraints are not considered in [3,4]. An additional difference between
our approach and that of [3,4] is that at each iteration of the methods in [3,4], there are subproblems which must
themselves be solved by an iterative method; thus [3,4] present multi-level iterative algorithms, with both inner and
outer iterations. In our approach all subproblems at each iteration have simple closed form solutions.

This paper is organized as follows. Section 2 briefly describes a method for solving (5) by expressing the
Karush-Kuhn-Tucker (KKT) conditions as a monotone inclusion problem and applying the Douglas-Rachford
splitting algorithm. (This method, as well as alternative methods such as ADMM, is discussed in greater detail in
[33].) In section 3 we present the Nagy-O’Leary model of spatially variant blur and derive a method for solving (1)
using this model, under the assumption that φf is separable. In section 4 we discuss the Efficient Filter Flow model
of spatially variant blur, and derive a method for solving (1) using this model, in the case where φf is the squared
L2 norm. Section 5 demonstrates the effectiveness of these methods with some numerical experiments. The paper
concludes with a summary of main points in section 6.

2 Primal-dual Douglas-Rachford splitting

In this section we derive the primal-dual optimality conditions for problem (5) and describe a first-order primal-dual
method that we will use in this paper. We assume f and g are proper closed convex functions and A is a matrix.

2.1 Optimality conditions

To derive the optimality conditions we first reformulate (5) as

minimize
x,y

f (x)+g(y) (6)

subject to Ax = y.

Finding primal and dual optimal variables (x,y) and z for (6) is equivalent to finding a saddle point for the
Lagrangian

L(x,y,z) = f (x)+g(y)+ 〈z,Ax〉−〈z,y〉.

The variable y can be eliminated by noting that

inf
x,y

L(x,y,z) = inf
x
( f (x)−g∗(z)+ 〈z,Ax〉)

where g∗(z) = supy(〈z,y〉−g(y)) is the convex conjugate of g. Thus the problem is reduced to finding a saddle
point (x,z) of the convex-concave function

`(x,z) = f (x)−g∗(z)+ 〈z,Ax〉.

The optimality conditions for this saddle point problem are

0 ∈ ∂ f (x)+AT z, 0 ∈ −Ax+∂g∗(z). (7)

Here ∂ f (x) and ∂g∗(z) are the subdifferential of f at x and the subdifferential of g∗ at z. The first condition in
(7) states that x is a minimizer of `(·,z) ; the second condition in (7) states that z is a maximizer of `(x, ·). The
optimality conditions can be combined into a single condition using block notation:

0 ∈
[

0 AT

−A 0

][
x
z

]
+

[
∂ f (x)
∂g∗(z)

]
. (8)

(The second term on the right denotes the Cartesian product ∂ f (x)×∂g∗(z).)
For more details on convex duality and optimality conditions, see for example [37] or [16].
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2.2 Proximal operators

Before giving a method to solve the optimality condition (8), we first define and record some properties of proximal
operators, a basic tool used in proximal algorithms.

Let f be a proper closed convex function on Rn. The proximal operator of f is the mapping from Rn to Rn

defined by

prox f (x) = argmin
u

f (u)+
1
2
‖u− x‖2.

It can be shown that prox f (x) is uniquely defined for all x. The following facts about proximal operators will be
useful to us [13,12,6].
1. Moreau decomposition. If t > 0, then

x = proxt f (x)+ tproxt−1 f ∗(x/t).

This rule, known as the Moreau decomposition [31], shows that the proximal operator of f ∗ (the convex
conjugate of f ) can be computed as easily as the proximal operator of f .

2. Separable functions. If f is separable, so that

f (x) =
k

∑
i=1

fi(xi),

where xi are subvectors of x = (x1, . . . ,xk), then

prox f (x) =

prox f1(x1)
...

prox fk(xk)

 . (9)

3. Scaling of argument. Suppose f (x) = g(ax), where a ∈ R, a 6= 0. Then

prox f (x) =
1
a

proxa2g(ax). (10)

4. Composition with affine mapping. Suppose f (x) = g(Ax+b), where A is a matrix that satisfies AAT = (1/α)I
for some α > 0. Then

prox f (x) =(I−αAT A)x+αAT (proxα−1g(Ax+b)−b). (11)

For future reference we also mention a few common examples, that can be proved directly from the definition or by
using the properties listed above.
1. Quadratic function. Suppose f (x) = 1

2‖Ax−b‖2
2, where A ∈ Rm×n,b ∈ Rm, and t > 0. Then

proxt f (x) = (I + tAT A)−1(x+ tAT b)

= (I− tAT (I + tAAT )−1A)(x+ tAT b). (12)

The second equality follows from the first by the matrix inversion lemma.
2. Indicator function. Suppose f (x) is the indicator function of a closed convex set C and t > 0. Then proxt f (x) is

the Euclidean projection ΠC(x) of x on C.
3. Norm. Suppose f (x) is a norm and t > 0. Then

proxt f (x) = x−ΠtC(x) (13)

where C is the unit ball of the dual norm. For f (x) = ‖x‖1, we have tC = {x | −t1≤ x≤ t1} and (13) reduces
to soft-thresholding:

proxt f (x)k =

 xk− t xk > t
0 −t ≤ xk ≤ t
xk + t xk ≤−t.

If f (x) = ‖x‖ is the Euclidean norm, then ΠtC is projection on a ball with radius t. If f (x) is the ‘isotropic’
norm defined in (2), then (u,v) = proxt f (x,y) can be computed as (uk,vk) = αk(xk,yk) for k = 1, . . . ,n, where

αk =

1− t
(x2

k + y2
k)

1/2 if (x2
k + y2

k)
1/2 > t,

0 otherwise.
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2.3 Douglas-Rachford method

Problem (8) is a monotone inclusion problem and can be solved using the Douglas-Rachford splitting algorithm [7,
Remark 2.9] [33]. The Douglas-Rachford method is a general algorithm for finding zeros of sums of monotone
operators [29]. Applied to (8) it reduces to the following iteration:

xk = proxt f (pk−1)

zk = proxsg∗(q
k−1)[

uk

vk

]
=

[
I tAT

−sA I

]−1 [2xk− pk−1

2zk−qk−1

]
(14)

pk = pk−1 +ρ(uk− xk)

qk = qk−1 +ρ(vk− zk).

We note the following useful expressions for solving the linear system in step (14):

[
I tAT

−sA I

]−1

=

[
0 0
0 I

]
+

[
I

sA

]
(I + stAT A)−1

[
I
−tA

]T

=

[
I 0
0 0

]
+

[
−tAT

I

]
(I + stAAT )−1

[
sAT

I

]T

.

There are three algorithm parameters: two step sizes s > 0 and t > 0, and a relaxation parameter ρ ∈ (0,2). The
general Douglas-Rachford iteration for solving monotone inclusion problems has only one step size. As discussed
in [33], the iteration given here with two step sizes can be derived by using Douglas-Rachford (with a single step
size t) to solve the optimality condition (8) for the modified problem

minimize
x

f (x)+ g̃(Ãx) (15)

where Ã = βA and g̃(y) = g(y/β ) with β =
√

s/t.
As can be seen from the algorithm outline, the primal-dual Douglas-Rachford method is particularly useful for

problems that satisfy the following two assumptions.

A1. f and g∗ have inexpensive proximal operators.
A2. The linear system in step (14) can be solved efficiently by exploiting structure in A. More specifically, linear

systems of the form (I + stAT A)x = y can be solved efficiently.

Due to the necessity of satisfying these two conditions, utilizing the Douglas-Rachford method is not always a
straightforward exercise. In any given application, one must find a suitable choice of f , g, and A, which is not
always possible. A more detailed discussion of this method, as well as other methods for solving (5) under these
assumptions, can be found in [33,34,26].

Although in this paper we focus on the primal-dual Douglas-Rachford splitting method we should point out that
the techniques of sections 3 and 4 can also be used in conjunction with ADMM [19,10]. To apply ADMM, we first
reformulate problem (5) as

minimize
x,y,u

f (u)+g(y)

subject to u = x

y = Ax,

where we have introduced a “splitting variable” u. This reformulated problem can be solved efficiently by ADMM,
but only when f , g, and A are chosen so that assumptions A1 and A2 are satisfied.
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3 The Nagy-O’Leary model

The Nagy-O’Leary model of spatially variant blur [32] assumes that the blur operator K has the form

K =
P

∑
p=1

UpKp. (16)

where

– each Kp, for p = 1, . . . ,P, performs a convolution with a space-invariant kernel,
– each Up is diagonal with nonnegative diagonal entries,
– the matrices Up sum to the identity matrix: ∑

P
p=1 Up = I.

Intuitively, Up determines how much Kp contributes to each pixel in the blurry image.
We now present a method for solving problem (1) when K has the form (16). The method requires the special

assumption that φf is a separable sum of functions with inexpensive proximal operators:

φf(x) = ∑
i

φ
i
f (xi).

This is the case in most applications, for example if φf is a squared L2 norm (φ i
f (u) = u2/2), an L1 norm (φ i

f (u) = |u|),
or the Huber penalty

φ
i
f (u) =

{
u2/(2η) |u| ≤ η

|u|−η/2 |u| ≥ η ,

where η is a positive parameter. We make no assumptions on φr and φc, except that they have inexpensive proximal
operators. The method also requires that DT D is diagonalized by the discrete Fourier basis, which is true for both
TV and tight frame regularization. Assuming K satisfies (16), we write problem (1) in the generic form (5) by
defining

f (x) = φc(x),

g(y1, . . . ,yP,w) = φf(U1y1 + · · ·+UPyP−b)+φr(w),

A =
[
KT

1 · · · KT
P DT ]T .

Note that the blur operator K has been dissected, included partially in A and partially in g. We can apply the
primal-dual splitting method of section 2 to this problem, once we first check that the assumptions A1 and A2 of
section 2 are satisfied.

We first examine assumption A1. The proximal operator of f is the proximal operator of φc, which is assumed
to be inexpensive. The function g is separable in the variables y = (y1, . . . ,yP) and w, and can be written as
g(y,w) = g1(y)+g2(w) where

g1(y) = φf(U1y1 + · · ·+UPyP−b), g2(w) = φr(w).

Therefore the proximal operator of g at (ŷ, ŵ) is of the form proxtg(ŷ, ŵ) = (proxtg1
(ŷ),proxtg2

(ŵ)). The proximal
operator of g2 is the proximal operator of φr, which is assumed to be inexpensive.

It’s not yet obvious that the proximal operator of g1 can be calculated efficiently. Indeed, if φf were not assumed
to be separable, then this would not be the case. Let U =

[
U1 · · · UP

]
and let M = (UUT )1/2. Then we can express

g1 as g1(y) = h(M−1Uy−M−1b), where

h(u) = φf(Mu) = ∑
i

φ
i
f (Miiui).

The invertibility of M follows from ∑
P
p=1 Up = I. Noting that (M−1U)(M−1U)T = I, we can now use the composi-

tion rule (11) to express the proximal operator of g1 in terms of the proximal operator of h. Moreover, the proximal
operator of h can be evaluated efficiently using the separable sum rule (9) together with the rule (10). The resulting
formula for the proximal operator of g1 is

proxtg1
(ŷ) = (I−UT M−2U)ŷ+UT M−2(v+b), (17)

where v is the vector whose ith component is

vi = proxtM2
iiφ

i
f
((Uŷ−b)i). (18)
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Regarding A2, note that
AT A = KT

1 K1 + · · ·+KT
P KP +DT D.

If D represents a discrete gradient operator using periodic boundary conditions, or if D represents a tight frame
analysis operator (i.e., DT D = αI) then DT D is diagonalized by the discrete Fourier basis. In this case, AT A is also
diagonalized by the discrete Fourier basis, and linear systems with coefficient I +λAT A can be solved efficiently
via the FFT.

It’s physically unrealistic to assume periodic boundary conditions when modeling the blurring process. On the
other hand, we want the operators Kp to use periodic boundary conditions for computational efficiency. We can
deal with this issue by using an “unknown boundary conditions” approach as in [1]. Recall that we’re assuming φf
is a separable sum:

φf(x) = ∑
i

φ
i
f (xi).

If pixel i is a border pixel (close enough to the edge of the image that boundary conditions are relevant), then we
simply redefine the function φ i

f to be identically zero. We then solve the same optimization problem as before. The
fact that the operators Kp use periodic boundary conditions is no longer a problem. In this approach, it is as if we
are “inpainting” the border of the recovered image x. Once we’ve computed x, we can then discard the inpainted
border. (Discarding the border also removes any artifacts introduced by using periodic boundary conditions for D.)

4 The Efficient Filter Flow model

A popular variant of the Nagy-O’Leary model for spatially variant blur is the Efficient filter flow (EFF) model
introduced in [24]. This model is used in the recent papers [22,23,5]. In the EFF model the blur operator K has the
form

K =
P

∑
p=1

KpUp (19)

where the matrices Kp and Up satisfy the same properties as in the Nagy-O’Leary model of section 3. In this section,
we present a method for solving

minimize
x

1
2
‖Kx−b‖2 +φr(Dx)+φc(x) (20)

in the case where K is given by (19). Problem (20) is the special case of problem (1) where φf(x) = 1
2‖x‖

2.
We assume, as before, that φr and φc are proper closed convex functions with inexpensive proximal operators.
Additionally, we assume that D is a tight frame operator (DT D = αI), but the method can also be used when DT D
is very sparse (as in TV regularization).

Problem (20) can be expressed in the generic form (5) by defining

f (x) = φc(x), (21a)

g(y1, . . . ,yP,w) =
1
2
‖

P

∑
p=1

Kpyp−b‖2
2 +φr(w), (21b)

A =
[
UT

1 · · · UT
P DT ]T . (21c)

We can solve this problem using the primal-dual splitting method of section 2, but we first must check that the
assumptions A1 and A2 of section 2 are satisfied.

Again we first examine assumption A1. The proximal operator of f is the proximal operator of φc, which is
assumed to be inexpensive. The function g is separable in the variables y = (y1, . . . ,yP) and w, and can be written
as g(y,w) = g1(y)+g2(w) where

g1(y) =
1
2
‖K1y1 + · · ·+KPyP−b‖2

2, g2(w) = φr(w).

Therefore the proximal operator of g at (ŷ, ŵ) is of the form proxtg(ŷ, ŵ) = (proxtg1
(ŷ),proxtg2

(ŵ)). The proximal
operator of g2 is the proximal operator of φr, which is assumed to be inexpensive. The key point of this section is
that g1 also has an inexpensive proximal operator. Once we show this, it will follow that assumption A1 is satisfied.
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Fig. 1 Visualization of the matrices Up in section 5.1. Red corresponds to a value of 1, and blue corresponds to a value of 0. The numerical
values transition smoothly from 0 to 1.

We can express g1 as g1(y) = (1/2)‖By−b‖2
2, where B =

[
K1 · · · KP

]
. From rule (12) for the proximal operator

of a quadratic function, the proximal operator of g1 is given by

proxtg1
(ŷ) = (I− tBT (I + tBBT )−1B)(ŷ+ tBT b). (22)

Because the matrix

I + tBBT = I + t
P

∑
p=1

KpKT
p

is diagonalized by the discrete Fourier basis, expression (22) for the proximal operator of g1 can be evaluated
efficiently using the FFT.

Regarding A2, note that the linear equation in each iteration has coefficient matrix

I + stAT A = I + st(U2
1 + · · ·+U2

P +DT D).

This matrix is diagonal when D represents the analysis operator of a tight frame, and very sparse when D represents
a discrete gradient operator.

5 Experiments

All experiments were performed on a computer with a 3.70 GHz Intel Xeon(R) E5-1620 v2 processor with 8 cores
and 7.7 GB of RAM. The code was written in MATLAB using MATLAB version 8.1.0.604 (R2013a).

5.1 Spatially variant Gaussian blur

We demonstrate the method of section 3 by restoring an image which has been blurred by an operator K that is
described by the Nagy-O’Leary model (16). The image used is the 512 by 512 “Barbara” image, scaled to have
intensity values between 0 and 1. We set P = 4, corresponding to the four quadrants of the image. For p = 1, . . . ,4,
the matrix Kp performs a convolution with a 17 by 17 truncated Gaussian kernel, with standard deviation σp = p
pixels. The matrix Up zeros out components away from the pth quadrant, as visualized in figure 1 (where red
corresponds to a value of 1 and blue corresponds to a value of 0). When creating the blurry image, “replicate”
boundary conditions were used – meaning that an intensity value at a location outside the image is assumed to be
equal to the intensity at the nearest pixel in the image. Gaussian noise with zero mean and standard deviation 10−3

was added to each pixel of the blurred image. After Gaussian noise was added to each pixel, 10% of the pixels
(chosen at random) were corrupted by “salt and pepper” noise. (The intensity value at each corrupted pixel was
randomly set to either 0 or 1.)

We handle boundary conditions as described in section 3, using the “unknown boundary conditions” approach.
First the blurry image is zero padded to have size 528 by 528, then a restored image is computed by solving

minimize
x

φf(Kx−b)+ γ‖Dx‖iso. (23)
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(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Fig. 2 Result for the experiment in section 5.1.
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(b) Relative optimality gap vs. iteration.

Fig. 3 Relative error vs. iteration and relative optimality gap vs. iteration for the experiment in section 5.1. The solid line shows the convergence
of the primal-dual Douglas-Rachford method, and the dashed line shows the convergence of the Chambolle-Pock method.

We take φf(x) = ∑i φ i
f (xi), where φ i

f is the Huber penalty (with parameter η = 10−3) if pixel i is not a border pixel,
and φ i

f is identically zero if pixel i is a border pixel. The optimization variable is x ∈ R5282
, and D is the matrix

representation of a discrete gradient operator D̃ : R528×528→ R528×528×2, defined by:

(D̃x)i, j,1 = xi+1, j− xi j, (D̃x)i, j,2 = xi, j+1− xi j. (24)

(D̃ uses periodic boundary conditions.) Once a deblurred image is computed by solving (23), the inpainted boundary
is discarded, yielding a restored image of size 512 by 512. The parameter γ is chosen to give a visually appealing
image reconstruction. The original, blurry, and restored images are shown in figure 2. Notice that the lower right
quadrant is blurred the most. It’s interesting to look closely and see that more detail is recovered in the upper right
quadrant, where the blurring was less severe.

In figure 3a, the quantity ‖xk− x?‖/‖x?‖ is plotted against the iteration number k. Here xk is the estimate of
the solution to (23) at iteration k, and x? is a nearly optimal primal variable which was computed by running the
method of section 3 for 10,000 iterations. In figure 3b, the quantity (Fk−F?)/F? is plotted against the iteration
number k. Here Fk is the primal objective function value at iteration k, and F? is a nearly optimal primal objective
function value, which was computed by running the method of section 3 for 10,000 iterations. To illustrate the
convergence properties of the algorithm, we show the error for the first 500 iterations. However we observed that
after about 180 iterations the estimate xk was visually indistinguishable from x?.

Figure 3 compares the performance of the method of section 3 (labeled “DR”) with the performance of the well
known Chambolle-Pock method [9] (labeled “CP”). Chambolle-Pock minimizes f (x)+g(Ax), where f and g are
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proper closed convex functions, via the iteration

x̄k = proxt f (x
k−1− tAT zk−1),

z̄k = proxsg∗(z
k−1 + sA(2x̄k− xk−1)),

(xk,zk) = ρ(x̄k, z̄k)+(1−ρ)(xk−1,zk−1).

Here s and t are step sizes, and ρ ∈ (0,2) is an overrelaxation parameter. (This overrelaxed version of Chambolle-
Pock is presented in [14].) The step sizes s and t are required by convergence proofs to satisfy st‖A‖2 ≤ 1
[14], and we choose them so that st‖A‖2 = 1. We precompute ‖A‖ using power iteration. When solving (23) by
Chambolle-Pock, we take

A =

[
K
D

]
and

f (x) = 0, g(y1,y2) = φf(y1−b)+ γ‖y2‖iso

for all x,y1,y2. One of the main advantages of Chambolle-Pock is that it requires only applying A and AT (at each
iteration), and never requires solving a linear system involving A. It is therefore very well suited to exploit the
structure in the Nagy-O’Leary model.

As shown in figure 3, in this example the method of section 3 converges in fewer iterations than the Chambolle-
Pock method. Moreover, the time per iteration is nearly the same for both methods: 0.19 seconds for Chambolle-Pock
compared to 0.20 seconds for the method of section 3. In this experiment, close to optimal fixed step sizes and
overrelaxation parameters for both methods were chosen by trial and error. (In particular, the Chambolle-Pock step
sizes were not taken to be equal.)

5.2 Motion deblurring

In this section we combine our approach to spatially variant deblurring with the motion segmentation algorithm of
[8]. The algorithm presented in [8] segments out a motion-blurred region from an otherwise sharp input image and
estimates a motion blur kernel for this region, but does not compute a deblurred image.

A blurry image (of size 367 by 600) is shown in figure 4a, and a segmentation of this image computed using the
code provided by [8] is shown in figure 5a.

The algorithm of [8] estimated a horizontal motion of 6 pixels during the time the camera shutter was open,
but a slightly better image reconstruction was obtained using the motion blur kernel (1/7)

[
1 1 1 1 1 1 1

]
, which

corresponds to a horizontal motion of 7 pixels.
We use the Nagy-O’Leary model (16) with P = 2. The matrix K1 performs a convolution with the 7 pixel

motion blur kernel given above, and K2 is the identity matrix (we assume negligible blur for the background region).
The matrix U1 zeros out background pixels without altering foreground intensity values, while the matrix U2 zeros
out foreground pixels without altering background intensity values. We first zero pad the blurry image to have size
373 by 606, then compute a deblurred image by solving (23) using the method of section 3. (We deblur each color
channel of the blurry image separately, to obtain a restored color image.) We use a quadratic data fidelity function φf.
The discrete gradient operator D is defined as in section 5.1. The parameter γ is chosen to give a visually appealing
image reconstruction. Once a deblurred image is computed by solving (23), the inpainted boundary is discarded,
yielding a restored image of size 367 by 600. (Because K2 is the identity, this effort to handle boundary conditions
correctly is actually unnecessary in this example.)

When solving (23), we ran the primal-dual Douglas-Rachford method discussed in section 2 for 250 iterations.
We also solved problem (23) using the Chambolle-Pock algorithm, as described in section 5.1, but taking g(y1,y2) =
(1/2)‖y1−b‖2 + γ‖y2‖iso. The step sizes and overrelaxation parameters for both methods were set to the same
values used in section 5.1. In figure 5b, the quantity (Fk−F?)/F? is plotted against the iteration number k. Here
Fk is the primal objective function value at iteration k, and F? is a nearly optimal primal objective function value,
which was computed by running the method of section 3 for 10,000 iterations. The time per iteration was 0.23
seconds for both methods.

The deblurred image is shown in figure 4b. When we zoom in, the letters on the motorcycle in the restored
image are nearly legible now, and appear to say “racing”.
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(a) Blurry image. (b) Restored image.

Fig. 4 Result for the experiment in section 5.2.

(a) Segmentation.
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(b) Convergence plot.

Fig. 5 Segmentation and convergence plot for the experiment in section 5.2. The solid line shows the convergence of the primal-dual
Douglas-Rachford method, and the dashed line shows the convergence of the Chambolle-Pock algorithm.

5.3 Blur due to camera shake

In this section we use the method of section 4, based on the Efficient Filter Flow model, to deblur an 800 by 800
color image which is blurry due to camera shake. The image is taken from the benchmark dataset [42] which
provides ground truth spatially variant blur kernels for real-world blurred images. (The benchmark dataset blur
kernels were obtained by precisely measuring the camera trajectory and rotation as the images were captured.) We
use the Efficient Filter Flow model (19) with P = 16, partitioning an image into a 4 by 4 grid of subimages. The
matrix Up zeros out components away from the pth subimage, as in section 5.1 (but now with P = 16). The blurry
image is scaled so that RGB values are between 0 and 1 and each color channel is deblurred separately by solving
problem (20). The penalty function φr in equation (20) is taken to be the L1-norm, φc is identically zero, and D is
the analysis operator for a curvelet tight frame [43]. The parameter γ was chosen to give a visually appealing image
reconstruction. Because our method for the Efficient Filter Flow model assumes periodic boundary conditions, each
color channel b ∈ R800×800 in the blurry image is first extended to an (approximately) periodic image b̃ ∈ R816×816

by solving

minimize
x∈R816×816

1
2
‖D̃x‖2 (25)

subject to xi+8, j+8 = bi, j for all 1≤ i≤ 800,1≤ j ≤ 800,

where D̃ is a discrete gradient operator using periodic boundary conditions (see equation (24)). Problem (25) is a
standard linear algebra problem that can be solved extremely efficiently due to the fact that D̃ is diagonalized by the
discrete Fourier basis (so linear systems of equations involving D̃ can be solved using the fast Fourier transform).
Once a deblurred image is computed by solving (20), the artificial boundary is discarded, yielding a restored image
of size 800 by 800.
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(a) Blurry image. (b) Restored image.

Fig. 6 Result for the experiment in section 5.3.

For comparison, we solve the same deblurring problem using the Chambolle-Pock algorithm. When solving
(20) with the Chambolle-Pock algorithm, a standard approach would be to take

A =

[
K
D

]
and

f (x) = 0, g(y1,y2) =
1
2
‖y1−b‖2 + γ‖y2‖1

for all x,y1,y2. Here K is given by equation (19). To satisfy the Chambolle-Pock step size restriction, we require
an upper bound on the norm of A. In the standard approach, the norm of A can be estimated using ‖A‖ ≤√
‖K‖2 +‖D‖2, and the norm of K can be estimated using

‖K‖ ≤
P

∑
p=1
‖Kp‖‖Up‖. (26)

The norms of the matrices Kp and Up are known exactly because each Kp is diagonalized by the discrete Fourier
basis, and each Up is diagonal. This bound on ‖A‖ might be overly conservative, however, which can lead to slow
convergence of the Chambolle-Pock algorithm. This is particularly a problem for large values of P.

A better way to apply the Chambolle-Pock algorithm is to make use of the dissection of K which is presented in
section 4. In this “dissection” approach, we take A, f , and g as in equations (21). The prox-operator of g can be
evaluated efficiently using the method presented in section 4. The dissection approach has the advantage that the
norm of A is known exactly, because AT A = ∑

P
p=1 UT

p Up +DT D is diagonal. (Note that DT D = λ I, because D is a
tight frame analysis operator. For the curvelet tight frame used in this experiment, λ = 1.)

The blurry and deblurred images are shown in figure 6. Figure 7 shows plots of objective function value
versus iteration for the method presented in section 4 (using the Douglas-Rachford algorithm), as well as for the
Chambolle-Pock algorithm (both the standard and the “dissection” approaches). The time per iteration was 3.23
seconds for the standard Chambolle-Pock implementation, 3.33 seconds for Chambolle-Pock with dissection, and
3.36 seconds for Douglas-Rachford. The step sizes s and t are chosen to satisfy the Chambolle-Pock step size
restriction st‖A‖2 ≤ 1. In this experiment, close to optimal fixed step sizes and overrelaxation parameters for both
methods were chosen by trial and error. In particular, the Chambolle-Pock step sizes were not taken to be equal.

An advantage of the Douglas-Rachford method is that there is no need to estimate the norm of the matrix A.
As seen in figure 7, this can lead to faster convergence than a standard implementation of the Chambolle-Pock
algorithm using the bound (26). Figure 7 also shows that the dissection of K presented in section 4 allows for an
improved Chambolle-Pock implementation, with faster convergence because the norm of A is known exactly. There
is no need to use an expensive iterative method such as power iteration to compute the norm of A.
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Fig. 7 Objective function value versus iteration for the experiment in section 5.3. The solid line shows the convergence of the primal-dual
Douglas-Rachford method, and the dashed lines show the convergence of the Chambolle-Pock method both with and without operator dissection.

6 Conclusion

Beginning with [38] over 20 years ago, a substantial literature has been devoted to non-blind TV image deblurring
under the assumption of spatially invariant blur. In this paper, we have extended this line of research by presenting
efficient methods for TV or tight frame regularized deblurring using two fundamental models of spatially variant
blur: the classical Nagy-O’Leary model and the related Efficient Filter Flow model. In the case of the Nagy-O’Leary
model, our method requires that the data fidelity function φf in problem (1) is a separable sum of functions with
inexpensive proximal operators. This includes most standard data fidelity functions such as the squared L2 norm,
the L1 norm, and the Huber penalty. In the case of the Efficient Filter Flow model, our method requires that φf is
the squared L2 norm. Both methods can handle TV and tight frame regularization, as well as constraints such as
box constraints on the recovered image x.

The Nagy-O’Leary model and the Efficient Filter Flow model both express a spatially variant blur operator as a
sum of P terms, each term involving a spatially invariant blur operator. For the non-blind deblurring algorithms
presented in this paper, the computational cost is dominated by the cost of computing order P fast Fourier transforms
at each iteration. The cost per iteration is O(PN2 logN) for N by N images. Thus, we can solve (1), for the two
spatially variant blur models, with an efficiency that is comparable with the efficiency of FFT-based methods that
assume a spatially invariant blur model. In the case where P = 1, the methods presented in this paper reduce to
state of the art proximal algorithms for spatially invariant TV or tight frame regularized deblurring (see [33] for
example).

A recurring theme of research into algorithms for large scale convex optimization has been the discovery that in
many applications, with appropriate splitting techniques, implicit Douglas-Rachford-based methods (including
ADMM) can be implemented with the same cost per iteration as simpler methods such as the Chambolle-Pock
algorithm. We have shown this to be the case for spatially variant TV or tight frame deblurring with the Nagy-
O’Leary and Efficient Filter Flow blur models. Douglas-Rachford-based methods have the advantage that there is
no step size restriction, and so it is unnecessary to estimate operator norms. Moreover, in some cases it may be
easier to achieve high accuracy using the Douglas-Rachford method, as suggested by the experiments in sections 5.1
and 5.2. As demonstrated in the experiment in section 5.3, the operator “dissections” presented in sections 3 and 4
are useful even when using the Chambolle-Pock algorithm, because with this approach exact analytic formulas are
available for the operator norms appearing in the Chambolle-Pock step size restriction.

The experiment in section 5.2 gives an example where the methods of this paper can be combined with a motion
segmentation algorithm to obtain a blind motion deblurring algorithm. In future work, it would be interesting to
explore combining the non-blind algorithms presented here with successful approaches to blind deblurring, such
as recent algorithms that restore images degraded by camera shake. Along these lines, the paper [23] presents a
blind deblurring algorithm that combines the structural constraints of a Projective Motion Path Blur (PMPB) model
with the efficiency of the Efficient Filter Flow model, reaping the benefits of both frameworks. This demonstrates
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that PMPB models, a subject of much current interest, can be usefully combined with classical models of spatially
variant blur, where our methods are applicable. Another goal would be to develop proximal algorithms that work
with PMPB models directly.

Many blind deblurring algorithms, including [23], use a non-convex regularizer based on the statistics of natural
images, rather than using TV regularization. Another future research direction is to adapt the proximal algorithms
given in this paper, to handle these non-convex regularizers.
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