
SIAM J. MATRIX ANAL. APPL. c© 2015 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 1691–1717

DECOMPOSITION METHODS FOR SPARSE
MATRIX NEARNESS PROBLEMS∗

YIFAN SUN† AND LIEVEN VANDENBERGHE†

Abstract. We discuss three types of sparse matrix nearness problems: given a sparse symmetric
matrix, find the matrix with the same sparsity pattern that is closest to it in Frobenius norm and
(1) is positive semidefinite, (2) has a positive semidefinite completion, or (3) has a Euclidean distance
matrix completion. Several proximal splitting and decomposition algorithms for these problems
are presented and their performance is compared on a set of test problems. A key feature of the
methods is that they involve a series of projections on small dense positive semidefinite or Euclidean
distance matrix cones, corresponding to the cliques in a triangulation of the sparsity graph. The
methods discussed include the dual block coordinate ascent algorithm (or Dykstra’s method), the
dual projected gradient and accelerated projected gradient algorithms, and a primal and a dual
application of the Douglas–Rachford splitting algorithm.

Key words. positive semidefinite completion, Euclidean distance matrices, chordal graphs,
convex optimization, first order methods

AMS subject classifications. 65F50, 90C22, 90C25

DOI. 10.1137/15M1011020

1. Introduction. We discuss matrix optimization problems of the form

(1.1)
minimize ‖X − C‖2F
subject to X ∈ S,

where the variable X is a symmetric p × p matrix with a given sparsity pattern E,
and C is a given symmetric matrix with the same sparsity pattern as X . We focus
on the following three choices for the constraint set S.

I. S is the set of sparse positive semidefinite (PSD) matrices with sparsity pat-
tern E:

S = Sp
E ∩ Sp

+.

Here Sp
E denotes the set of symmetric p × p matrices with sparsity pattern

E. The set Sp
+ = {X ∈ Sp | X � 0} is the set of p × p PSD matrices. In

this problem we approximate a matrix C by the nearest PSD matrix with
sparsity pattern E.

II. S is the set of sparse matrices with sparsity pattern E that have a PSD
completion:

S = ΠE(S
p
+) = {ΠE(S) | S ∈ Sp

+}.
Here, ΠE(S) denotes Euclidean projection on Sp

E . In applications of this
problem, the nonzeros in C are observations of a subset of the entries of a
PSD matrix. The PSD matrices that are closest to C in a least squares sense
are the PSD completions of X , the solution of the problem (1.1) using this
choice of S. These completions S are dense matrices in general and the sparse

∗Received by the editors March 4, 2015; accepted for publication (in revised form) by M. P.
Friedlander September 29, 2015; published electronically December 8, 2015.

http://www.siam.org/journals/simax/36-4/M101102.html
†Electrical Engineering Department, UCLA, Los Angeles, CA 90095 (ysun01@ucla.edu,

vandenbe@ucla.edu). The research of the first author was partially suppprted by NSF Graduate
Research Fellowship. The research of the second author was partially supported by NSF grants
DMS-1115963 and ECCS-1128817.

1691

http://www.siam.org/journals/simax/36-4/M101102.html
mailto:ysun01@ucla.edu
mailto:vandenbe@ucla.edu


1692 YIFAN SUN AND LIEVEN VANDENBERGHE

matrix X is useful as a compact representation from which a full completion
can be computed if needed.

III. S is the set of sparse matrices with sparsity pattern E that have a Euclidean
distance matrix (EDM) completion:

S = ΠE(D
p).

Here, Dp is the set of p × p EDMs, i.e., matrices with entries that can be
expressed as squared pairwise Euclidean distances between pairs of points.
The interpretation of this problem is similar to problem II, but with the
EDM property replacing positive semidefiniteness.

Note that the assumption that C is sparse can be made without loss of generality. If
C is dense or not symmetric, it can be replaced by (1/2)ΠE(C +CT ) in the objective
function of (1.1).

We also discuss the following generalization of problems II and III:

(1.2)
minimize ‖ΠE(X)− C‖2F
subject to X ∈ S

with variable X ∈ Sp
E′ where E′ is an extension of E (i.e., the nonzero positions in

E are a subset of the nonzeros in E′) and S = ΠE′(Sp
+) or S = ΠE′(Dp). In the

extended problem (1.2) we approximate C by a sparse matrix ΠE(X) that has a PSD
or EDM completion, and we compute some of the entries (indexed by E′ \ E) of a
completion of ΠE(X).

The techniques presented in the paper are easily extended to similar problems with
simple additional constraints on X (for example, problems I and II with a constraint
diag(X) = 1). The methods we discuss for problem (1.2) also apply to weighted
Frobenius norms, i.e., the minimization of functions

∑
{i,j}∈E′ Wij(Xij − Cij)

2 with
nonnegative weights Wij .

1.1. Matrix nearness problems. Problem (1.1) belongs to the general class of
matrix nearness problems [38]. In a matrix nearness problem one projects a given ma-
trix on the set of matrices that satisfy a certain property. Problems of this type arise
in a wide range of applications, including statistics, machine learning, finance, sig-
nal processing, control, and computational biology, and can take a variety of different
forms. The matrix C may be symmetric or nonsymmetric, square or rectangular. The
constraint set may be convex or not, and the objective function may be a Frobenius
norm or another norm, or a nonmetric distance function. In this paper, we restrict our
attention to problems involving symmetric matrix variables and convex constraints.

Matrix nearness problems with PSD and EDM constraints are among the most
widely studied types of matrix nearness problems. The nearest PSD matrix and near-
est correlation matrix problems have applications in statistics, finance, and biology,
and are discussed in [2, 39, 42, 47, 48, 52]. The nearest EDM problem is studied in
multidimensional scaling techniques (see [66] for an overview), and is used in chem-
istry and molecular biology to compute molecular structure [6, 29, 59, 64], and for
node localization in sensor networks [3, 40].

These applications all involve fairly simple convex sets and, in principle, they
can be solved by general-purpose convex optimization algorithms. However, due to
the large number of variables (order p2 for dense matrix variables) the complexity
of general-purpose methods grows rapidly with the matrix dimension p. Research



SPARSE MATRIX NEARNESS PROBLEMS 1693

on matrix nearness problems has therefore concentrated on specialized first-order
algorithms, or, when higher accuracy is required, quasi-Newton algorithms. Examples
of such first-order methods are alternating projection methods [2, 28, 29, 39], dual
first-order methods [17, 36], augmented Lagrangian methods [49], and alternating
direction methods [16]. Algorithms based on quasi-Newton methods in combination
with dual reformulations are described in [42, 47, 51].

In comparison, algorithms tailored to sparse matrix nearness problems, i.e., prob-
lems with an additional sparsity constraint, have received less attention in the litera-
ture. Sparsity constraints arise naturally in large matrix nearness problems and can
have a different meaning depending on the application and the interpretation of the
data matrix C. In a first type of problem, we are interested in recovering a sparse ma-
trix with the properties represented as a set S, from a noisy measurement or estimate
of its nonzero elements. Most applications of problem I are of this type. A typical
example is the estimation of a sparse covariance or inverse covariance matrix from
estimates of its nonzero entries. In other situations, the sparse matrix C represents
a noisy estimate of a subset of the entries of a dense matrix, which is known to have
the structural properties represented by a set Ŝ. In this case the matrices in Ŝ that
best fit the measurements are dense. When the matrix dimensions are large it is of
interest to avoid working with a dense matrix variable and represent it implicitly as a
sparse matrix, with the added constraint that the matrix has a completion with the
desired properties. The sparse partial matrix variable is therefore constrained to lie
in the set S = ΠE(Ŝ). Problems II and III are motivated by applications of this kind,
with Ŝ the set of PSD matrices or EDMs, respectively. In some applications, partial
knowledge of the solution (in the form of a sparse completable matrix) is sufficient.
If the full dense matrix is desired, it can be constructed from the partial solution by
matrix completion algorithms [7, 31].

Most algorithms for sparse matrix nearness problems in the literature are exten-
sions of algorithms for dense matrix nearness problems. In problem I one can use a
dense matrix variable and impose the sparsity constraint by adding linear equality
constraints. Similarly, problems II and III can be solved by using a dense matrix
variable and masking irrelevant entries in the objective [4, 5, 39, 49, 50]. Extensions
of this type are still computationally expensive. In particular, they involve eigenvalue
decompositions of order p, used for projecting on the set of PSD matrices or the set of
EDMs. In contrast, the approach taken in this paper is to avoid eigenvalue decompo-
sitions of order p and only use eigenvalue decompositions of smaller dense matrices.
By applying decomposition techniques for cones of sparse matrices with chordal struc-
ture, we write the three types of sparse matrix cones in terms of small dense PSD or
EDM cones [1, 7, 30, 31]. In combination with first-order methods, these chordal de-
composition techniques allow us to solve the matrix nearness problems without using
eigenvalue decompositions of order p.

1.2. Outline and notation. The rest of the paper is organized as follows. In
section 2, we discuss some fundamental geometrical properties of cones with partially
separable structure. In section 3 we present decomposition results for the three sparse
matrix nearness problems. We formulate the problems as Euclidean projections on
convex cones with partially separable structure. Section 4 presents two types of dual
algorithms that apply when E is a chordal sparsity pattern. In section 5 we discuss
extensions that apply when the pattern E is not necessarily chordal. These extensions
also handle the more general problem (1.2). Section 6 gives numerical results with
test problems that range from size p ∼ 1000 to 100000.



1694 YIFAN SUN AND LIEVEN VANDENBERGHE

Notation. If β is an index set (ordered subset of {1, . . . , p}), we define Pβ as the
|β| × p-matrix

(Pβ)ij =

{
1, j = β(i),

0, otherwise.

Multiplying a vector with Pβ selects the subvector indexed by β:

Pβx = (xβ(1), xβ(2), . . . , xβ(r)),

where β has r elements, denoted β(1), β(2), . . . , β(r). Similarly, the matrix Pβ can be
used to select a principal submatrix of a p× p matrix:

(PβXPT
β )ij = Xβ(i)β(j).

The multiplication x = PT
β y of a |β|-vector y with the transpose of Pβ gives a p-vector

x with Pβx = y and xj = 0 for j �∈ β. The operation X = PT
β Y Pβ creates a p × p

matrix X from an r× r matrix, with PβXPT
β = Y and Xij = 0 if i �∈ β or j �∈ β. For

example, if p = 5 and β = {1, 3, 4}, then

Pβ =

⎡
⎣ 1 0 0 0 0

0 0 1 0 0
0 0 0 1 0

⎤
⎦ , PT

β y =

⎡
⎢⎢⎢⎢⎣
y1
0
y2
y3
0

⎤
⎥⎥⎥⎥⎦ , PT

β Y Pβ =

⎡
⎢⎢⎢⎢⎣
Y11 0 Y12 Y13 0
0 0 0 0 0
Y21 0 Y22 Y33 0
Y31 0 Y32 Y33 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

We use the notation δS(x) for the indicator function of a set S:

δS(x) =

{
0, x ∈ S,
+∞, otherwise.

The notation ΠS is used for the Euclidean projection operator on a closed set S.
2. Partially separable convex cones. In this section we discuss the standard

convex optimization form to which the matrix nearness problems will be reduced and
work out some basic results from convex duality.

2.1. Projection on partially separable cone. The general problem we con-
sider is

(2.1)
minimize ‖Pηx− a‖2
subject to Pγk

x ∈ Ck, k = 1, . . . , l,

where ‖ · ‖ denotes the Euclidean norm. The optimization variable is an n-vector x.
The sets η, γ1, . . . , γl are index sets (ordered subsets of {1, 2, . . . , n}) and Ck, k =
1, . . . , l, are closed convex cones. We will use the notation

K = {x ∈ R
n | Pγk

x ∈ Ck, k = 1, . . . , l}
for the feasible set in (2.1). This is a closed convex cone and equal to the intersection

K =
⋂l

k=1 Kk of the closed convex cones

Kk = {x ∈ R
n | Pγk

x ∈ Ck}, k = 1, . . . , l.

The objective in (2.1) is the squared distance between the subvector Pηx = xη and a



SPARSE MATRIX NEARNESS PROBLEMS 1695

given |η|-vector a:

‖Pηx− a‖2 =
|η|∑
k=1

(xη(k) − ak)
2.

An important special case will be η = {1, 2, . . . , n}. Then Pη = I and the problem
has a unique solution x�, the projection of a on the closed convex cone K.

When η �= {1, 2, . . . , n} the problem is to project a on PηK, the projection of K on
the subspace of vectors with support η. In order to ensure that PηK is a closed set, we
assume that Pηx = 0, x ∈ K, only holds for x = 0. This assumption is satisfied in the
applications discussed in this paper (section 3). If the assumption holds, closedness of
PηK follows from Theorem 9.1 in [53], which states that if K is a closed convex cone
and has a trivial intersection with the nullspace of A, then AK is a closed convex cone.
Since PηK is closed, problem (2.1) has a unique optimal solution for the subvector
Pηx

�. However, the components of x� outside η are not necessarily unique.
In the problems of interest the cones Ck will be subspaces or closed convex cones

with nonempty interior. We will assume that the problem (2.1) is strictly feasible,
i.e., there exists an x̄ with Pγk

x̄ ∈ riCk for k = 1, . . . , l, where ri stands for relative
interior. This assumption is satisfied in the applications we discuss, and will be needed
in section 2.2.

A key property of problem (2.1) is the partial separability of the cone K, i.e., the

indicator function
∑l

k=1 δCk
(Pγk

x) of K is a partially separable function [30]. Partial
separability with small index sets (|γk| 	 n) is a very useful type of structure for
decomposition algorithms in conic optimization [58]. It is crucial to the efficiency of
the algorithms presented in this paper and allows us to solve problems of the form (2.1)
via a sequence of projections on the lower-dimensional cones Ck.

2.2. Conic duality. The Lagrange dual of problem (2.1) is

(2.2)

maximize −‖s+ a‖2 + ‖a‖2

subject to PT
η s =

l∑
k=1

PT
γk
zk,

zk ∈ C∗
k , k = 1, . . . , l.

The variables are s ∈ R
|η| and multipliers zk ∈ R

|γk| for the l constraints in (2.1). The
sets C∗

k = {zk | sTk zk ≥ 0 ∀sk ∈ Ck} are the dual cones of Ck. If Ck is a subspace, then
C∗
k is the orthogonal complement of the subspace. Projections on C∗

k can be computed
via projections on Ck and vice versa, via the formulas

y = ΠCk
(y) + Π−C∗

k
(y) = ΠCk

(y)−ΠC∗
k
(−y).

(This is a special case, with f = δCk
, of the Moreau decomposition y = proxf (y) +

proxf∗(y), which relates the proximal operators of a function f and its conjugate [43].)

The variable s in (2.2) can be eliminated by noting that (PT
η s)i = 0 for i �∈ η, and

therefore ‖s+ a‖ = ‖PT
η (s+ a)‖. This gives an equivalent form of the dual problem

(2.3)

maximize −‖
l∑

k=1

PT
γk
zk + PT

η a‖2 + ‖a‖2

subject to

(
l∑

k=1

PT
γk
zk

)
i

= 0, i �∈ η,

zk ∈ C∗
k , k = 1, . . . , l.



1696 YIFAN SUN AND LIEVEN VANDENBERGHE

K

−K∗

x�

a

−s�

Fig. 1. Projection on a convex cone K and on the polar cone −K∗.

The dual problem has a simple geometric interpretation. First assume that η =
{1, 2, . . . , n} and Pη = I. Recall our assumption that there exists a point x̄ in the
intersection of the sets riKk, k = 1, . . . , l. The assumption implies that the dual cone
of K is K∗ = K∗

1 + · · ·+K∗
l [53, Corollary 16.4.2]. Here K∗

k = {PT
γk
zk | zk ∈ C∗

k}, so

K∗ =

{
l∑

k=1

PT
γk
zk | zk ∈ C∗

k , k = 1, . . . , l

}
.

The solution s of problem (2.2) is the projection of −a on K∗. (Equivalently, −s is the
projection of a on the polar cone −K∗.) The solutions x� and s� of the two projection
problems

minimize ‖x− a‖2
subject to x ∈ K,

maximize −‖s+ a‖2 + ‖a‖2
subject to s ∈ K∗

are unique and related by the optimality conditions

a = x� − s�, x� ∈ K, s� ∈ K∗, s�Tx� = 0.

This shows one can solve either the primal or the dual problem and compute the other
solution from the relation a = x� − s�. The geometry is illustrated in Figure 1. Note
that although x� and s� are unique, the dual problem (2.3) is not strictly convex in the
variables z1, . . . , zl, so the optimal solution of this problem is not necessarily unique.
(In the dual decomposition algorithms discussed in section 4, we also use the relation
a = x − s to recover an approximate primal solution x = s + a from a nonoptimal
dual feasible s. Clearly, convergence bounds on s− s� also apply to x− x� = s− s�.)

When η �= {1, 2, . . . , n}, we can interpret the problem (2.2) in a similar way.
Its solution s� is the projection of −a on the dual cone of PηK, which is given by
(PηK)∗ = {s | PT

η s ∈ K∗}. The optimality conditions that relate the two projections
are

a = Pηx
� − s�, x� ∈ K, PT

η s� ∈ K∗, s�TPηx
� = 0.

Note that here the primal and dual approaches are not completely equivalent. From
the solution x� of the primal problem (2.1) one obtains the dual solution s� = Pηx

�−a.
However from the dual solution s� one only finds a partial primal solution Pηx

� and
not the values x�

i for i �∈ η.



SPARSE MATRIX NEARNESS PROBLEMS 1697

3. Decomposition of sparse matrix nearness problems. In sections 3.2–
3.4 we review three fundamental decomposition results for classes of matrices with
chordal sparsity patterns, and apply them in order to reformulate the matrix nearness
problems listed in the introduction in the standard forms (2.1) and (2.2). We first
give some background on chordal sparsity.

3.1. Chordal sparsity patterns. A symmetric sparsity pattern E of order p
is defined as a set of index pairs

E ⊆ {{i, j} | i, j ∈ {1, . . . , p}, i �= j}.
A symmetric p × p matrix X is said to have sparsity pattern E if Xij = 0 for all
{i, j} �∈ E and i �= j. The diagonal entries Xii and the off-diagonal entries Xij for
{i, j} ∈ E may or may not be zero. The set of symmetric p×p matrices with sparsity
pattern E is denoted Sp

E .
With every sparsity pattern E we can associate an undirected graph GE with

vertex set {1, . . . , p} and edge set E. A clique (also called maximal clique) of a graph
GE is a maximal set of vertices that are all pairwise adjacent. A clique β in GE

corresponds to a dense principal submatrix Xββ of a matrix X ∈ Sp
E . (Here, “dense”

means that all entries may be nonzero.)
The sparsity pattern E is chordal if the graph GE is chordal, i.e., all cycles in GE

with more than three vertices have a chord (an edge between nonconsecutive vertices
in the cycle). Chordal graphs are important in linear algebra because every positive
definite matrixX with a chordal sparsity pattern has a zero-fill Cholesky factorization,
i.e., a factorization PσXPT

σ = LLT , where Pσ is a permutation matrix, L is lower
triangular, and PT

σ (L+LT )Pσ ∈ Sp
E [54]. The reordering by the permutation matrix

Pσ is called a perfect elimination ordering for E. A chordal graph with p vertices has
at most p cliques and they are easily identified from a perfect elimination ordering;
see [15] for a survey on chordal graphs.

A sparsity pattern E′ with E ⊂ E′ is called an extension of the sparsity pattern E.
The graph GE′ is the graph GE with additional edges E′ \E. Clearly, Sp

E ⊂ Sp
E′ . The

extension is a chordal extension if GE′ is a chordal graph. A chordal extension is also
called a triangulation. The problem of computing the minimum chordal extension
(i.e., with minimum |E′| − |E|) is NP-complete [65]. The problem of computing a
minimal chordal extension, i.e., a chordal extension with the property that there
exists no chordal extension Ê ⊂ E′, is much more tractable and several algorithms
for it have been developed; see [35] for a survey. Chordal extensions can also be
computed from a fill-reducing ordering, such as the (approximate) minimum degree
reordering [23]. Although such extensions are not guaranteed to be minimal, they are
often smaller than extensions computed by minimal ordering algorithms.

It will be convenient to represent sparse or dense symmetric matrices as vectors.
For a dense matrix A ∈ Sp, we define vec(A) as the p(p+ 1)/2-vector containing the
elements of the lower-triangular part of A and with off-diagonal entries scaled by

√
2,

so that tr(AB) = vec(A)Tvec(B) for all A,B ∈ Sp. Similarily, for a sparse matrix
A ∈ Sp

E , we define vecE(A) as an (|E|+p)-vector containing the diagonal elements and
the lower-triangular elements Aij for {i, j} ∈ E, again with the off-diagonal elements
scaled by

√
2, so that tr(AB) = vecE(A)

TvecE(B) for all A,B ∈ Sp
E .

3.2. PSD matrices. We now consider the first problem from the introduction:
the projection of a sparse matrix A ∈ Sp

E on the set of PSD matrices in Sp
E ,

S = Sp
E ∩ Sp

+.



1698 YIFAN SUN AND LIEVEN VANDENBERGHE

This is a closed convex cone (for any E). The following theorem from [1, 30] provides
a characterization when the sparsity pattern is chordal.

Theorem 3.1. Let E′ be a chordal sparsity pattern of order p, with cliques βk,
k = 1, . . . ,m. A matrix S ∈ Sp

E′ is PSD if and only if it can be expressed as

S =

m∑
k=1

PT
βk
ZkPβk

with Zk � 0 for k = 1, . . . ,m.
When E′ is not chordal, the condition in the theorem is sufficient for positive

semidefiniteness of S, but not necessary.
Using Theorem 3.1, we can formulate the problem of projecting a matrix A ∈ Sp

E

on Sp
E ∩ Sp

+, for a general sparsity pattern E, as

(3.1)

minimize

∥∥∥∥∥
m∑

k=1

PT
βk
ZkPβk

−A

∥∥∥∥∥
2

F

subject to

(
m∑

k=1

PT
βk
ZkPβk

)
ij

= 0, {i, j} ∈ E′ \ E,

Zk � 0, k = 1, . . . ,m.

Here E′ is a chordal extension of E and β1, . . . , βm are the cliques of GE′ . The
variables Zk ∈ S|βk| are used to parameterize a general matrix S =

∑
k P

T
βk
ZkPβk

in

Sp
E′ ∩ Sp

+, according to Theorem 3.1. The equality constraints force the off-diagonal
elements Sij with {i, j} ∈ E′ \ E to be zero. If E is already chordal, we take E′ = E
and omit the equality constraints. The size of the optimization problem (3.1) depends
on the efficiency of the chordal extension: the sizes of the cliques of GE′ determine the
dimensions of the variables Zk and the amount of fill E′ \ E determines the number
of equality constraints. Note that the problem (3.1) is strictly feasible, since Zk = I,
k = 1, . . . ,m, is strictly feasible.

Problem (3.1) can be written in vector notation in the form (2.3). We define the
variables zk = vec(Zk), k = 1, . . . , l. We take l = m, n = p+|E′|, and a = −vecE(A).
The index sets η and γk are defined by imposing that the identities

(3.2) PηvecE′(X) = vecE(X), Pγk
vecE′(X) = vec(Pβk

XPT
βk
), k = 1, . . . , l,

hold for all X ∈ Sp
E′ . The cone C∗

k is the cone of dense |βk| × |βk| PSD matrices
converted to vectors:

C∗
k = {vec(U) | U ∈ S

|βk|
+ }, k = 1, . . . ,m.

For later purposes we note that the Euclidean projection on C∗
k can be computed

by an eigenvalue decomposition: if U ∈ S|βk| has eigenvalue decomposition U =∑
i λiqiq

T
i then ΠC∗

k
(vec(U)) =

∑
i max{λi, 0}vec(qiqTi ).

3.3. Matrices with PSD completions. Next we consider the projection of a
sparse matrix on the cone of sparse symmetric matrices that have a PSD completion.



SPARSE MATRIX NEARNESS PROBLEMS 1699

This set is the projection of the cone Sp
+ on Sp

E ,

ΠE(S
p
+) = {ΠE(X) | X ∈ Sp

+}.

The projection ΠE(S
p
+) is a closed convex cone, for the following reason. If ΠE(X) = 0

then the diagonal of X is zero. Therefore ΠE(X) = 0 and X ∈ Sp
+ imply X = 0. This

is a sufficient condition for the projection ΠE(S
p
+) to be closed [53, Theorem 9.1]; see

also [25, Theorem 3.1].
The following theorem is the dual counterpart of Theorem 3.1 and gives a char-

acterization of ΠE′(Sp
+) when the sparsity pattern E′ is chordal [31].

Theorem 3.2. Let E′ be a chordal sparsity pattern of order p, with cliques βk,
k = 1, . . . ,m. A matrix X ∈ Sp

E′ is in ΠE′(Sp
+) if and only if

Pβk
XPT

βk
� 0, k = 1, . . . ,m.

If E′ is not chordal, the condition in the theorem is necessary for X ∈ ΠE′(Sp
+)

but not sufficient.
Using Theorem 3.2, the problem of projecting a matrix B ∈ Sp

E on ΠE(S
p
+) can

be written as

(3.3)
minimize ‖ΠE(X)−B‖2F
subject to Pβk

XPT
βk

� 0, k = 1, . . . ,m.

The variable is X ∈ Sp
E′ , where E′ is a chordal extension of E, and β1, . . . , βm are

the cliques of E′. When E′ = E, the projection ΠE is the identity operator and we
replace ΠE(X) by X in the objective. We note that problem (3.3) is strictly feasible,
since X = I is strictly feasible.

Problem (3.3) can be put in the form (2.1) with variable x = vecE′(X). The
problem dimensions are n = p + |E′| and l = m, and the vector a = vecE(B). The
index sets η, γ1, . . . , γl are defined as in the previous section. Since the dense PSD
cone is self-dual, the cones Ck are equal to C∗

k .
If B = −A, problems (3.1) and (3.3) are duals, and special cases of the primal

and dual pair (2.1) and (2.2). The optimal solutions S� =
∑

k P
T
βk
Z�
kPβk

of (3.1) and
X� of (3.3) are related as

S� = ΠE(X
�) +A.

This shows that if E′ = E, the two problems are equivalent (with B = −A), since
S� = X�+A. When E ⊂ E′, one can compute the solution S� from the solution X�.
However, from S�, one only obtains a partial solution ΠE(X

�) of (3.3).

3.4. Matrices with an EDM completion. A matrix X ∈ Sp is an EDM if its
elements can be expressed as Xij = ‖ui−uj‖2 for some set of points uk, k = 1, . . . , p.
Schoenberg’s condition [55] states that X is an EDM if and only if

(3.4) diag(X) = 0 and cTXc ≤ 0 for all c with 1T c = 0,

where 1 represents the p-vector with all elements equal to one. From this it is clear
that the set of EDMs is the intersection of closed cones, and therefore is a closed



1700 YIFAN SUN AND LIEVEN VANDENBERGHE

convex cone. The notation Dp will be used for the set of p× p EDMs, and Dp
0 for the

matrices that satisfy only the second condition in (3.4):

Dp
0 = {X ∈ Sp | cTXc ≤ 0 for all c with 1T c = 0}
= {X ∈ Sp | V TXV � 0},

where V is any p × (p − 1) matrix whose columns span the orthogonal complement
of the vector 1 in R

p. The EDMs are the matrices in Dp
0 with zero diagonal. The

cones Dp
0 and Dp are closed, convex cones, with two noticeable differences. The

cone Dp has empty interior in Sp, while the interior of Dp
0 is nonempty (it contains

the matrix X = −I). Additionally, Dp is pointed (since it contains only nonnegative
matrices), while Dp

0 is not, as it contains the subspace {a1T + 1aT | a ∈ R
p}.

A sparse matrix X ∈ Sp
E has an EDM completion if it is the projection X =

ΠE(D) of some EDM D. The cone

ΠE(D
p) = {ΠE(X) | X ∈ Dp}

is a closed convex cone, as can be seen as follows. First suppose the sparsity graph GE

is connected. If ΠE(X) = 0 for some X ∈ Dp, with Xij = ‖ui−uj‖2 for i, j = 1, . . . , p,
then ui = uj for all {i, j} ∈ E. If the graph is connected, this implies that the position
vectors ui are all equal, i.e., X = 0. Hence ΠE(X) = 0, X ∈ Dp only holds if X = 0.
It then follows from [53, Theorem 9.1] that ΠE(D

p) is closed. Next, assume GE has d
connected components, with vertex sets α1, . . . , αd ⊂ {1, 2, . . . , p}. For k = 1, . . . , d,
let Ek = {{i, j} | {αk(i), αk(j)} ∈ E} be the edge sets of the connected components
of GE . Since for each k, the graph with vertex set {1, 2, . . . , |αk|} and edge set Ek is
connected, the sets ΠEk

(D|αk|) are all closed convex cones. Additionally, X ∈ ΠE(D
p)

if and only if X ∈ Sp
E and Xαkαk

∈ ΠEk
(D|αk|) for k = 1, . . . , d. Hence ΠE(D

p) is
the intersection of closed convex sets. This result is also given in [25, Theorem 3.2].

Bakonyi and Johnson have formulated a clique decomposition theorem for EDM
completions analogous to Theorem 3.2 for PSD completions [7].

Theorem 3.3. Let E′ be a chordal sparsity pattern of order p, with cliques βk,
k = 1, . . . ,m. A matrix X ∈ Sp

E′ is in ΠE′(Dp) if and only if

Pβk
XPT

βk
∈ D|βk|, k = 1, . . . ,m.

If E′ is not chordal, the condition in the theorem is necessary for X to be in
ΠE′(Dp) but not sufficient.

In combination with Schoenberg’s condition, this theorem allows us to formulate
the problem of projecting a matrix B ∈ Sp

E on ΠE(D
p):

minimize ‖ΠE(X)−B‖2F
subject to Pβk

XPT
βk

∈ D|βk|, k = 1, . . . ,m,

with variable X ∈ Sp
E′ , where E′ is a chordal extension of E, and β1, . . . , βm are the

cliques of E′. Equivalently, we can write the problem as

(3.5)

minimize ‖ΠE(X)−B‖2F
subject to Pβk

XPT
βk

∈ D
|βk|
0 , k = 1, . . . ,m,

diag(X) = 0.



SPARSE MATRIX NEARNESS PROBLEMS 1701

Problem (3.5) is strictly feasible. (For example, the matrix X = 11T − I is strictly

feasible.) We will use (3.5) because projections on D
|βk|
0 are simpler than projections

on D|βk|, as will be discussed shortly. Problem (3.5) can be written in vector form
as (2.1), with variable x = vecE′(X). Here, n = p+|E′|, a = vecE(B), and l = m+1.
The index sets η, γ1, . . . , γm are defined by the identity (3.2) for all X ∈ Sp

E′ . The
index set γm+1 is defined by

Pγm+1vecE′(X) = diag(X) ∀X ∈ Sp
E′ .

The cones Ck are defined as Ck = {vec(X) | X ∈ D
|βk|
0 }, k = 1, . . . ,m, and Cm+1 =

{0} ⊂ R
p.

Formulas for projecting on Dp
0 can be found in [28, 29, 34]. Let V be a p× (p− 1)

matrix with orthonormal columns that span the orthogonal complement of 1. An
example is the matrix

V =
1

p+
√
p

[
(1 +

√
p)1T

11T − (p+
√
p)I

]
.

Define e = (1/
√
p)1 ∈ R

p and Q = [ V e ]. In [29, 34] the projection ΠDp
0
(D) of a

matrix D ∈ Sp on Dp
0 is computed directly as the solution of

(3.6)
minimize ‖X −D‖2F
subject to V TXV � 0.

The solution is

ΠDp
0
(D) = Q

[
−ΠSp

+
(−V TDV ) V TDe

eTDv eTDe

]
QT ,

where −ΠSp
+
(−V TDV ) is the projection of V TDV on the negative semidefinite cone,

obtained by replacing the positive eigenvalues of V TDV by zero.
The method in [28] computes the projection indirectly, via the projection on the

dual cone of Dp
0 and the formula

(3.7) ΠDp
0
(D) = D −Π−(Dp

0)
∗(D).

The dual cone is (Dp
0)

∗ = {V ZV T | Z � 0}, so the projection of D on −(Dp
0)

∗ is the
solution of

minimize ‖V ZV T −D‖2F
subject to Z � 0.

The solution is Z = ΠSp−1
+

(V TDV ) and substituting in (3.7) gives the expression

ΠDp
0
(D) = D − VΠSp−1

+
(V TDV )V T .

4. Projection via dual decomposition. In this section we present algorithms
for the primal and dual problems (2.1) and (2.2) when η = {1, 2, . . . , n} and Pη = I.
The primal and dual problems are

(4.1)
minimize ‖x− a‖2
subject to Pγk

x ∈ Ck, k = 1, . . . , l,



1702 YIFAN SUN AND LIEVEN VANDENBERGHE

and

(4.2)
maximize −‖

l∑
k=1

PT
γk
zk + a‖2 + ‖a‖2

subject to zk ∈ C∗
k , k = 1, . . . , l.

As explained in the previous section, the three sparse matrix nearness problems can
be written in this form when E′ = E and E is a chordal sparsity pattern.

There is a rich literature on decomposition methods for computing the projection
on an intersection of closed convex sets via a sequence of projections on each set; see,
for example, [26, 33, 60, 61] and the books [12, 19]. We will discuss two approaches
based on duality. In the first approach (section 4.2) the gradient projection method
[46, section 7.2.1] and accelerated gradient projection method [9, 44, 45] are applied
to the dual problem. These algorithms can be viewed as applications of Tseng’s
alternating minimization method for minimizing a strongly convex function over the
intersection of convex sets [10, 60, 61]. The second approach (section 4.3) is the
dual block coordinate ascent method [62]. This method can be interpreted as a
generalization of Dykstra’s cyclic projection algorithm [18, 26] or Han’s successive
projection algorithm [32], and also as a dual block coordinate gradient projection
method [11]. In the next sections, we first review some duality properties that underlie
the two approaches, and then present the two algorithms.

4.1. Dual decomposition. For notational convenience, we introduce the nota-
tion

P =
[
PT
γ1

PT
γ2

· · · PT
γl

]T
, C = C1 × C2 × · · · × Cl, C∗ = C∗

1 × C∗
2 × · · · × C∗

l .

With this notation we can write (4.1) and (4.2) as

minimize ‖x− a‖2
subject to Px ∈ C,

maximize −‖PT z + a‖2 + ‖a‖2
subject to z ∈ C∗,

where x = (x1, x2, . . . , xl) and z = (z1, z2, . . . , zl). Note that the matrix PTP is
diagonal and that the jth diagonal entry is the number of index sets γk that contain
the index j:

(4.3) (PTP )jj = |{k | j ∈ γk}|, j = 1, . . . , n.

The dual decomposition methods we discuss in the next two sections are descent
methods for minimizing

(4.4) f(z) =
1

2
‖PT z + a‖2 =

1

2

∥∥∥∥∥
l∑

k=1

PT
γk
zk + a

∥∥∥∥∥
2

over the product cone C∗ = C∗
1 × C∗

2 × · · · × C∗
l . The methods generate a sequence of

dual feasible suboptimal points z. From a dual feasible z ∈ C∗, approximate primal
and dual projections x and s are computed as x = PT z + a and s = PT z. The
distances to optimality ‖x − x�‖ and ‖s − s�‖ can be bounded in terms of the dual
suboptimality f(z)− f(z�). To see this, we note that for any dual optimal solution
z� and any z ∈ C∗, we have

‖PT z − PT z�‖2 = ‖PT z + a‖2 − ‖PT z� + a‖2 − 2(Pz� + a)TPT (z − z�)

≤ ‖PT z + a‖2 − ‖PT z� + a‖2.



SPARSE MATRIX NEARNESS PROBLEMS 1703

The inequality holds because

∇f(z�)T (z − z�) = (PT z� + a)TPT (z − z�) ≥ 0

for all z ∈ C∗ if z� is optimal. Hence, if z is dual feasible and we define s = PT z,
x = PT z + a, then

1

2
‖x− x�‖2 =

1

2
‖s− s�‖2 =

1

2
‖PT (z − z�)‖2

≤ 1

2
‖PT z + a‖2 − 1

2
‖PT z� + a‖2

= f(z)− f(z�).

This simple inequality allows us to translate convergence results for the dual objective
function to convergence rates for the distances of the primal and dual solutions to
optimality.

4.2. Gradient projection method. The gradient projection method for min-
imizing the function (4.4) over C∗ uses the iteration

zi = ΠC∗
(
zi−1 − t∇f(zi−1)

)
(4.5)

= ΠC∗
(
zi−1 − tP (PT zi−1 + a)

)
,

where t is a positive step size. In terms of the block vectors,

zik = ΠC∗
k

⎛
⎝zi−1

k − tPγk

⎛
⎝ l∑

j=1

PT
γj
zi−1
j + a

⎞
⎠
⎞
⎠

= ΠC∗
k

⎛
⎝(1− t)zi−1

k − tPγk

⎛
⎝∑

j �=k

PT
γj
zi−1
j + a

⎞
⎠
⎞
⎠ .

On line 2 we use the fact that Pγk
PT
γk

= I. The projections on C∗
k can also be expressed

in terms of projections on Ck via the identity u = ΠCk
(u)−ΠC∗

k
(−u).

We use a fixed step size t = 1/L where L is the largest eigenvalue of the Hessian
∇2f(z) = PPT :

(4.6) L = λmax(PPT ) = λmax(P
TP ) = max

j=1,...,n
|{k | j ∈ γk}|.

(Recall that PTP is diagonal; see (4.3).) A standard convergence result states that
with this step size the sequence zi converges to a minimizer of f over C∗, even when the
minimizers are not unique [46, page 207]. Moreover the dual optimality gap decreases
as

f(zi)− f(z�) ≤ L

2i
‖z0 − z�‖2,

where z� is any optimal solution [9, Theorem 3.1]. From (4.5) it then follows that the
sequences xi = PT zi + a and si = PT zi converge to the projections x� and s� at a
rate O(1/

√
i):

‖xi − x�‖ = ‖si − s�‖ ≤
√

L

i
‖z0 − z�‖.



1704 YIFAN SUN AND LIEVEN VANDENBERGHE

The gradient projection algorithm is summarized in Algorithm 1. It is important
to keep in mind that the projection on line 4 reduces to l projections on C∗

k or Ck, and
can be computed in parallel:

zik = ΠC∗
k
(yik) = yik +ΠCk

(−yik), k = 1, . . . , l.

The stopping condition of the algorithm is left open for now and will be discussed at
the end of this section.

Algorithm 1. Gradient projection method for problems (4.1) and (4.2).

1 Initialize: Set t = 1/L with L defined in (4.6). Choose an initial

z0 = (z01 , . . . , z
0
l ), and take s0 = PT z0 and x0 = s0 + a.

2 for i = 1, 2, . . . until convergence do

3 Gradient step. Compute yi = zi−1 − tPxi−1.

4 Projection step. Compute zi = ΠC∗(yi), si = PT zi, and xi = si + a.

5 end for

An important advantage of the gradient projection method is the availability of
Nesterov-type accelerations [9, 44, 45, 63]. We will use Nesterov’s first accelerated
gradient projection method [44], which was later generalized to an accelerated proxi-
mal gradient method in [9] and is widely known under the acronym FISTA used in [9];
see also [63]. FISTA applies a gradient projection update after an extrapolation step:

zi = ΠC∗(vi − t∇f(vi)), where vi = zi−1 +
i− 2

i+ 1
(zi−1 − zi−2)

(with the assumption z−1 = z0, so the first iteration is the standard gradient projec-
tion update). The same step size 1/L is used as in the gradient projection method.
The accelerated gradient projection algorithm has the same complexity per iteration
as the basic algorithm.

As for the gradient projection method, the iterates zi of the fast gradient pro-
jection method can be shown to converge, even when the optimal solutions are not
unique. This is discussed in the recent paper [20]. The dual optimality gap decreases
as 1/i2:

f(zi)− f(z�) ≤ 2L

(i+ 1)2
‖z0 − z�‖2,

where z� is any optimal solution [9, Theorem 4.4]. By the same argument as used for
the gradient projection method, this leads to the following convergence result for the
sequences xi = PT zi + a and si = PT zi:

‖xi − x�‖ = ‖si − s�‖ ≤ 2
√
L

i+ 1

∥∥z0 − z�
∥∥ .

The O(1/i) convergence rate is an improvement over the O(1/
√
i) rate of the gradient

projection method. The method is summarized in Algorithm 2.
Various stopping criteria can be used for Algorithms 1 and 2. For example,

one can bound the error with which the iterates satisfy the optimality condition
z = ΠC∗(z − t∇f(z)) for problem (4.4), where t is any positive number. In the
gradient projection algorithm (Algorithm 1) we have

zi−1 = ΠC∗(zi−1 − t∇f(zi−1)) + ri



SPARSE MATRIX NEARNESS PROBLEMS 1705

Algorithm 2 . Fast gradient projection method for problems (4.1)

and (4.2).

1 Initialize: Set t = 1/L with L defined in (4.6). Choose an initial

z−1 = z0 = (z01 , . . . , z
0
l ), and take s0 = PT z0 and x0 = s0 + a.

2 for i = 1, 2, . . . until convergence do

3 Extrapolation step. Compute vi = zi−1 + i−2
i+1

(
zi−1 − zi−2

)
.

4 Gradient step. Compute yi = vi − tP (PT vi + a).

5 Projection step. Compute zi = ΠC∗(yi), si = PT zi, and xi = si + a.

6 end for

with ri = zi−1 − zi. In the fast gradient projection algorithm (Algorithm 2) we have

vi = ΠC∗(vi − t∇f(vi)) + ri

with ri = vi − zi. This suggests using stopping conditions

‖zi − zi−1‖
max{‖zi‖, 1} ≤ ε,

‖vi − zi‖
max{‖zi‖, 1} ≤ ε

for the proximal gradient method and the fast proximal gradient method, respectively.

4.3. Dual block coordinate ascent. Dykstra’s algorithm [18, 26], also known
as the successive projection algorithm [32], is a method for computing the Euclidean
projection of a point on the intersection of convex sets, via a cyclic sequence of pro-
jections on each set. It can be interpreted as a dual block coordinate ascent algo-
rithm [28, 32, 62].

Dykstra’s method has been applied to several types of dense matrix nearness
problems in the literature. The problem of finding the nearest EDM matrix to a
given matrix is discussed in [29] and [28, section 5.3]. The approach taken in these
papers is to formulate the projection on Dp as a projection on the intersection of Dp

0

and {X ∈ Sp | diag(X) = 0}. The nearest correlation matrix problem, i.e., projection
on the intersection of Sp

+ and {X ∈ Sp | diag(X) = 1}, is discussed in [37, 39, 42].
Following the dual interpretation of Dykstra’s method we apply block coordinate

ascent to the dual problem (4.2). If we fix zj for j �= k and minimize f(z) over zk
only, the problem reduces to

minimize

∥∥∥∥∥∥zk + Pγk

⎛
⎝∑

j �=k

PT
γj
zj + a

⎞
⎠
∥∥∥∥∥∥
2

subject to zk ∈ C∗
k .

This is a Euclidean projection of the point w = −Pγk
(
∑

j �=k P
T
γj
zj + a) on C∗

k . The
unique solution can be expressed in two equivalent forms:

(4.7) zk = ΠC∗
k
(w) = ΠCk

(−w) + w.

Alternatively, we can view this as a block coordinate gradient projection update. The
gradient of f(z) with respect to zk is

∇zkf(z) = Pγk

⎛
⎝ l∑

j=1

PT
γj
zj + a

⎞
⎠ = zk + Pγk

⎛
⎝∑

j �=k

PT
γj
zj + a

⎞
⎠ ,



1706 YIFAN SUN AND LIEVEN VANDENBERGHE

because Pγk
PT
γk

= I. The vector w is therefore equal to w = zk−∇zkf(z) and ΠC∗
k
(w)

is a block coordinate gradient projection step with step size one.
In Algorithm 3 we minimize over z1, . . . , zl cyclically, using the second expression

in (4.7). We also maintain a primal variable xi =
∑l

j=1 P
T
γj
zij + a. The simplest

initialization is to take z0 = 0 and x0 = a. On line 4 we project the point

Pγk

⎛
⎝∑

j �=k

PT
γj
zi−1
j + a

⎞
⎠ = Pγk

xi−1 − zi−1
k

on Ck. The update on line 5 is easier to describe in words: xi is equal to xi−1 with the
subvector xi−1

γk
replaced by v. Line 6 can also be written as zik = zi−1

k + v − Pγk
xi−1.

Hence

zik = zi−1
k + v − Pγk

⎛
⎝ l∑

j=1

PT
γj
zi−1
j + a

⎞
⎠ = v − Pγk

⎛
⎝∑

j �=k

PT
γj
zi−1
j + a

⎞
⎠ .

Algorithm 3. Dual block coordinate ascent for problems (4.1) and (4.2).

1 Initialize: Choose an initial (z01 , . . . , z
0
l ) ∈ C∗ and set x0 = PT z0 + a.

2 for i = 1, 2, . . . until convergence do

3 Select the next index: k = (i− 1) mod l + 1.

4 Projection. Compute v = ΠCk
(Pγk

xi−1 − zi−1
k ).

5 Primal variable. Compute xi = PT
γk
v + (I − PT

γk
Pγk

)xi−1.

6 Dual variables. Compute zik = zi−1
k + Pγk

(xi − xi−1) and zij = zi−1
j for j �= k.

7 end for

When Pγk
= I for k = 1, . . . , l, and with the initialization x0 = a, z0 = 0, this

is Dykstra’s algorithm for computing the projection on
⋂l

k=1 Kk [26]. Algorithm 3
is a special case of Tseng’s dual block coordinate ascent algorithm [62, section 3] and
convergence follows from [62, Theorem 3.1]. We can also give a convergence rate
by applying a recent result by Beck and Tetruashvili on block coordinate gradient
projection algorithms [11, Theorem 6.3]: we have f(zi) − f(z�) ≤ c/i, where c is
a constant. It then follows from (4.5) that xi and si = PT zi satisfy ‖xi − x�‖ =
‖zi − z�‖ = O(1/

√
i).

In general, deciding when to terminate the block coordinate ascent method can
be difficult, since the iterates may remain constant for several successive iterations.
The stopping condition proposed in [13, eq. (13)] is based on measuring the residual
rj = zjl − z(j−1)l, i.e., the difference between the values of z at the end of two
successive cycles. We will use a similar stopping condition of the form

‖zjl − z(j−1)l‖
max{‖zjl‖, 1} ≤ ε.

It can be shown that if rj = 0 then the iterates xi have remained constant during
cycle j. This can be seen from the expression

‖rj‖2 =
l∑

k=1

‖z(j−1)l+k
k − z

(j−1)l+k−1
k ‖2 =

l∑
k=1

‖x(j−1)l+k − x(j−1)l+k−1‖2.



SPARSE MATRIX NEARNESS PROBLEMS 1707

The first step follows because zk changes only in iteration k of cycle j; the second
step follows from line 6 in the algorithm. This observation implies that xjl and zjl are
optimal if rj = 0. By construction, xi − a = PT zi after each step of the algorithm.
Additionally, if k = ((i − 1) mod l) + 1 then the two relations zik = ΠC∗

k
(w) and

Pγk
xi = −ΠCk

(w) hold, where w = −Pγk
(
∑

j �=k P
T
γj
zij + a). This shows that zi is

always dual feasible. Moreover if xi remains unchanged for an entire cycle then it is
primal feasible and (zik)

TPγk
xi = 0 for k = 1, . . . , l.

5. Projection via Douglas–Rachford splitting. We now turn to the gen-
eral problem (2.1) for arbitrary index sets η. The assumption that η = {1, 2, . . . , n}
and Pη = I was crucial in the dual decomposition approaches of the previous sec-
tion 4. When η �= {1, 2, . . . , n} the dual problem (2.3) includes a coupling equality
constraint and the separable structure exploited by the dual gradient projection and
block coordinate ascent methods is no longer available. In this section, we present
decomposition methods based on the Douglas–Rachford splitting method [8, 27, 41].

5.1. Douglas–Rachford algorithm. The Douglas–Rachford method is a pop-
ular method for minimizing a sum f(x̃) = g(x̃) + h(x̃) of two closed, convex, and
possibly nonsmooth functions g and h. In our applications, the second function will
be the indicator function of a subspace V , i.e., we solve

(5.1)
minimize g(x̃)
subject to x̃ ∈ V .

The Douglas–Rachford method specialized to this problem is also known as themethod
of partial inverses [27, 56, 57]. The algorithm starts at an arbitrary z̃0 and repeats
the following iteration:

(5.2)

x̃i+1 = proxtg(z̃
i),

ỹi+1 = ΠV (2x̃i+1 − z̃i),

z̃i+1 = z̃i + ρ(ỹi+1 − x̃i+1).

There are two algorithm parameters: a step size t > 0 and a relaxation parameter
ρ ∈ (0, 2). The function proxtg in the first step is the proximal operator of tg(x),
defined as

proxtg(z) = argmin
u

(
g(u) +

1

2t
‖u− z‖2

)
.

In this paper, only two types of proximal operators will be encountered. If g(x̃) = δS(x̃)
is the indicator function of a closed convex set S, then proxtg(x̃) = ΠS(x̃) is the Eu-

clidean projection on S. If g is a convex quadratic function g(x̃) = (1/2)x̃TQx̃+ qT x̃,
then

proxtg̃(x̃) = (I + tQ)−1(x̃− tq).

The Douglas–Rachford method (5.2) is of interest when the projection on V and the
proximal operator of g are inexpensive.

The convergence of the Douglas–Rachford algorithm has been studied extensively.
It can be shown that if g is a closed convex function, with V ∩ ridom g �= ∅, and the
problem (5.1) has a solution, then the sequences x̃i and ỹi converge to a solution
[8, Corollary 27.2]. Convergence rates are usually expressed in terms of fixed point



1708 YIFAN SUN AND LIEVEN VANDENBERGHE

residuals. Recent results by Davis and Yin [21, Theorem 7] also give a convergence
rate for the objective value: it is shown that |f(x̃i)− f(x̃�)| = o(1/

√
i). The bound

can be improved if g satisfies additional properties, e.g., if its gradient is Lipschitz
continuous [22].

We will use the simple stopping condition described in [58],

‖rip‖
max{‖x̃i‖, 1} ≤ εp,

‖rid‖
max{‖s̃i‖, 1} ≤ εd,

for some primal and dual tolerances εp and εd, where s̃ = t−1(z̃i−1 − x̃i) and

rip = ΠV(x̃i)− x̃i, rid = −ΠV(s̃)

are primal and dual residuals.

5.2. Primal splitting. To apply the Douglas–Rachford algorithm to the primal
problem (2.1), we first reformulate it as

(5.3)
minimize

1

2
‖Pηx− a‖2 +

l∑
k=1

δCk
(yk)

subject to Pγk
x = yk, k = 1, . . . , l.

The variables are x ∈ R
n and an additional splitting variable y = (y1, y2, . . . , yl). This

problem has the form (5.1) if we take x̃ = (x, y),

g(x, y) =
1

2
‖Pηx− a‖2 + δC(y), V = {(x, y) | y = Px}.

The function g is separable with proximal operator

(5.4) proxtg(x, y) =

[
(I + tPT

η Pη)
−1(x+ tPT

η a)
ΠC(y)

]
.

Note that the inverse in the first block is the inverse of a strictly positive diagonal
matrix, since PT

η Pη is diagonal with (PT
η Pη)ii = 1 if i ∈ η and (PT

η Pη)ii = 0 other-
wise. The projection on C in the second block reduces to l independent projections
ΠC(y) = (ΠC1(y1), . . . ,ΠCl

(yl)). The projection on the subspace V in (5.2) is

(5.5) ΠV(x, y) =
[

I
P

]
(I + PTP )−1(x+ PT y),

which is also simple to compute since PTP is diagonal; see (4.3).
A summary of the Douglas–Rachford method is given in Algorithm 4.
The algorithm is easily extended to generalizations of problems (5.3) with simple

equality constraints Ax = b added. An example is the constraint diag(X) = 1 in (3.1)
to compute the projection on the matrices with a correlation matrix completion. The
additional constraint can be handled by adding the indicator function δ{0}(Ax− b) to
the objective function of (5.3). The proximal operator of

1

2
‖Pηx− a‖2 + δ{0}(Ax− b)

is a weighted projection on an affine set and is inexpensive if A has few rows.



SPARSE MATRIX NEARNESS PROBLEMS 1709

Algorithm 4. Douglas–Rachford method for primal problem (2.1).

1 Initialize: Choose parameters t > 0, ρ ∈ (0, 2), initial u0, v01 , . . . , v
0
l .

2 for i = 1, 2, . . . until convergence do

3 Compute (xi, yi) = proxtg(u
i−1, vi−1) using (5.4).

4 Compute (wi, zi) = ΠV(2xi − ui−1, 2yi − vi−1) using (5.5).

5 Update ui = ui−1 + ρ(wi − xi) and vik = vi−1
k + ρ(zik − yik), k = 1, . . . , l.

6 end for

5.3. Dual splitting. To apply the Douglas–Rachford method to the dual prob-
lem (2.2) we write it as

(5.6)

minimize
1

2
‖s+ a‖2 +

l∑
k=1

δC∗
k
(zk)

subject to

l∑
k=1

PT
γk
zk = PT

η s.

This is in the form (5.1) with x̃ = (s, z),

g(s, z) =
1

2
‖s+ a‖2 + δC∗(z), V = {(s, z) | PT

η s = PT z}.
The proximal operator of g is

(5.7) proxtg(s, z) =

[
(1 + t)−1(s− ta)

ΠC∗(z)

]
.

The projection on V can be written as

(5.8) ΠV (s, z) =
[

s
z

]
+

[ −Pη

P

]
(PT

η Pη + PTP )−1(PT
η s− PT z).

A summary of the Douglas–Rachform method using splitting is given in Algo-
rithm 5.

Algorithm 5. Douglas–Rachford method for dual problem (2.2).

1 Initialize: Choose parameters t > 0, ρ ∈ (0, 2), initial u0, v01 , . . . , v
0
l .

2 for i = 1, 2, . . . until convergence do

3 Compute (si, zi) = proxtg(u
i−1, vi−1) using (5.7).

4 Compute (wi, yi) = ΠV(2si − ui−1, 2zi − vi−1) using (5.8).

5 Update ui = ui−1 + ρ(wi − si) and vik = vi−1
k + ρ(yik − zik), k = 1, . . . , l.

6 end for

6. Numerical results. In this section we test the proposed algorithms on prob-
lems with sizes ranging from 1000 to 100000. The problems in the first set of experi-
ments are constructed from thirteen symmetric sparsity patterns in the University of
Florida sparse matrix collection [24]. In the second set of experiments, we consider a
family of randomly generated sensor network node localization problems [3, 14, 40].

The experiments are performed on an Intel Xeon CPU E31225 processor with 32
GB RAM, running Ubuntu 14.04 (Trusty) and using MATLAB version 8.3.0 (2014a).
In the dual gradient projection and Douglas–Rachford algorithms the main step per
iteration is the projection on l dense PSD or EDM cones, and these projections can be



1710 YIFAN SUN AND LIEVEN VANDENBERGHE

Table 1

Thirteen symmetric sparsity patterns from the University of Florida sparse matrix collection.
For each pattern we give p, the number of rows and columns of the matrix, and the density defined
as (p + 2|E|)/p2.

Pattern p Density

ex4 1601 1.24e-2
c-26 4307 1.86e-3

g3rmt3m3 5357 7.24e-3
barth4 6019 1.13e-3
c-37 8204 1.11e-3

tuma2 12992 2.92e-4
crack dual 20141 1.98e-4
biplane-9 21701 1.79e-4
mario001 38434 1.39e-4

c-60 43640 1.57e-4
c-67 57975 1.58e-4

rail 79841 79841 8.69e-5
luxembourg osm 114599 1.82e-5

done in parallel. In the dual block coordinate ascent method, some of the projections
can be computed in parallel, if they are scheduled using a topological ordering on a
clique tree [15]. Since the projections are the most expensive part of the algorithms,
exploiting parallelism would result in a significant speedup. This possibility was not
exploited in the code used for the experiments, which computes the projections se-
quentially.

6.1. Chordal sparse matrix cones. We consider the three matrix nearness
problems in sections 3.2–3.4 with chordal patterns E. The patterns are chordal ex-
tensions of thirteen nonchordal sparsity patterns from the University of Florida sparse
matrix collection [24]. Table 1 gives some statistics for the patterns before the ex-
tension. The sparsity graphs of three of the larger patterns (mario001, c-60, c-67)
are not connected, but since the largest connected component contains almost all the
vertices, we did not remove the smaller connected components.

The chordal extensions are computed in two steps. We first use graph elimination
(or symbolic Cholesky factorization) using a fill-reducing reordering (the MATLAB
amd reordering) to generate a first chordal extension. We then merge some of the
smaller cliques of this extension according to heuristics discussed in [58, section 6.2].
Table 2 gives the statistics of the two chordal extensions, before and after clique
merging.

For each pattern E, we generate five instances B with lower-triangular nonzero
values generated from independent normalized Gaussian distributions. The numerical
results in the following tables are averages over the five instances.

We first consider projections on the PSD and PSD completable cones. When E is
a chordal pattern, the formulation (3.3) of the projection of B on ΠE(S

p
+) simplifies to

(6.1)
minimize ‖X −B‖2F
subject to Pβk

XPT
βk

� 0, k = 1, . . . ,m,

where β1, . . . , βm are the cliques of the sparsity pattern. The dual of this problem is

(6.2)
maximize −

∥∥∥∥∥
m∑

k=1

PT
βk
ZkPβk

+B

∥∥∥∥∥
2

F

+ ‖B‖2F

subject to Zk � 0, k = 1, . . . ,m,



SPARSE MATRIX NEARNESS PROBLEMS 1711

Table 2

Chordal extensions of the patterns of Table 1. The table shows the density, the number of
cliques (m), and the average and maximum clique size, after a chordal extension and after a further
clique merging step.

After extension After clique merging
p Density m Avg. Max. Density m Avg. Max.

clique size clique size clique size clique size

1601 3.24e-2 598 18.0 74 4.94e-2 94 46.3 74
4307 3.69e-3 3740 6.1 66 1.07e-2 556 17.4 66
5357 2.97e-2 577 52.9 261 3.27e-2 267 80.8 261
6019 6.12e-3 3637 11.1 89 1.11e-2 317 42.2 89
8204 4.05e-3 7158 7.1 257 9.54e-3 1121 21.5 257
12992 2.90e-3 11051 5.7 241 5.22e-3 704 37.2 241
20141 1.21e-3 17053 6.5 168 2.80e-3 1098 35.7 168
21701 1.41e-3 16755 8.0 147 2.99e-3 1099 40.7 147
38434 5.36e-4 30917 6.0 188 1.25e-3 2365 28.1 188
43640 1.37e-3 39468 6.2 954 2.56e-3 6175 19.5 954
57975 2.45e-4 52404 5.5 132 9.04e-4 8875 14.9 132
79841 5.31e-4 61059 8.7 337 9.71e-4 4247 44.4 337
114599 4.34e-5 113361 2.9 45 2.02e-4 7035 18.9 58

Table 3

Projection on chordal PSD completable matrices. CPU times (in seconds) for the projection
on ΠE(Sp

+). The total runtimes and times per iteration are given. The algorithms are: dual fast
projected gradient method (F-PG), dual block coordinate ascent (BCD), primal Douglas–Rachford
method (P-DR), and dual Douglas–Rachford method (D-DR).

p
Total runtime Time/iteration

F-PG BCD P-DR D-DR F-PG BCD P-DR D-DR

1601 2.7e1 3.5 4.4 5.0 1.2e-1 1.4e-1 1.8e-1 2.0e-1
4307 5.5e2 6.8 3.3e1 3.6e1 2.0e-1 2.7e-1 3.3e-1 3.6e-1
5357 4.8e2 8.4e1 4.6e1 5.2e1 1.3 1.7 1.8 2.1
6019 1.2e2 9.6 1.3e1 1.6e1 3.4e-1 3.8e-1 5.1e-1 6.2e-1
8204 2.6e3 7.1e1 1.1e2 1.1e2 9.5e-1 1.4 1.4 1.5
12992 2.4e2 6.2e1 3.6e1 4.2e1 9.5e-1 1.2 1.4 1.7
20141 2.5e2 3.9e1 3.8e1 4.6e1 9.9e-1 1.6 1.5 1.9
21701 3.3e2 3.4e1 4.6e1 5.8e1 1.2 1.4 1.8 2.3
38434 4.7e2 4.7e1 6.2e1 7.8e1 2.1 1.9 2.5 3.1
43640 > 4hr 1.9e3 1.6e3 1.5e3 1.0e1 1.9e1 1.6e1 1.5e1
57975 > 4hr 1.4e2 1.1e3 1.1e3 3.5 5.7 6.4 6.2
79841 2.4e3 3.0e2 2.4e2 3.0e2 6.3 7.6 9.7 1.2e1
114599 5.3e2 5.5e1 1.0e2 1.2e2 2.6 2.2 4.0 4.6

and is equivalent to the projection of −B on Sp
E ∩Sp

+, i.e., problem (3.1) for A = −B.
We apply the fast projected gradient and block coordinate ascent methods to the dual
problem (6.2), and the Douglas–Rachford method to the primal problem (written in
the form (5.3)) and the dual problem (in the form (5.6)).

The step size in the fast projected gradient method is t = 1/L. In the Douglas–
Rachford methods we used t = 1, ρ = 1.75. A tolerance ε = 10−3 was used in the
various stopping conditions given in section 2. The algorithms were terminated when
the CPU time exceeded a maximum four hours. The results are given in Table 3. The
runtimes are averages over five instances; we did not observe a significant variance in
runtime or number of iterations for the different instances. To reduce computational
overhead, the stopping conditions are tested every 25 iterations.



1712 YIFAN SUN AND LIEVEN VANDENBERGHE

Table 4

Projection on chordal EDM completable matrices. CPU times (in seconds) for the projection
onto ΠE(Dp). The total runtimes and times per iteration are given. The algorithms are: dual fast
projected gradient method (F-PG), dual block coordinate ascent (BCD), primal Douglas–Rachford
method (P-DR), and dual Douglas–Rachford method (D-DR).

p
Total runtime Time/iteration

F-PG BCD P-DR D-DR F-PG BCD P-DR D-DR

1601 7.6e1 1.2e1 5.7 5.2 1.5e-1 1.6e-1 2.3e-1 2.1e-1
4307 1.9e3 3.2e1 2.1e1 2.0e1 2.9e-1 4.1e-1 4.2e-1 3.9e-1
5357 1.1e3 2.3e2 5.6e1 5.3e1 1.5 1.9 2.2 2.1
6019 3.9e2 2.7e1 1.7e1 1.6e1 4.4e-1 5.0e-1 6.9e-1 6.2e-1
8204 8.6e3 2.7e2 8.5e1 8.3e1 1.2 2.7 1.7 1.7
12992 6.8e2 1.8e2 4.5e1 4.1e1 1.2 1.5 1.8 1.6
20141 9.1e2 1.3e2 5.0e1 4.4e1 1.3 1.7 2.0 1.8
21701 1.1e3 1.6e2 6.2e1 5.4e1 1.6 2.1 2.5 2.2
38434 1.4e3 8.6e2 8.3e1 7.2e1 2.1 6.1 3.3 2.9
43640 > 4hr 1.1e4 9.1e2 9.3e2 1.4e1 7.1e1 1.8e1 1.9e1
57975 > 4hr 4.6e3 5.5e2 5.6e2 4.8 3.7e1 7.3 7.5
79841 8.8e3 9.8e2 3.2e2 2.8e2 9.5 9.8 1.3e1 1.1e1
114599 2.5e3 1.3e2 1.3e2 1.1e2 3.3 5.4 5.1 4.5

Table 4 shows the results of a similar experiment for the projection on the EDM
completable cone (problem III) by solving (3.5), via the formulation

(6.3)

minimize ‖X −B‖2F
subject to Pβk

XPT
βk

∈ D
|βk|
0 , k = 1, . . . ,m,

diag(X) = 0,

where β1, . . . , βm are the cliques in the chordal pattern E. The strictly lower-triangular
nonzero values of B are assigned according to a uniform distribution in [0, 1]. The
diagonal of B is set to zero.

In all cases when the method converged, the final objective values for the different
algorithms are equal to two or three significant digits. (The unaccelerated projected
gradient method in general took much longer than all other methods to converge, and
the results are not included.) In general, the fast projected gradient method converged
more slowly than the other methods. In all but four instances, the dual fast projected
gradient method took between 200 and 1000 iterations and in two instances exceeded
the time limit. In comparison, the dual block coordinate ascent and Douglas–Rachford
algorithms took between 25 and 150 iterations to converge. (For the block coordinate
ascent algorithm, we count one cycle through all l cones as one iteration.)

6.2. Nonchordal sparse matrix cones. In the next two sets of experiments we
consider problems with nonchordal sparsity patterns. We first consider the projection
on the PSD completable cone (problem (3.3)) and its dual

maximize −‖S +B‖2F + ‖B‖2F
subject to S =

m∑
k=1

PT
βk
ZkPβk

,

Sij = 0, ∀{i, j} ∈ E′ \ E,

Zk � 0, k = 1, . . . ,m.

This also computes the projection on the PSD cone (problem (3.1)) of A = −B. We
use the patterns listed in Table 1 as E and the chordal extensions listed in Table 2



SPARSE MATRIX NEARNESS PROBLEMS 1713

Table 5

Projection on nonchordal PSD completable matrices. CPU times (in seconds) for the projection
on ΠE(Sp

+). The Douglas–Rachford method is applied to the primal and dual problem form (P-DR
and D-DR). The total runtimes and times per iteration are given.

p
Total runtime Time/iteration
P-DR D-DR P-DR D-DR

1601 3.5e1 2.8e1 1.6e-1 1.6e-1
4307 5.8e1 4.8e1 2.9e-1 2.9e-1
5357 4.4e2 3.8e2 1.6 1.7
6019 1.3e2 1.1e2 4.5e-1 4.8e-1
8204 4.1e2 3.6e2 1.3 1.3
12992 1.9e2 1.3e2 1.2 1.3
20141 2.6e2 2.1e2 1.3 1.4
21701 5.2e2 4.3e2 1.6 1.7
38434 2.4e2 1.7e2 2.4 2.3
43640 4.1e3 3.6e3 1.3e1 1.3e1
57975 1.4e3 1.2e3 5.6 5.3
79841 2.1e3 1.8e3 8.6 9.1
114599 7.1e2 4.5e2 3.7 3.6

as E′. For each sparsity pattern E, we consider five randomly generated matrices
B ∈ Sp

E , with lower-diagonal nonzero values chosen from a normal Gaussian distribu-
tion. The results for the primal and dual Douglas–Rachford methods (Algorithms 4
and 5) are given in Table 5.

Compared to the chordal problems (6.1), solving the nonchordal problems in gen-
eral took more iterations (between 75 to 300 iterations). The final objective values for
the primal and dual Douglas–Rachford methods are equal to around 2 or 3 significant
digits.

In the next experiment we consider projections on EDM completable cones for a
family of randomly generated sparsity graphs. An EDM D ∈ Dp is constructed by
choosing p points uniformly in a three-dimensional cube. The sparsity pattern E is
defined as E = {{i, j} | i �= j, Dij ≤ R}, where R is a positive parameter. For some
problems with p ≥ 10000, this resulted in graphs that were not connected. However
the largest connected component contained over 95% of the vertices, so we did not
remove these instances.

Next we add noise to the elements of D to construct a matrix B ∈ Sp
E :

Bij =

{
Dij +Nij , {i, j} ∈ E,

0, otherwise,

where for each i, j, the noise Nij = Nji is drawn from a Gaussian distribution with
mean zero and standard deviation 0.1. This type of problem is similar to the sensor
network node localization problems studied in [3, 14, 40], where R represents the radio
range of the sensors. We solve problem (6.3) using the Douglas–Rachford method for
the primal formulation (Algorithm 4).

Table 6 gives the problem statistics and runtime results, averaged over five in-
stances. In general, each problem converged after 200 to 400 iterations.

7. Conclusion. We have presented decomposition methods for projections on
sparse PSD, PSD completable, and EDM completable cones. By combining clique
decomposition theorems for chordal sparsity patterns and first-order convex optimiza-
tion algorithms, we are able to solve large problems with sizes ranging from p ∼ 1000
to 100000. As mentioned briefly in section 5, it is straightforward to extend the algo-



1714 YIFAN SUN AND LIEVEN VANDENBERGHE

Table 6

Projection on the EDM completable cone, with randomly generated nonchordal patterns. Prob-
lem statistics and CPU runtimes (total time and time per iteration, in seconds) for the primal
Douglas–Rachford method are given.

p Range (R) Density Density avg. # Avg. Cclique Total Time/
(extens.) cliques size runtime iteration

1000 5.00e-2 3.67e-2 2.56e-1 46.2 122.8 1.5e2 6.9e-1
1000 1.00e-1 9.15e-2 4.39e-1 36.6 206.3 4.1e2 1.6
5000 1.00e-2 3.93e-3 6.89e-2 228.0 121.6 1.6e3 5.3
5000 2.00e-2 1.03e-2 1.58e-1 191.4 240.7 5.0e3 1.9e1
10000 5.00e-3 1.47e-3 3.20e-2 474.4 102.1 3.6e3 1.0e1
25000 2.00e-3 3.96e-4 9.22e-3 1277.4 71.3 6.4e3 1.8e1
50000 1.00e-3 1.48e-4 2.70e-3 2821.4 46.3 5.4e3 1.8e1
75000 6.67e-4 8.34e-5 1.17e-3 4779.4 32.9 3.7e3 1.6e1
100000 5.00e-4 5.56e-5 6.04e-4 7214.4 24.4 2.6e3 1.3e1

rithms, for example, to problems with a small set of linear equality constraints. This
only requires an additional projection step on the affine set defined by the constraint
equations.

The key feature of the algorithms is that they involve only small dense eigenvalue
decompositions, corresponding to the cliques in the chordal extension of the sparsity
pattern. To underscore the importance of this property, we briefly outline some
alternative first-order methods that do not use the clique decomposition. The first
problem (a projection on the sparse PSD cone) can be viewed as a projection on the
intersection Sp

E ∩ Sp
+ of two sets. One can apply Dykstra’s algorithm and solve the

problem by alternately projecting on the set of sparse matrices Sp
E and the dense PSD

cone Sp
+. Similarily, the projections on the PSD completable and EDM completable

cones (problems II and III) can be viewed as minimizing a sum f(X) + g(X), where

f(X) =
∑

{i,j}∈E

(Xij −Aij)
2, g(X) = δC(X),

where C = Sp
+ or Dp. This can be solved using the Douglas–Rachford method, which

for this choice of g will require projections on C. Hence, at every iteration of these
algorithms, a single eigenvalue decomposition of order p is needed. However, a full
eigenvalue decomposition quickly becomes impractical for p greater than 10000. On
the machine used for our experiments, a single dense eigenvalue decomposition of
order p = 20000 takes 15 minutes to compute, and exceeds memory for p ≥ 50000.
Sparse eigenvalue decomposition methods also pose difficulties. Even when the initial
and final matrix variables in the algorithms are sparse, the intermediate variables
(and in particular, the arguments to the projections on Sp

+ and Dp) are dense and,
unless the method has almost converged, have close to p/2 positive and negative
eigenvalues. On the same machine, a single full matrix projection using a sparse
eigenvalue decomposition took more than an hour for a problem of size p = 8204 and
more than eight hours for a problem of size p = 12992. In comparison, the runtimes
of the decomposition methods discussed in the paper depend less strongly on p and
more on the sparsity pattern and density; a test problem of size p = 21701 converged
in 3 minutes, using about 2 seconds per iteration. In none of the test problems were
we close to running out of memory.

There are some interesting differences among the decomposition methods. The
dual block coordinate ascent method (Dykstra’s method) and the Douglas–Rachford
method seem to converge in fewer iterations than the accelerated dual projection



SPARSE MATRIX NEARNESS PROBLEMS 1715

method. One possible explanation is, as described in section 4.3, Dykstra’s method
can be interpreted as a block coordinate gradient projection method with step size 1.
In comparison, the projected gradient method described in section 4.2 uses a step size
1/L, which is usually much smaller than 1. We also noticed that the Douglas–Rachford
methods are more general and can be applied to the problems with nonchordal sparsity
patterns. However they converged more slowly on the test problems with nonchordal
patterns. We did not observe a difference in efficiency between the primal and dual
Douglas–Rachford methods. A general difficulty when applying the Douglas–Rachford
algorithm is the sensitivity to the choice of the problem parameters t and ρ. We used
the same fixed values for all the experiments, and it is possible that the performance
can be further improved by tuning the parameters.

REFERENCES

[1] J. Agler, J. W. Helton, S. McCullough, and L. Rodman, Positive semidefinite matrices
with a given sparsity pattern, Linear Algebra Appl., 107 (1988), pp. 101–149.

[2] S. Al-Homidan and M. AlQarni, Structure methods for solving the nearest correlation matrix
problem, Positivity, 16 (2012), pp. 497–508.

[3] S. Al-Homidan and H. Wolkowicz, Approximate and exact completion problems for Eu-
clidean distance matrices using semidefinite programming, Linear Algebra Appl., 406
(2005), pp. 109–141.

[4] C. M. Aláız, F. Dinuzzo, and S. Sra, Correlation matrix nearness and completion under
observation uncertainty, IMA J. Numer. Anal., 35 (2015), pp. 325–340.

[5] A. Y. Alfakih, A. Khandani, and H. Wolkowicz, Solving Euclidean distance matrix comple-
tion problems via semidefinite programming, Comput. Optim. Appl., 12 (1999), pp. 13–30.

[6] B. Alipanahi, N. Krislock, A. Ghodsi, H. Wolkowicz, L. Donaldson, and M. Li, Deter-
mining protein structures from NOESY distance constraints by semidefinite programming,
J. Comput. Biol., 20 (2013), pp. 296–310.

[7] M. Bakonyi and C. R. Johnson, The Euclidian distance matrix completion problem, SIAM
J. Matrix Anal. Appl., 16 (1995), pp. 646–654.

[8] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Springer, New York, 2011.

[9] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[10] A. Beck and M. Teboulle, A fast dual proximal gradient algorithm for convex minimization
and applications, Oper. Res. Lett., 42 (2014), pp. 1–6.

[11] A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type methods,
SIAM J. Optim., 23 (2013), pp. 2037–2060.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Athena Scientific, Belmont, MA, 1997.

[13] E. G. Birgin and M. Raydan, Robust stopping criteria for Dykstra’s algorithm, SIAM J. Sci.
Comput., 26 (2005), pp. 1405–1414.

[14] P. Biswas and Y. Ye, Semidefinite programming for ad hoc wireless sensor network local-
ization, in Third International Symposium on Information Processing in Sensor Networks,
IPSN’04, ACM, New York, 2004, pp. 46–54.

[15] J. R. S. Blair and B. Peyton, An introduction to chordal graphs and clique trees, in Graph
Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H. Liu, eds.,
Springer-Verlag, New York, 1993.

[16] R. Borsdorf, N. J. Higham, and M. Raydan, Computing a nearest correlation matrix with
factor structure, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2603–2622.

[17] S. Boyd and L. Xiao, Least-squares covariance matrix adjustment, SIAM J. Matrix Anal.
Appl., 27 (2005), pp. 532–546.

[18] J. P. Boyle and R. L. Dykstra, A method for finding projections onto the intersection
of convex sets in Hilbert spaces, in Advances in Order Restricted Statistical Inference,
R. Dykstra, T. Robertson, and F. T. Wright, eds., Lecture Notes in Statist. 37, Springer-
Verlag, New York, 1986, pp. 28–47.

[19] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications,
Numerical Math. Sci. Comput., Oxford University Press, New York, 1997.



1716 YIFAN SUN AND LIEVEN VANDENBERGHE

[20] A. Chambolle and C. Dossal, On the convergence of the iterates of the “Fast Iterative
Shrinkage/Thresholding Algorithm”. J. Optim. Theory Appl., 166 (2015), pp. 968–982.

[21] D. Davis and W. Yin, Convergence Rate Analysis of Several Splitting Schemes, preprint,
arXiv:1406.4834, 2014.

[22] D. Davis and W. Yin, Faster Convergence Rates of Relaxed Peaceman-Rachford and ADMM
Under Regularity Assumptions, preprint, arXiv:1407.5210, 2014.

[23] T. A. Davis, Direct Methods for Sparse Linear Systems, Fundam. Algorithms, SIAM, Philadel-
phia, 2006.

[24] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.
Software, 38 (2011), 1.

[25] D. Drusvyatskiy, G. Pataki, and H. Wolkowicz, Coordinate shadows of semidefinite and
Euclidean distance matrices, SIAM J. Optim., 25 (2015), pp. 1160–1178.

[26] R. L. Dykstra, An algorithm for restricted least squares regression, J. Amer. Statist. Assoc.,
78 (1983), pp. 837–842.

[27] J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators, Math. Program., 55 (1992), pp. 293–318.

[28] N. Gaffke and R. Mathar, A cyclic projection algorithm via duality, Metrika, 36 (1989),
pp. 29–54.

[29] W. Glunt, T. L. Hayden, S. Hong, and J. Wells, An alternating projection algorithm for
computing the nearest Euclidean distance matrix, SIAM J. Matrix Anal. Appl., 11 (1990),
pp. 589–600.

[30] A. Griewank and P. L. Toint, On the existence of convex decompositions of partially separable
functions, Math. Program., 28 (1984), pp. 25–49.

[31] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz, Positive definite completions of
partial Hermitian matrices, Linear Algebra Appl., 58 (1984), pp. 109–124.

[32] S.-P. Han, A successive projection method, Math. Program., 40 (1988), pp. 1–14.
[33] S.-P. Han and G. Lou, A parallel algorithm for a class of convex programs, SIAM J. Control

Optim., 26 (1988), pp. 345–355.
[34] T. Hayden and J. Wells, Approximation by matrices positive semidefinite on a subspace,

Linear Algebra Appl., 109 (1988), pp. 115–130.
[35] P. Heggernes, Minimal triangulation of graphs: A survey, Discrete Math., 306 (2006),

pp. 297–317.
[36] D. Henrion and J. Malick, Projection methods for conic feasibility problems: applications to

polynomial sum-of-squares decompositions, Optim. Methods Softw., 26 (2011), pp. 23–46.
[37] D. Henrion and J. Malick, Projection methods in conic optimization, in Handbook on

Semidefinite, Conic and Polynomial Optimization, M. F. Anjos and J. B. Lasserre, eds.,
Springer, New York, 2012, pp. 565–600.

[38] N. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra Appl.,
103 (1988), pp. 103–118.

[39] N. Higham, Computing the nearest correlation matrix—a problem from finance, IMA J. Numer.
Anal., 22 (2002), pp. 329–343.

[40] N. Krislock and H. Wolkowicz, Euclidean distance matrices and applications, in Handbook
on Semidefinite, Conic and Polynomial Optimization, M. F. Angos and J. B. Lasserre, eds.,
Springer, New York, 2012, pp. 879–914.

[41] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal., 16 (1979), pp. 964–979.

[42] J. Malick, A dual approach to semidefinite least-squares problems, SIAM J. Matrix Anal.
Appl., 26 (2004), pp. 272–284.

[43] J. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93
(1965), pp. 273–299.

[44] Y. Nesterov, A method of solving a convex programming problem with convergence rate
O(1/k2), Sov. Math. Dokl., 27 (1983), pp. 372–376.

[45] Y. Nesterov, Introductory Lectures on Convex Optimization, Kluwer Academic, Dordrecht,
The Netherlands, 2004.

[46] B. T. Polyak, Introduction to Optimization, Optimization Software, New York, 1987.
[47] H. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest

correlation matrix, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 360–385.
[48] H. Qi and D. Sun, Correlation stress testing for value-at-risk: An unconstrained convex opti-

mization approach, Comput. Optim. Appl., 45 (2010), pp. 427–462.
[49] H. Qi and D. Sun, An augmented Lagrangian dual approach for the H-weighted nearest cor-

relation matrix problem, IMA J. Numer. Anal., 31 (2011), pp. 491–511.
[50] H.-D. Qi, A semismooth Newton method for the nearest Euclidean distance matrix problem,

SIAM J. Matrix Anal. Appl., 34 (2013), pp. 67–93.



SPARSE MATRIX NEARNESS PROBLEMS 1717

[51] H.-D. Qi, N. Xiu, and X. Yuan, A Lagrangian dual approach to the single-source localization
problem, IEEE Trans. Signal Process., 61 (2013), pp. 3815–3826.

[52] R. Rebonato and P. Jäckel, The Most General Methodology to Create a Valid Correlation
Matrix for Risk Management and Option Pricing Purposes, Quantitative Research Centre
of the NatWest Group, Royal Bank of Scotland, 1999.

[53] R. T. Rockafellar, Convex Analysis, 2nd ed., Princeton University Press, Princeton, NJ,
1970.

[54] D. J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970),
pp. 597–609.

[55] I. J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une
classe d’espaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert”,
Ann. Math., 36 (1935), pp. 724–732.

[56] J. E. Spingarn, Partial inverse of a monotone operator, Appl. Math. Optim., 10 (1983),
pp. 247–265.

[57] J. E. Spingarn, Applications of the method of partial inverses to convex programming: De-
composition, Math. Program., 32 (1985), pp. 199–223.

[58] Y. Sun, M. S. Andersen, and L. Vandenberghe, Decomposition in conic optimization with
partially separable structure, SIAM J. Optim., 24 (2014), pp. 873–897.

[59] M. W. Trosset, Applications of Multidimensional Scaling to Molecular Conformation, Tech-
nical report, Rice University, Houston, TX, 1997.

[60] P. Tseng, Further applications of a splitting algorithm to decomposition in variational inequal-
ities and convex programming, Math. Program., 48 (1990), pp. 249–263.

[61] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and
variational inequalities, SIAM J. Control Optim., 29 (1991), pp. 119–138.

[62] P. Tseng, Dual coordinate ascent methods for non-strictly convex minimization, Math. Pro-
gram., 59 (1993), pp. 231–247.

[63] P. Tseng, On Accelerated Proximal Gradient Methods for Convex-Concave Optimization,
manuscript, 2008.

[64] K. Wüthrich, Protein structure determination in solution by nuclear magnetic resonance
spectroscopy, Science, 243 (1989), pp. 45–50.

[65] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebraic Discrete
Meth., 2 (1981), pp. 77–79.

[66] F. W. Young,Multidimensional Scaling: History, Theory, and Applications, Psychology Press,
Hoboken, NJ, 2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


