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ABSTRACT

The support vector machine (SVM) is a supervised learning algorithm used in a variety of applications, includ-
ing robust target classification. The SVM training problem can be formulated as dense quadratic programming
problem (QP). In practice, this QP is solved in batch mode, using general-purpose interior-point solvers. Al-
though quite efficient, these implementations are not well suited in situations where the training vectors are made
available sequentially. In this paper we discuss a recursive algorithm for SVM training. The algorithm is based
on efficient updates of approximate solutions on the dual central path of the QP and can be analyzed using the
convergence theory recently developed for interior-point methods. The idea is related to cutting-plane methods
for large-scale optimization and sequential analytic centering techniques used successfully in set-membership
estimation methods in signal processing.
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optimization

1. INTRODUCTION

The support vector machine (SVM) is a supervised learning algorithm for pattern classification, introduced by
Vapnik in 1992.1 It has received considerable attention in the last decade and is widely used in a variety of
applications (see Schölkopf and Schmola2 for a comprehensive survey). Support vector classifiers are based on
linearly parametrized decision functions of the form

f(z) = θ1F1(z) + · · ·+ θnFn(z) = θTF (z),

where the components of F : Rp → Rn form a set of basis functions on Rp. In the simplest case, the decision
function f is affine, and we take n = p+ 1,

F (z) =
[

z1 z2 · · · zp 1
]T

.

To determine the decision function f (i.e., the parameters θ) we use training data in the form of N vectors
vi ∈ Rp, partitioned into two sets by N binary labels yi ∈ {−1, 1}. The coefficients θ are calculated by solving
the quadratic programming problem (QP)

minimize (1/2)θT θ + γ1Tu
subject to Xθ ≥ 1− u

u ≥ 0,
(1)
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with variables θ ∈ Rn, and u ∈ RN . The matrix X is defined as

X =











y1F (v1)
T

y2F (v2)
T

...
yNF (vN )T











∈ RN×n, (2)

and we will write its rows as xT
i = yiF (vi)

T . The symbol 1 denotes a vector with all its components equal to
one. The coefficient γ > 0 is a parameter set by the user, and controls the relative weight of the two terms in
the objective.

The constraints in (1) have the following interpretation. The training vector vi is considered correctly classified
by the decision function f = θTF if xT

i θ = yiθ
TF (vi) ≥ 1, i.e.,

f(vi) = θTF (vi) ≥ 1 if yi = 1, and f(vi) = θTF (vi) ≤ −1 if yi = −1.

The variable u is the slack vector in these inequalities and measures the amount of constraint violation: at the
optimum, u and θ satisfy

ui = max{0, 1− xT
i θ}, i = 1, . . . , N.

In other words, ui = 0 if the training point vi is correctly classified and ui > 0 otherwise. The second term
1Tu in the objective function is the total slack, i.e., total constraint violation, which is used as a measure of
classification error.

The first term in the objective function penalizes large θ and has an intuitive geometric meaning. It can
be shown that 2/‖θ‖ is the distance between the hyperplanes in Rn defined by θTx = 1 and θTx = −1. This
distance is a good measure of the robustness of the classifier with respect to perturbations to the training set. By
minimizing ‖θ‖ we maximize the margin between the two hyperplanes. In the QP (1), we control the trade-off
between classification error (as measured by the total slack violation) and robustness (inversely proportional to
the ‖θ‖) by the parameter γ.

Our purpose is to describe a recursive method for solving the training problem (1). By this we mean a method
in which we efficiently update the solution θ, after adding a new row to X. Recursive methods are important
when the training vectors are made available sequentially.

We will also consider the simpler QP

minimize (1/2)θT θ
subject to Xθ ≥ 1.

(3)

In this QP we seek a classifier θTF that separates the two sets, and maximizes the distance between the
hyperplanes defined by θTx = ±1.

The outline of the paper is as follows. In §2 and §3 we review some basic facts of quadratic programming
duality and the primal-dual interior-point methods that are commonly used to solve the QPs (1) and (3). In
§4 and §5 we describe a dual sequential analytic centering method based on Newton’s method. Some numerical
examples are provided in §6.

2. DUALITY

The dual problem of the training problem (1) is defined as

maximize −(1/2)αTXXTα+ 1Tα
subject to 0 ≤ α ≤ γ1.

(4)

The dual problem is also a QP, with variable α ∈ RN . The main properties relating the primal and dual QPs
are the following.



• The optimal values of both problems are equal: p? = d? where p? is the optmal value of (1) and d? is the
optimal value of (4).

• If θ, u are primal feasible (i.e., Xθ ≥ 1− u and u ≥ 0) and α is dual feasible (i.e., 0 ≤ α ≤ γ1), then

(

1

2
θT θ + γ1Tu

)

−
(

−1

2
αTXXTα+ 1Tα

)

=
1

2
‖θ −XTα‖2 + αT (Xθ − 1 + u) + (γ1− α)Tu. (5)

This quantity is known as the duality gap associated with θ, u, and α. The duality gap associated with a pair
of feasible points is the difference between the primal and dual objective values. It is always nonnegative,
and zero only if θ, u is primal optimal and α is dual optimal.

• The primal optimal solution θ?, u? and the dual optimal solution α? are related via the Karush-Kuhn-
Tucker (KKT) conditions

Xθ? ≥ 1− u?, u? ≥ 0, 0 ≤ α? ≤ γ1

θ? = XTα?

α?
i (x

T
i θ

? + u?
i − 1) = 0, (γ − α?

i )u
?
i = 0, i = 1, . . . , N.

These last conditions are called complementary slackness conditions.

For future reference, we also give the dual problem and optimality conditions for the QP (3). The dual
problem is

maximize −(1/2)αTXXTα+ 1Tα
subject to α ≥ 0,

with variable α ∈ RN . The KKT conditions are

Xθ? ≥ 1, α? ≥ 0

θ? = XTα?

α?
i (x

T
i θ

? − 1) = 0, i = 1, . . . , N.

3. PRIMAL-DUAL INTERIOR-POINT METHODS

Primal-dual interior-point methods are widely regarded as very efficient methods for solving LPs or QPs such
as (1).3, 4 Applied to problem (1), each iteration of a primal-dual method requires solving a set of positive
definite linear equations of the form

(XXT +D)∆α = r (6)

where D is a positive diagonal matrix, and the values of D and r change at each iteration. The matrix XXT

is often referred to as the kernel matrix in the SVM literature. The kernel matrix needs to be computed only
once, at the start of the algorithm. Moreover, although it is defined as a product of an N × n matrix with its
transpose, it can be constructed very efficiently (in O(pN 2) operations) for commonly used basis functions. The
resulting algorithm converges fast, often in less than 20 iterations, almost independent of problem size. As a rule
of thumb, the cost of solving (1) is therefore roughly equal to the cost of solving about 20 systems of equations
of the form (6).

While most SVM implementations are based on general-purpose packages (such as LOQO5 or MOSEK6),
further improvements are possible in special purpose implementations of the interior-point method. For example,
approximating the dense coefficient matrix of (6) by a sparse matrix, or by a sum of a diagonal and a low-rank
matrix, allows us to efficiently compute approximate solutions of (6).7–9



4. SEQUENTIAL ANALYTIC CENTERING

The standard approach to the SVM training problem, as outlined in the previous section, operates in batch
mode, i.e., it requires all training data to be available before the classifier can be found. In some applications,
however, it is desirable to update the classifier in a recursive fashion as incoming data become available. While
interior-point methods are very efficient, they are not particularly well suited for this recursive scenario. First of
all, they require the complete training data matrix X. Secondly, although they often allow the user to specify a
starting point, interior-point methods do not necessarily work better with so-called warm starts. In other words,
the optimal θ for the training set {v1, . . . , vN} is not necessarily a good starting point when searching for the
optimal θ for the training set {v1, . . . , vN+1}. Roughly speaking, this phenomenon is due to the fact that interior
point methods perform better with starting points that are well centered in the feasible region as opposed to
ones close to the boundary.

Alternative methods that are better suited for recursive implementation include the classical row-action meth-
ods,10 which are related to the well-known perceptron convergence rule of the neural network literature. While
very simple and easy to implement, and recursive in nature, these methods often suffer from slow convergence.
A more promising class of recursive algorithms are the more recent sequential analytic centering methods. These
methods include the the Analytic Centering Cutting-Plane Method (ACCPM),11–13 which is popular both as a
general-purpose convex optimization algorithm, and, when combined with decomposition techniques, also in dis-
tributed optimization. Other examples are the analytic centering techniques for recursive parameter estimation
in signal processing and control.14, 15 Sequential analytic centering methods can be analyzed rigorously using
the techniques developed for interior-point methods (in particular, the convergence analysis of Newton’s method
for logarithmic barrier functions).13, 16, 17

In this section we formulate a simple sequential analytic centering method to solve the QPs (1) and (4). The
method is a variation of the parameter estimation method of Bay, Ye, and Tempo.14

4.1. The dual central path

The dual central path for problem (1) is defined as the set {α(t) | t > 0}, where α(t) is the minimizer of the
strictly convex function

φt(α) = t(
1

2
αTXXTα− 1Tα)−

N
∑

i=1

log(γ − αi)−
N
∑

i=1

logαi. (7)

Dual central points α(t) have a number of interesting properties, which all follow from the optimality condition
∇φt(α(t)) = 0, where ∇φt(α) is the gradient of φt:

∇φt(α) = t(XXTα− 1) + (diag(γ1− α)−1 − diag(α)−1)1.

Define

θ(t) = XTα(t), ui(t) =
1

t(γ − αi(t))
, i = 1, . . . , N. (8)

Then u(t) > 0 and, from ∇φt(α(t)) = 0,

Xθ(t) = 1− u(t) + diag(tα)−11 > 1− u(t). (9)

In other words, θ(t), u(t) are strictly primal feasible for the problem (1). The duality gap associated with the
primal and dual feasible points θ(t), u(t), α(t) is, using the expresssion (5),

α(t)T (Xθ(t)− 1 + u(t)) + u(t)T (γ1− α(t)) = 2N/t.

This shows that by minimizing (7) we compute primal and dual feasible points with a duality gap 2N/t. In
particular, this implies that

1

2
θ(t)T θ(t) + γ1Tu(t)− p? ≤ 2N

t
,



where p? is the optimal value of (1).

To summarize, by minimizing (7) we can compute a suboptimal solution for (1) with an (absolute) accuracy
of at least 2N/t.

The corresponding definitions for the QP (3) are similar. We define the dual central points α(t) as the
minimizers of

φt(α) = t(
1

2
αTXXTα− 1Tα)−

N
∑

i=1

logαi, (10)

and define θ(t) = XTα(t). It can be shown that θ(t) is primal feasible and (1/2)θ(t)T θ(t)− p? ≤ N/t, where p?

is the optimal value of (3).

4.2. Sequential analytic centering

In this section we explicitly denote the dimension N by superscripts N : X (N) is the matrix defined in (2); θ(N),
u(N), α(N), will denote (approximate) solutions of problems (1) and (4). The idea of the dual analytic centering
method is as follows.

For each N = 1, 2, . . ., we solve the unconstrained minimization problem

minimize φ
(N)
t (α) = t( 1

2α
TX(N)X(N)Tα− 1Tα)−∑N

i=1 log(γ − αi)−
∑N

i=1 logαi, (11)

with t = (2N)/ε, where ε is a specified tolerance. To solve (11) we use Newton’s method with a starting point
α ∈ RN of the form α = (α(N−1), αN ) where 0 < αN < γ. (We will make some practical suggestions for selecting
αN in §6. The implementation of Newton’s method is discussed in §5.) Then we take

θ(N) = X(N)T
α(N), u

(N)
i = max{0, 1− xT

i θ
(N)}, i = 1, . . . , N,

where α(N) = argminφ
(N)
t (α) is the solution of (11).

It follows from the duality results in §4.1 that θ(N), u(N) are primal feasible, with

1

2
θ(N)T

θ(N) + γ1Tu(N) − p?(N) ≤ 2N

t
= ε,

i.e., they are ε-suboptimal solutions of (1).

The algorithm for the second QP (3) is the same, except that we define φ
(N)
t as (10), i.e., solve a sequence

of centering problems

minimize φ
(N)
t (α) = t( 1

2α
TX(N)X(N)Tα− 1Tα)−∑N

i=1 logαi, (12)

with t = N/ε. This requires only minor changes to the algorithm, so we will limit our further discussion of the
algorithm to problem (1).

5. NEWTON’S METHOD

The key step in the algorithm is the solution of the unconstrained minimization problem (11). In this section
we discuss the details of implementing Newton’s method for (11). Since N is fixed throughout the section, we
omit the superscripts N .

Each iteration of Newton’s method consists of the following steps:

1. Compute the Newton direction ∆αnt = −∇2φt(α)
−1∇φt(α).

2. Compute the Newton decrement µ = (−∇φ(α))T∆αnt)
1/2. If µ2/2 ≤ εnt, terminate and return α.



3. Choose a step size s by the following line search algorithm: Starting with s := 1, divide s by 2 until s
satisfies the inequalities

0 < α+ s∆αnt < γ1, φt(α+ s∆αn) < φt(α)− 0.01µ2s.

4. Update: α := α+ s∆αnt.

The only parameter in this algorithm outline is the tolerance εnt, which will be discussed in §5.2. The constants
2 and 0.01 in the line search are typical values, but can be changed to other values.17 It can be shown that α
satisfies φt(α)− inf φt(α) ≤ εnt when the algorithm exits in step 2.17

5.1. The Newton equation

The key step in each iteration of Newton’s method is the computation of ∆αnt, i.e., the solution of the set of
linear equations

∇2φt(α)∆α = −∇φt(α).

The Hessian of the function φt in (7) is given by

∇2φt(α) = tXXT + diag(γ1− α)−2 + diag(α)−2,

so the Newton equation has the form
(tXXT +D)∆α = −g (13)

where D = diag(γ1−α)−2+diag(α)−2 is a positive diagonal matrix. The best method for solving (13) depends
on the dimensions of X. We can distinguish two cases, using the terminology of Marron and Todd.18

• High dimension low sample size data (HDLSS). WhenN ≤ n, we solve (13) using the Cholesky factorization
of tXXT + D. The cost of this method is O(Nn) floating point operations for updating XXT (or less,
depending on the choice of basis functions), plus (1/3)N 3 for the Cholesky factorizations factorization of
tXXT +D.

• High sample size low dimension data (HSSLD). If N > n, we solve (13) by first solving

((1/t)I +XTD−1X)∆v = −(1/
√
t)XTD−1g, (14)

and then computing ∆α as
∆α = −D−1(g +

√
tX∆v).

It is easily shown by substitution that the resulting ∆α satisfies (13).

The cost of this method is n2N operations for constructing the matrix (1/t)I +XTD−1X, pluse (1/3)n3

for the Cholesky factorization. Note that D changes at each iteration, so we cannot obtain XTD−1X by
a simple update from the previous Newton iteration (see however §5.3 below).

5.2. Incomplete centering

It is not necessary to compute the minimizers α(t) with great accuracy, i.e., in step 2 of the Newton algorithm
we can use a fairly high value of the exit tolerance εnt (for example, εnt = 10−4). We refer to this as incomplete
centering. We will see later that the sequential analytic centering method with incomplete centering often requires
very few Newton iterations per update. Since the solution of the Newton equations is the most expensive step
in the algorithm, this allows us to substantially reduce the computation time.



Incomplete centering means, however, that the point θ = XTα may not be exactly feasible, and a correction
is required. (Recall that in §4.1 we showed that XTα(t) is primal feasible, where α(t) is on the central path.)
Define

θ = XT (α+∆αnt), ui =
1

t(γ − αi)
(1 +

∆αnt,i

γ − αi
), i = 1, . . . , N. (15)

Using these definitions, the Newton equation at α,

(tXXT + diag(γ1− α)−2 + diag(α)−2)∆αnt = −t(XXTα− 1)− diag(γ1− α)−11 + diag(α)−11,

can be written as
Xθ = 1− u+ diag(tα)−1(I − diag(α)−1∆αnt)1.

It follows that θ, u are strictly primal feasible (i.e., u ≥ 0, Xθ ≥ 1−u), provided α− γ1 ≤ ∆αnt ≤ α, i.e., ∆αnt

is sufficiently small. If α = α(t) (hence, ∆αnt = 0), the expressions (15) reduce to (8).

5.3. Approximate solution of Newton equations

Finally, we should mention the possibility of accelerating the algorithm by using approximate solutions of the
Newton equations (13). It is observed in practice that when N is large, relatively few of the diagonal elements
of D, which are given by

dii =
1

(γ − αi)2
+

1

α2
i

,

change significantly from one Newton iteration to the next. This suggests approximating the Hessian matrix
tXXT +D at α, by a low-rank update of the Hessian matrix at the previous iterate. If the rank of the update
is k, then the Cholesky factorization of the Hessian can be computed in O(kN 2) operations, as opposed to the
O(N3) operations needed to factor it from scratch.19 Similar comments apply to the matrix (1/t)I +XTD−1X
that needs to be factored to solve (14).

6. NUMERICAL EXAMPLES

In the first example we solve the QP (3) for a linear classification problem in R50 (i.e., n = 51). The training
data in each class are randomly generated from a mixture of two normal distributions. In figure 1 we compare
the number of Newton iterations to solve the centering problems (12) for N = 1, . . . , 1000. The left plot shows
the Newton iterations with a ‘cold’ starting point αi = 10−3/N , i = 1, . . . , N . The right plot shows the number
of iterations with the ‘warm’ starting point α = (α(N−1), αN ), where

αN =

{

1/(t(xT
Nθ

(N−1) − 1)) xT
Nθ

(N−1) > 1
1 otherwise.

This choice is motivated by the following considerations. Suppose xT
Nθ

(N−1) > 1, i.e., the new data point is
correctly classified. Then it is reasonable to assume that uN (t) ≈ 0, θ(t) ≈ θ(N−1), and hence, from (9),

αN (t) =
1

t(xT
Nθ(t)− 1 + uN (t))

≈ 1

t(xT
Nθ

(N−1) − 1)
,

so this provides a reasonable starting value for αN . If xT
Nθ

(N−1) ≤ 1, we expect θ(N) to be substantially different
from θ(N−1), and we take a default positive value for αN .

Except for the starting point, the implementation of Newton’s algorithm is identical for the two figures. We
used εnt = 10−4, and t = 104N . The final problem (for N = 1000) was solved with a relative accuracy of 0.2%.

Figure 1 clearly shows the benefit of using warm starts in the centering method. With a cold start the number
of iterations is roughly constant for large N , ranging between 15 and 20. With the warm start, only one or even
zero iterations are needed for most updates. Occasionally a larger number of iterations is required. This occurs
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Figure 1. Number of Newton iterations in the sequential analytic centering method for a linear classification problem in
R50. The left plot shows the number of iterations with a cold start. The right plot shows the number of iterations with
a warm start, using the previous solution as starting point.
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Figure 2. Distribution of the slacks Xθ
?
− 1 for a separable data set, where θ

? is the maximum margin linear classifier,
i.e., the solution of the QP (3).

when the new data point is misclassified by the previous classifier xT
Nθ

(N−1) < 1, and as a result θ(N) differs
substantially from θ(N−1).

Figure 2 shows the histogram of the slacks xT
i θ

?−1 at the optimal solution θ? for N = 1000. At the optimum
about 3.5% of the data points lie in the hyperplane θTx = 1.

Figures 3 and 4 show the results of a similar experiment in which we solve the SVM training problem (1) for
a linear classification problem in R200. In this problem we attempt to discriminate between two types of vehicles
based on the magnitude spectrum of their acoustic signals. A total of 782 training vectors were acquired. The
cold and warm start parameters are set in precisely the same manner as in the previous experiment. We used
εnt = 10−4, t = 2102N , and γ = 1. As seen in figure 4, the data are nearly separable. At the optimum, about
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Figure 3. Number of Newton iterations in the sequential analytic centering method for a linear classification problem in
R200. The left plot shows the number of iterations with a cold start. The right plot shows the number of iterations with
a warm start, using the previous solution as starting point.
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Figure 4. Distribution of the slacks Xθ
?
− 1 for a nearly separable data set, where θ

? is the maximum margin linear
classifier, i.e., the solution of the QP (1).

2.3% of the data points lie in the hyperplane θTx = 1. The final problem (for N = 782) was solved with a
relative accuracy of 0.2%.

7. CONCLUSIONS

We have described a recursive method for SVM training, based on dual analytic centering. Numerical experiments
demonstrate that the analytic centering method can take advantage of warm starts and quickly update the
classifier when new data points are added. This is an advantage over standard training algorithms based on
general-purpose interior-point methods.



Among the potential improvements and extensions that we plan to study are adaptive strategies for selecting
the centering parameter t, the use of primal or primal-dual methods, methods based on self-dual embeddings,13

and rigorous methods for pruning data sets.

Similar techniques should also be useful for target classification problems with slowly changing target char-
acteristics and for updating classifiers when different data sets are merged.
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