
Nuclear norm system identification with missing inputs and outputs

Zhang Liua,∗, Anders Hanssonb,1, Lieven Vandenberghec

aNorthrop Grumman Corporation, 16710 Via Del Campo Court, San Diego, CA 92127, USA
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Abstract

We present a system identification method for problems with partially missing inputs and
outputs. The method is based on a subspace formulation and uses the nuclear norm heuristic
for structured low-rank matrix approximation, with the missing input and output values as
the optimization variables. We also present a fast implementation of the alternating direc-
tion method of multipliers (ADMM) to solve regularized or non-regularized nuclear norm
optimization problems with Hankel structure. This makes it possible to solve quite large
system identification problems. Experimental results show that the nuclear norm optimiza-
tion approach to subspace identification is comparable to the standard subspace methods
when no inputs and outputs are missing, and that the performance degrades gracefully as
the percentage of missing inputs and outputs increases.

Keywords: nuclear norm, system identification, subspace method, Hankel structure,
low-rank matrix approximation

1. Introduction

Nuclear norm optimization methods for structured low-rank matrix approximation have
been discussed in several recent papers on system identification. The idea was first proposed
by Fazel, Hindi, and Boyd [1, 2], who pointed out the benefits of minimizing the nuclear
norm (sum of singular values) of a matrix-valued function as a convex heuristic for minimizing
its rank. Replacing the rank of a matrix by its nuclear norm can be justified as a convex
relaxation (the nuclear norm ‖X‖∗ =

∑

i σi(X) is the largest convex lower bound of rank(X)
on the ball {X | ‖X‖2 = σ1(X) ≤ 1}); see [1, theorem 1]. It is further motivated by the
empirical observation that minimum nuclear norm solutions often have low rank. Moreover
in certain applications (for example, low-rank matrix completion) the quality of the heuristic
can be demonstrated analytically [3, 4, 5, 6].
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As a practical technique for making low-rank matrix approximations, the nuclear norm
approach offers the advantage that it preserves linear structure in the matrix approximation,
unlike the singular value decomposition (SVD) commonly used in identification methods. It
is especially useful for low-rank approximation problems with additional convex constraints
or convex regularization terms in the cost function.

In this paper, we first evaluate a nuclear norm variant of modern subspace identification
algorithms [7, 8]. Earlier experiments with nuclear norm formulations of a basic subspace
method have indicated that the technique can be quite effective for system identification
[9, 10, 11, 12]. The basic formulation studied in these papers did not include the instrumental
variables and matrix weights that are commonly used in state-of-the-art subspace methods.
These features were added to the method in [13]. We present experiments with randomly
generated data sets and data sets from the DaISy benchmark collection [14]. The results
show a modest improvement over SVD based subspace methods.

As several authors have pointed out, nuclear norm approximation is a promising technique
for estimation with missing data. Applications of low-rank Hankel matrix completion via
nuclear norm optimization are discussed in [15, 16, 17]. As a second contribution in this pa-
per, we therefore describe and evaluate a subspace identification algorithm for identification
problems with partially missing inputs and outputs. The method is based on minimizing the
nuclear norm of the stacked input and output Hankel matrices. The experiments show that
the performance degrades slowly as the percentage of missing inputs and outputs increases.
In several instances a very high number of missing data (up to 50%) can be tolerated.

We use the alternating direction method of multipliers (ADMM) to solve regularized
and non-regularized nuclear norm optimization problems [12]. The third contribution of the
paper is to describe two techniques that improve the efficiency of the ADMM for regularized
nuclear norm minimization in identification. We show that Hankel structure can be exploited
to speed up a key step in the algorithm. Another improvement substantially reduces the
amount of work when an entire regularization path is computed.

Outline and notation. The paper is organized as follows. We review the most common
subspace identification algorithms in section 2 and then formulate nuclear norm variants of
these methods in section 3. The ADMM implementation is discussed in section 4. Section 5
contains the identification experiments.

We will frequently encounter block Hankel matrices constructed from sequences of vectors.
The notation Hi,j,k will be used to denote the j × k block Hankel matrix

Hi,j,k =











h(i) h(i+ 1) h(i+ 2) . . . h(i+ k − 1)
h(i+ 1) h(i+ 2) h(i+ 3) . . . h(i+ k)

...
...

...
. . .

...
h(i+ j − 1) h(i+ j) h(i+ j + 1) . . . h(i+ j + k − 2)











(1)

where h(t) is a sequence of vectors.
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2. Subspace system identification

In this section we review the basic ideas of subspace identification methods for linear time-
invariant systems [7, 8]. These methods estimate linear state-space models with process and
measurement noise. Without loss of generality we can adopt the Kalman normal form

x(k + 1) = Ax(k) +Bu(k) +Ke(k)
y(k) = Cx(k) +Du(k) + e(k),

(2)

with x(k) ∈ Rnx , u(k) ∈ Rnm , e(k) ∈ Rnp , and y(k) ∈ Rnp [7, page 99]. It is assumed that
e(k) is ergodic, zero-mean, white noise.

The starting point of the derivation is the matrix equation

Y0,r,N = OrX0,1,N + SrU0,r,N + E (3)

which follows from the state-space equations (2). The matrices Y0,r,N and U0,r,N are block
Hankel matrices constructed from the sequences y(k), u(k) for k = 0, . . . , r +N − 2, using
the notation (1). The matrix X0,1,N has as its columns the states x(k), k = 0, . . . , N − 1.
The matrices Or and Sr are defined as

Or =















C
CA
CA2

...
CAr−1















, Sr =















D 0 0 . . . 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...
CAr−2B CAr−3B CAr−4B . . . D















,

and E contains the contribution of the noise sequence e(k) to the output. The subspace
methods discussed in this paper have in common that they first estimate the range space
of the extended observability matrix Or and then determine a system realization from the
estimate of range(Or). (These methods therefore require that r is taken greater than nx; the
column dimension N then follows from r and the length of the input and output sequences.
The values of r used in our experiments will be mentioned in section 5.) Subspace algorithms
of this type are described in detail in [7, §10.6] and [8, chapter 9]. Other approaches, which
first estimate the matrix of states X0,1,N (see, for example, [18]) will not be discussed here.

2.1. Extended observability matrix

Basic algorithm. In the simplest variant the matrix Y0,r,N is multiplied on the right with a
projection matrix that projects on the nullspace of U0,r,N [19]. This gives the equation

Y0,r,NΠ0,r,N = OrX0,1,NΠ0,r,N + EΠ0,r,N , (4)

where Π0,r,N is the orthogonal projection matrix on the nullspace of U0,r,N . Suppose the
matrix X0,1,NΠ0,r,N has full row rank, i.e., rankX0,1,N = nx and no rank cancellation occurs
in the product X0,1,NΠ0,r,N . Equivalently,

rank

[

X0,1,N

U0,r,N

]

= nx + rankU0,r,N . (5)

3



This condition holds generically when the inputs are chosen at random. Under this assump-
tion the first term on the right-hand side of (4) has rank nx and its range equals the range
of Or. In the absence of noise (E = 0), one therefore has

nx = rank (Y0,r,NΠ0,r,N) , range(Or) = range (Y0,r,NΠ0,r,N) .

In the presence of noise (E 6= 0), these identities hold only approximately and one can esti-
mate nx and range(Or) from a low-rank approximation of Y0,r,NΠ0,r,N , obtained by truncating
an SVD.

An efficient implementation of this scheme is the MOESP (MIMO Output-Error State-
Space) algorithm [20]. In this method one first computes an LQ factorization

[

U0,r,N

Y0,r,N

]

=

[

L11 0
L21 L22

] [

Q1

Q2

]

(6)

of the stacked input and output Hankel matrices. The diagonal blocks L11 and L22 are
triangular matrices of order rnm and rnp, respectively. The matrices Q1 and Q2 have N
columns and satisfy Q1Q

T
1 = I, Q2Q

T
2 = I, Q1Q

T
2 = 0. We have Π0,r,N = I −QT

1Q1 and

Y0,r,NΠ0,r,N = (L21Q1 + L22Q2)(I −QT
1Q1) = L22Q2.

Hence
range(Y0,r,NΠ0,r,N) = range(L22)

and the range space of Or can be estimated from an SVD of L22.

Instrumental variables. The basic projection method described in the previous paragraph
is not consistent: the range of Y0,r,NΠ0,r,N does not necessarily converge to the range of Or

as N goes to infinity. This deficiency can be resolved by the use of instrumental variables

[21, 22]. We define an instrumental variable matrix

Φ =

[

U−s,s,N

Y−s,s,N

]

(7)

by combining Hankel matrices of ‘past’ inputs and outputs. (More generally, one can use
different row dimensions for the two Hankel matrices in Φ, but we will take them equal for
simplicity. In the experiments of section 5 we will use s = r.) Multiplying (4) on the right
with ΦT gives

Y0,r,NΠ0,r,NΦ
T = OrX0,1,NΠ0,r,NΦ

T + EΠ0,r,NΦ
T .

It can be shown that limN→∞(1/N)EΠ0,r,NΦ
T = 0 and that, under weak assumptions, the

limit

lim
N→∞

1

N
X0,1,NΠ0,r,NΦ

T

has full rank nx (see [8, §9.6] for a detailed discussion). As a consequence, the range of
Y0,r,NΠ0,r,NΦ

T gives a consistent estimate of the range of Or. In practice, for finite N , a
truncated SVD of Y0,r,NΠ0,r,NΦ

T is used to estimate range(Or).
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As for the basic projection method, the instrumental variable scheme can be implemented
using an LQ factorization





U0,r,N

Φ
Y0,r,N



 =





L11 0 0
L21 L22 0
L31 L32 L33









Q1

Q2

Q3



 (8)

of the stacked input and output Hankel matrices [8, section 9.6.1]. The diagonal blocks in L
are triangular of order rnm, s(nm + np), and rnp. The matrices Qi have column dimension
N and satisfy the orthogonality properties QiQ

T
i = I and QiQ

T
j = 0 for i 6= j. It is readily

shown that

Y0,r,NΠ0,r,NΦ
T = (L31Q1 + L32Q2 + L33Q3)(I −QT

1Q1)(L21Q1 + L22Q2)
T

= (L31Q1 + L32Q2 + L33Q3)Q
T
2L

T
22

= L32L
T
22.

The dominant left singular vectors of Y0,r,NΠ0,r,NΦ
T can be therefore computed from an SVD

of L32L
T
22.

Weight matrices. The accuracy of subspace methods can be further improved by multiplying
the matrix Y0,r,NΠ0,r,NΦ

T on both sides with nonsingular weight matrices before computing
an SVD. The most general scheme therefore involves a matrix of the form

G = W1Y0,r,NΠ0,r,NΦ
TW2. (9)

or, equivalently, G = W1L32L
T
22W2 with L22 and L32 defined in (8). After truncating the

SVD

G =
[

P Pe

]

[

Σ 0
0 Σe

]

[

Q Qe

]T
, (10)

by discarding the smallest singular values Σe one obtains an estimate of the range of Or:

range(Or) ≈ range(W−1
1 P ). (11)

Four major variants (PO-MOESP, N4SID, IVM, CVA) of this method have been proposed,
which differ by the choice of weight matrices W1 and W2. Here we only mention the expres-
sions for the PO-MOESP and IVM methods and refer the reader to [22], [7, page 351], [8,
§9.6.4] for details on the other two methods.

• PO-MOESP [23]. The PO-MOESP (Past Outputs MOESP) algorithm uses the weights

W1 = I, W2 = (ΦΠ0,r,NΦ
T )−1/2.

• IVM [24]. The IVM (Instrumental Variable Method) uses the weights

W1 =
(

Y0,r,NΠ0,r,NY
T
0,r,N

)−1/2
, W2 =

(

ΦΦT
)−1/2

.

Note that the weights can be expressed in several equivalent forms. In particular, one can
assume without loss of generality that W1 and W2 are symmetric positive definite. We also
note that the size of the matrix G in (9) is rnp × s(nm + np). This is typically much smaller
than the dimension rnp ×N of the matrix Y0,r,NΠ0,r,N used in the basic method.
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2.2. System realization

Once an estimate of range(Or) has been determined as described in the previous section,
it is straightforward to calculate a system realization and an estimate of the initial state (as
well as the entire state sequence). Several methods have been proposed for this that differ
in the order in which the estimates of the system matrices and state sequence are computed;
see [7, Section 10.6] and [8, Section 9.6.2]. Here we outline the main steps of the realization
method described in [7].

Let V ∈ Rrnp×nx be a matrix whose columns form a basis of our estimate of range(Or).
Partition V in r block rows V0, . . . , Vr−1 of size np × nx. Then one can take as estimates of
C and A the matrices

Ĉ = V0, Â = argmin
r−1
∑

i=1

‖Vi − Vi−1Â‖2F , (12)

where ‖ · ‖F denotes the Frobenius norm. From Ĉ and Â, estimates of B, D, and x(0) can
be computed by solving a least-squares problem:

(B̂, D̂, x̂0) = argmin
N+r−2
∑

k=0

‖ĈÂkx̂0 +
k−1
∑

i=0

ĈÂk−iB̂u(i) + D̂u(k)− y(k)‖22. (13)

If a model of the noise in (2) is required, it can be obtained by first estimating the state
sequence X0,1,N and from this an estimate of the process and measurement noise covariances.
The Kalman gain K can then be determined by solving a discrete-time Riccati equation
(see [8, page 333]).

3. Identification by nuclear norm optimization

The key step in the subspace methods described above is an SVD of the matrix G defined
in (9), used to estimate the range of the extended observability matrix. The use of instrumen-
tal variables guarantees that the estimate is consistent, i.e., range(Or) is estimated correctly
in the limit as N goes to infinity. However for finite data there is no guarantee of optimality.
In particular, a matrix V ∈ Rrnp×nx whose columns span the subspace range(W−1

1 P ) defined
in (11), does not necessarily possess the shift structure Vi = Vi−1A between the block rows
Vi of an extended observability matrix.

The reliance on the SVD for the low-rank approximation also makes it difficult to ex-
tend the subspace methods to problems with missing input or output measurement data
(for which parts of the matrices Y0,r,N and U0,r,N are unknown), to incorporate prior knowl-
edge (for example, bounds on the outputs), or to add regularization terms on the model
outputs and inputs. Minimizing the nuclear norm provides an interesting alternative, as
a heuristic for low-rank approximation problems that cannot be handled via an SVD, in
particular, approximation problems with structured low-rank matrices and problems that
include additional constraints or objectives. In this section, we discuss several variations
of the subspace methods of section 2 based on this heuristic. We focus on applications to
identification with missing data. Various other applications of the nuclear norm heuristic in
system identification are discussed in [25, 15, 16, 17, 11].
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Complete inputs and outputs. We first consider an identification problem with complete data.
Following the approach in [9] we distinguish between the model outputs y(k), which will be
the optimization variables in the formulation, and the measured data umeas(k), ymeas(k). The
model outputs y(k) are computed by solving a regularized nuclear norm problem

minimize ‖G(y)‖∗ + λ
∑

k∈T

‖y(k)− ymeas(k)‖22. (14)

The optimization variable is the sequence y = (y(0), . . . , y(N + r − 2)). The first term in
the objective is the nuclear norm of the matrix

G(y) = W1Y0,r,NΠ0,r,NΦ
TW2

defined as in (4), where we use the measured inputs and outputs to construct W1, W2,
Π0,r,N , and Φ, and define Y0,r,N as the Hankel matrix constructed from the model outputs
y(k). Therefore G(y) is a linear function of y. The second term in the objective is a quadratic
penalty on the deviation between the computed model outputs and the measurement data.
The index set T is defined as T = {0, 1, . . . , N + r − 2} and λ is a positive weight. In the
formulation (14) we try to find values of the outputs that are close to the measured values
ymeas(k) and make the matrix G(y) low-rank (without guaranteeing that we minimize the
rank of G(y)). After computing the sequence y, one can use G(y) as G in (9) to obtain
an estimate of the range of the extended observability matrix and proceed with a system
realization as described in section 2.2.

In the experiments of section 5 we will determine λ by solving the problem for a range
of values of λ and choosing the model with the best fit on a validation data sequence.

Missing outputs. The formulation (14) is easily extended to problems where part of the
measured output sequence ymeas(k) is missing. In this case we define T as the set of indices
for which ymeas(k) is available. A second difference is that we exclude the outputs from
the instrumental variable and use Φ = U−s,s,N instead of (7). (This choice of instrumental
variable is used in the Past Input (PI) variant of MOESP for identification of output-error
models; see [8, §9.5], [7, page 351].) The missing outputs also limit the choices of the
weight matrices. For example, the weight W1 of IVM requires complete outputs. With these
modifications, we can solve the same regularized nuclear norm problem (14) with variables
y = (y(0), . . . , y(N + r − 2)) to estimate corrected values of the measured outputs and
simultaneously estimate the missing outputs. As a useful variation, one can optimize over
the missing output values only by solving

minimize ‖G(y)‖∗
subject to y(k) = ymeas(k), k ∈ T.

(15)

The purpose here is to simply complete the output sequence. This is often referred to as
imputation.
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Missing inputs and outputs. The formulations (14) and (15) are not easily extended to prob-
lems with missing inputs because the matrix G depends nonlinearly on the inputs. When
there are missing or corrupted values in both the input and output sequences, we therefore
solve a regularized nuclear norm optimization problem of the form

minimize ‖F (u,y)‖∗ + λ
∑

k∈To

‖y(k)− ymeas(k)‖22 + γ
∑

k∈Ti

‖u(k)− umeas(k)‖22 (16)

where To and Ti are the time instances at which output measurements or input measurements
are available. The optimization variables are the sequences u = (u(−s), . . . , u(r + N − 2))
and y = (y(−s), . . . , y(r+N − 2)), and F is the stacked input-output Hankel matrix on the
left-hand side of (8), i.e., after reordering the rows, the matrix

F (u,y) =

[

U−s,s+r,N

Y−s,s+r,N

]

. (17)

Two variations are

minimize ‖F (u,y)‖∗ + λ
∑

k∈To

‖y(k)− ymeas(k)‖22

subject to u(k) = umeas(k), k ∈ Ti

(18)

which is useful if we only wish to complete an incomplete input sequence without modifying
the available input values, and

minimize ‖F (u,y)‖∗
subject to u(k) = umeas(k), k ∈ Ti

y(k) = ymeas(k), k ∈ To

(19)

which amounts to completing the input and output sequences, without modifying the avail-
able values. After solving the optimization, the range of the extended observability matrix
can be estimated from the stacked input-output matrix constructed from the optimized u

and y, for example, via the LQ factorization (8). Notice that the left hand side of (8) can
be obtained by reordering the rows of (17).

Minimizing the nuclear norm of the stacked Hankel matrix (17) is closely related to the
second algorithm in [19], in which an SVD of the stacked matrix is used to estimate the range
space of Or. The algorithm is motivated by the fact that when the persistent excitation and
full input rank assumptions (5) hold and the data are exact (E = 0 in (3)), then

rank

[

U0,r,N

Y0,r,N

]

= nx + rankU0,r,N .

The input Hankel matrix is typically full rank, so the rank of the stacked Hankel matrix
equals the true model order plus a constant.
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Table 1: ADMM algorithm

1. Initialize x, X, Z, ρ. For example, set x = 0, X = A0, Z = 0, ρ = 1.

2. Update x := argminx̂ Lρ(x̂, X, Z). See (21).

3. Update X := argminX̂ Lρ(x, X̂, Z). See (23).

4. Update Z := Z + ρ(A(x) + A0 −X).

5. Terminate if ‖rp‖F ≤ ǫp and ‖rd‖2 ≤ ǫd (see (24)–(27)). Otherwise, go to step 2.

4. ADMM algorithm

The alternating direction method of multipliers (ADMM) is a popular method for large-
scale and distributed convex optimization [26]. Its effectiveness for nuclear norm optimiza-
tion, including nuclear norm problems arising in system identification, has been demonstrated
in [12], along with several other first-order methods. In this section we give an outline of the
ADMM implementation that was used for the experiments in section 5. We also describe
two improvements that exploit specific structure in the system identification applications.

To simplify notation we state the algorithm for a generic nuclear norm optimization
problem with a quadratic regularization term:

minimize ‖A(x) + A0‖∗ +
1

2
(x− a)TH(x− a). (20)

The variable is a vector x ∈ Rn. The first term in the objective is the nuclear norm of a p×q
matrix A(x)+A0 where A : Rn → Rp×q is a linear mapping. The parameters in the second,
quadratic, term in the objective of (20) are a vector a ∈ Rn and a positive semidefinite
matrix H ∈ Sn (the set of symmetric matrices of order n).

To derive the ADMM iteration we first write (20) as

minimize ‖X‖∗ + (1/2)(x− a)TH(x− a)
subject to A(x) + A0 = X

with two variables x ∈ Rn and X ∈ Rp×q. The augmented Lagrangian for this problem is

Lρ(x,X, Z) = ‖X‖∗ +
1

2
(x− a)TH(x− a) +Tr(ZT (A(x) +A0 −X)) +

ρ

2
‖A(x) +A0 −X‖2F ,

where ρ is a positive penalty parameter. Each iteration of the ADMM consists of a mini-
mization of Lρ over x, a minimization of Lρ over X, and a simple update of the dual variable
Z. This is summarized in table 1.

The update in step 2 requires the solution of a linear equation, since Lρ(x̂, X, Z) is
quadratic in x̂. Setting the gradient of Lρ(x̂, X, Z) with respect to x̂ equal to zero gives the
equation

(H + ρM)x̂ = Aadj(ρX + ρA0 − Z) +Ha (21)
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where Aadj is the adjoint of the mapping A and M is the positive semidefinite matrix defined
by the identity

Mz = Aadj(A(z)) ∀z. (22)

Step 2 of the algorithm is discussed in more detail in the following two sections.
The minimizer X in step 3 can be expressed as

X = argmin
X̂

(

‖X̂‖∗ +
ρ

2
‖X̂ −A(x)− A0 − (1/ρ)Z‖2F

)

=

min{p,q}
∑

i=1

max{0, σi −
1

ρ
} uiv

T
i (23)

where ui, vi, σi are given by a singular value decomposition

A(x) + A0 +
1

ρ
Z =

min{p,q}
∑

i=1

σiuiv
T
i

(see [27, theorem 2]). This operation is called ‘singular value soft-thresholding’.
The residuals and tolerances in the stopping criterion in step 5 are defined as follows [26]:

rp = A(x) + A0 −X (24)

rd = ρAadj(Xprev −X) (25)

ǫp =
√
pq ǫabs + ǫrel max{‖A(x)‖F , ‖X‖F , ‖A0‖F} (26)

ǫd =
√
nǫabs + ǫrel ‖Aadj(Z)‖2, (27)

Typical values for the relative and absolute tolerances are ǫrel = 10−3 and ǫabs = 10−6. The
matrix Xprev in (25) is the value of X in the previous iteration.

Instead of using a fixed penalty parameter ρ, one can vary ρ to improve the speed of
convergence. An example of such a scheme is to adapt ρ at the end of each ADMM iteration
as follows [28]

ρ :=







τρ if ‖rp‖F > µ‖rd‖2
ρ/τ if ‖rd‖2 > µ‖rp‖F
ρ otherwise.

This scheme depends on parameters µ > 1, τ > 1 (typical values are µ = 10 and τ = 2).
Note that varying ρ has an important consequence on the algorithm in table 1. If ρ is fixed,
the coefficient matrix H + ρM in the equation (21) that is solved in step 2 of each iteration
is constant throughout the algorithm. Therefore only one costly factorization of H + ρM
is required. If we change ρ after step 5, a new factorization of H + ρM is needed before
returning to step 2. We explain in §4.2 how the extra cost of repeated factorizations can be
avoided.
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4.1. Hankel structure

An important improvement in the algorithm efficiency can be achieved by exploiting the
Hankel structure in the subspace system identification applications. The mapping A in these
applications can be expressed as

A(x) = LH(x)R

where x = (h1, h2, . . . , hr+N−1) with hi ∈ Ru, and H(x) is a block Hankel matrix

H(x) =











h1 h2 · · · hN

h2 h3 · · · hN+1

...
...

. . .
...

hr hr+1 · · · hr+N−1











with r block rows and N columns. The matrices L and R are general dense matrices. For
example, the matrix G(y) in the nuclear norm identification problem (14) can be written in
this form with L = W1, R = Π0,r,NΦ

TW2, and x = (y(0), . . . , y(r +N − 2)).
The adjoint of the mapping A is Aadj(Y ) = Hadj(L

TY RT ). The adjoint Hadj of the
Hankel mapping H maps an ru×N matrix to a sequence of r +N − 1 vectors of size u by
summing the block entries in the matrix along the anti-diagonals: if X is an r × N block
matrix with blocks xij ∈ Ru, then Hadj(X) = (y1, y2, . . . , yr+N−1) with yk =

∑

i+j=k+1 xij.
We now show how to exploit Hankel structure when constructing the matrix M in (22).

We first consider the scalar case (hi ∈ R). The Hankel mapping can be expressed in the
following form

H(x) =
1

K
EH diag(Fx)G (28)

with
E = T̃1:r, F = T̃ , G = T1:N ,

where the columns of T are the first r+N−1 columns of the discrete Fourier transform (DFT)
matrix of order K ≥ 2r + 2N − 3 and T̃ is the matrix T with its columns in reverse order.
The notation T1:N means the first N columns of T . Similarly, T̃1:r denotes the first r columns
of T̃ . The representation (28) of Hankel matrices is a permutation of the representation of
Toeplitz matrices used in [29] and is closely related to techniques for exploiting Toeplitz
structure in linear equations [30, pp 201-202]. The parametrization (28) can be extended to
a block Hankel matrix (hi ∈ Ru) by defining

E = T̃1:r ⊗ Iu, F = T̃ ⊗ Iu, G = T1:N ⊗ 1u,

where ⊗ denotes the Kronecker product, Iu is the identity matrix of size u, and 1u is a
u-vector of ones [31].

Using (28), the adjoint of Hadj can be written as

Hadj(X) =
1

K
FH diag(EXGH).

11



Table 2: Computation time in seconds for constructing the Gram matrix M

N u Standard DFT FFT

250 1 2.2 0.40 0.31

500 1 7.7 1.9 0.87

1000 1 29 11 2.4

2000 1 116 75 9.4

4000 1 448 533 37

100 3 36 0.66 0.73

250 3 164 4.8 1.9

500 3 545 28 5.8

1000 3 - 185 19

2000 3 - 1401 110

100 5 240 2.4 1.4

250 5 894 19 5.4

500 5 - 112 18

1000 5 - 774 64

Therefore,

Aadj(A(z)) = Hadj(L
TLH(z)RRT )

=
1

K2
FH diag(ELTLEH diag(Fz)GRRTGH)

=
1

K2
FH

(

(ELTLEH) ◦GRRTGH
)

Fz,

where ◦ denotes the Hadamard product. This shows that

M =
1

K2
FH

(

(ELTLEH) ◦GRRTGH
)

F. (29)

The construction ofM can be further expedited by using the fast Fourier transform algorithm
for the matrix products with E, F , and G.

To give an idea of the value of this technique, we show in table 2 the time needed to
construct M using three different methods. The matrices L and R in the example are
randomly generated dense matrices of size ru× ru and N × 2ru. The Hankel matrix H(x)
has size ru × N . In the experiment we fix r = 30 and vary N and u. The CPU times are
expressed in seconds for 2.3 GHz quad-core laptop with 8 GB of memory using MATLAB
7.10 (R2010a). All times are averaged over five randomly generated examples. Blank entries
in the table indicate instances that were not completed due to excessive execution time or
an out-of-memory error.

Three methods for constructingM are compared. The method in the first column (labeled
‘Standard’) is based on first expressing A as A(x) = x1A1+ · · ·+xnAn, and then computing
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Mij = Tr(AiAj) without exploiting structure in the coefficients. The methods in two other
columns are based on the algorithm described in this section and evaluation of M via (29).
The method labeled as ‘DFT’ generates the matrices E, G, and F explicitly and computes
the matrix-matrix products. The method in column ‘FFT’ uses MATLAB’s fast Fourier
transform routine fft.

4.2. Simultaneous diagonalization

The factorization of the matrix H + ρM needed for equation (21) is an expensive step
in the ADMM algorithm of table 1. If ρ is fixed, only one factorization at the beginning
of the algorithm is needed. However, as mentioned, the convergence can be improved by
occasionally adapting the parameter ρ. Moreover in applications one is often interested in
the trade-off between the two terms in the cost function of (20). Tracing the trade-off curve
requires solving the problem multiple times with different scalar multiples of H. In this
section we describe a preprocessing that allows one to solve multiple equations of the form

(γH + ρM)x = b, (30)

with different coefficients γ, ρ, and to compute the entire regularization trade-off curve with
a single factorization at the start of the algorithm. We assume that the matrix H + M is
positive definite. The preprocessing is based on a simultaneous diagonalization of H and M
[30, §8.7.2]. We first compute the Cholesky factorization

H +M = L̃L̃T

and a symmetric eigenvalue decomposition

L̃−1HL̃−T = QDQT ,

where Q is an orthogonal matrix and D is a diagonal matrix. It can be verified that

QT L̃−1HL̃−TQ = D, QT L̃−1ML̃−TQ = I −D

and therefore the solution x can be obtained by

x = L̃−TQ ((γ − ρ)D + ρI)−1 QT L̃−1b.

After the initial factorization, the cost of solving the equation is only quadratic in the number
of variables.

5. Identification experiments

In this section we evaluate the nuclear norm heuristic in combination with the sub-
space identification algorithms. We experiment with two scenarios from section 3. The first
scenario is the complete-data case, where the measured inputs and outputs are noisy but
completely available. In the second scenario a percentage of inputs and outputs is removed.
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All the simulations are run on a 2.3 GHz quad-core laptop with 8 GB of memory, using
MATLAB 7.10 (R2010a). The code n4sid in the MATLAB System Identification toolbox is
used to compute baseline solutions that are compared with the results of the nuclear norm
methods. The n4sid code implements both the MOESP and CVA subspace methods. If the
user does not specify a weighting to use, an automatic choice is made. We use the following
settings for n4sid. The model order is determined automatically in the code by setting
order = ’best’. With this choice the model order equals the number of singular values of
G in (9) above the average value of the smallest and largest singular values on a logarithmic
scale. We also specify two additional settings: nk = zeros(1,m) and focus = stability.
The first setting requires the code to estimate the state-space matrix D, and the second
setting forces stability of the identified model.

The criterion used to compare the quality of different models is the validation fit measure.
The fit measure is computed by the code compare in MATLAB’s System Identification
toolbox. It is defined in percentage as

fit = 100

(

1− ‖ypred − y‖
‖y −mean(y)‖

)

for a single output sequence, where y is the validation data output sequence and ypred is the
predicted output from the model. For systems with multiple outputs, we report the average
of the fit, averaged over the outputs. We always use different data for identification and
validation.

The nuclear norm optimization problems are solved using the ADMM algorithm de-
scribed in section 4. The maximum number of iterations is set to 200. The absolute and
relative solution accuracy tolerance are set to respectively ǫabs = 10−6 and ǫrel = 10−3. The
parameters for updating the penalty ρ are set to µ = 10 and τ = 2. The ADMM algorithm
typically takes less than 50 iterations (both for regularized and non-regularized nuclear norm
optimization). The only time the maximum number of iterations is reached is when a very
small regularization parameter λ (e.g., 10−3) is used in the regularized nuclear norm opti-
mization. This is not a concern since solutions with very small λ do not provide good system
identification performance and were only included to get the entire regularization trade-off
curve.

5.1. Complete inputs and outputs

In the first set of experiments we solve the regularized nuclear norm approximation
problem (14), to compute a modified output sequence. The IVM weight matrices W1 and
W2 are used. In all experiments we set the dimensions r and s to 15. A detailed comparison
of the different weightings in nuclear norm based subspace system identification is presented
in [13].

We use G(y), with y the computed output sequence, as G in (9) to compute an estimate
of the range of the extended observability matrix and then obtain a system realization via
the realization algorithm described in section 2.2. The model order is determined in the
same way as in MATLAB’s n4sid routine, i.e., the number of singular values above the
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Figure 1: Scatter plot showing the fit for the nuclear norm identification method versus the baseline method
for 156 randomly generated data sets.

average value of the smallest and largest singular value on a logarithmic scale. Another
possible approach for the system realization is to present the optimized output sequence to
n4sid. We refer the reader to [13] for numerical results with this method, which provides
comparable results to the ones we report here.

We determine λ in (14) by computing solutions for 20 logarithmically-spaced values of λ
in the interval 10−3 to 103, and selecting the value that gives the best fit on validation data.

Randomly generated models. We first present results with randomly generated systems. The
identification and validation data were generated using state-space models (A,B,C,D) from
the MATLAB function drss. The Kalman gain K was generated using randn. Only single-
input-single-output systems were considered. The state dimension nx varies from 4 to 20
in unit steps. The data length for identification was 300 and the length of the validation
data was 1500. The noise e(k) was generated with randn, i.e., a white standardized normal
distribution with zero mean and unit covariance. The input sequence was generated in the
same way as e(k), but scaled with a factor σ that varied from 2 to 10 in unit steps. In this
way we obtained examples with a wide range of signal-to-noise ratios. For each combination
of the 17 values of nx and 9 values of σ we generate one instance , i.e., the total number
of examples was 17 × 9 = 156. It takes about 6 seconds to compute the solution for one
example. This time includes the time for 20 runs of the optimization, 20 runs of state-space
model determination, and 20 calls to the function compare.

Figure 1 shows a scatter plot of fits for the nuclear norm based solution (using IVM
weights) versus the baseline solution. We note that the two approaches mostly give about
the same fit, but in more than 10% of the cases the nuclear norm method results in a

15



Table 3: Ten benchmark problems from the Daisy collection [14]. NI is the number of data points used for
identification. NV is the number of points used for validation.

Data set Description Inputs Outputs NI NV

1 96-007 CD player arm 2 2 500 1500

2 98-002 Continuous stirring tank reactor 1 2 500 1500

3 96-006 Hair dryer 1 1 300 700

4 97-002 Steam heat exchanger 1 1 1000 3000

5 99-001 SISO heating system 1 1 300 500

6 96-009 Flexible robot arm 1 1 300 700

7 96-011 Heat flow density 2 1 500 1000

8 97-003 Industrial winding process 5 2 500 1500

9 96-002 Glass furnace 3 6 250 750

10 96-016 Industrial dryer 3 3 300 500

significantly better fit.

Examples from the DaISy collection. The second set of results are ten benchmark examples
from the DaISy collection [14]. Table 3 provides a brief description of the data sets. Since
there is only one input-output sequence for each system, we break up the data sequences in
two sections. The first NI data points are used in the model identification, and the next NV

data points are used for validation.
Table 4 summarizes the performance measure (validation fit). We note that the nuclear

norm solutions are significantly better than the baseline n4sid solution in examples 1, 4,
and 10. For the other data sets the two solutions are comparable. The times reported in the
last column are the total time (in seconds) for computing the nuclear norm solution. This
includes the cost of solving (14) for 20 different values of the regularization parameter λ.

5.2. Missing inputs and outputs

In this set of experiments we evaluate the nuclear norm approach for problems with
missing inputs and outputs. We reuse the ten benchmark examples from the DaISy database,
but remove a percentage of randomly chosen inputs and outputs from the identification
sequence.

We solve the regularized nuclear norm optimization problem (18). In each experiment
we use r = s = 30 if the system is single-output and r = s = 15 otherwise. From the
optimal input and output sequences u and y we reorder the rows of (17) to obtain the
left hand side of (8), from which we obtain an estimate of range(Or) via (11) with weight
matrices W1 = W2 = I. We then compute a system realization by the algorithm described
in section 2.2. Twenty optimization problems are solved with values of the regularization
parameter λ logarithmically spaced in the interval 10−3 to 103. The model with the best
validation fit is selected.
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Table 4: The validation fit of subspace system identification via weighted nuclear norm optimization for ten
benchmark problems from the DaISy collection. The baseline solution is the model computed by n4sid. The
times in the last column are the total times for computing 20 solutions on the regularization path.

Data set Baseline Nuclear norm Time (sec.)

1 68.4 73.3 40

2 79.5 80.1 44

3 84.1 86.3 9

4 70.8 76.6 20

5 82.5 84.7 5

6 96.6 96.0 12

7 83.6 86.7 8

8 58.9 57.7 25

9 55.3 59.4 168

10 40.8 48.2 50

Table 5 summarizes the results. (The dashed entries indicate a negative fit.) Except
for data set 4, the regularized nuclear norm optimization approach worked surprisingly well
even with a high percentage of missing data. For most data sets the fit measure degrades
very slowly with increasing percentages of missing data.

Note that a complete validation sequence was used to determine the regularization pa-
rameter λ. We also experimented with a non-regularized identification method for missing
data based on solving problem (19), and found that the results were only slightly worse than
the results in table 5.

6. Conclusions

In this paper we presented a subspace system identification method using the nuclear
norm optimization. We investigated the benefit of instrumental variables in the nuclear
norm approach to improve the handling of data with colored noise. Experimental results
showed that the nuclear norm subspace identification performed only slightly better than the
standard SVD-based subspace methods when no inputs and outputs are missing. The main
benefit of the nuclear norm approach is its ability to handle data sets with a high percentage
of missing inputs and outputs, as well as other identification problems with additional convex
constraints on the inputs and outputs. We also presented techniques to improve the efficiency
of the alternating direction method of multipliers for regularized and non-regularized nuclear
norm optimization with Hankel structure.

Acknowledgment. This material is based upon work supported by the National Science Foun-
dation under Grant No. 1128817.

17



Table 5: Validation fit for models obtained by a regularized nuclear norm optimization method, applied to
ten DaISy problems with different percentages of missing inputs and outputs.

Data set 0% 10% 20% 30% 40% 50%

1 72.0 72.4 72.2 71.8 72.5 71.0

2 84.7 86.2 85.3 85.4 85.2 83.7

3 84.4 88.6 84.7 84.2 80.6 81.0

4 29.7 45.1 35.6 − − −
5 84.3 83.9 84.0 83.9 82.9 83.4

6 95.9 95.5 95.5 95.9 89.9 79.4

7 86.5 86.5 86.7 86.3 86.3 85.3

8 67.5 67.4 67.0 66.5 67.5 64.5

9 49.5 34.1 31.5 40.3 44.7 43.2

10 44.1 44.5 41.5 30.7 41.8 29.2
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