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Abstract: In recent years there has been growing interest in convex optimization techniques
for system identification and time series modeling. This interest is motivated by the success of
convex methods for sparse optimization and rank minimization in signal processing, statistics,
and machine learning, and by the development of new classes of algorithms for large-scale
nondifferentiable convex optimization.

1. INTRODUCTION

Low-dimensional model structure in identification prob-
lems is typically expressed in terms of matrix rank or
sparsity of parameters. In optimization formulations this
generally leads to non-convex constraints or objective
functions. However, formulations based on convex penal-
ties that indirectly minimize rank or maximize sparsity
are often quite effective as heuristics, relaxations, or, in
rare cases, exact reformulations. The best known exam-
ple is 1-norm regularization in sparse optimization, i.e.,
the use of the 1-norm ‖x‖1 in an optimization problem
as a substitute for the cardinality (number of nonzero
elements) of a vector x. This idea has a rich history in
statistics, image and signal processing [Rudin et al., 1992,
Tibshirani, 1996, Chen et al., 1999, Efron et al., 2004,
Candès and Tao, 2007], and an extensive mathematical
theory has been developed to explain when and why it
works well [Donoho and Huo, 2001, Donoho and Tanner,
2005, Candès et al., 2006b, Candès and Tao, 2005, Candès
et al., 2006a, Candès and Tao, 2006, Donoho, 2006, Tropp,
2006]. Several excellent surveys and tutorials on this topic
are available; see for example [Romberg, 2008, Candès and
Wakin, 2008, Elad, 2010].

The 1-norm used in sparse optimization has a natural
counterpart in the nuclear norm for matrix rank minimiza-
tion. Here one uses the penalty function ‖X‖∗ where ‖ · ‖∗
denotes the nuclear norm (sum of singular values) as a sub-
stitute for rank(X). Applications of nuclear norm meth-
ods in system theory and control were first explored by
[Fazel, 2002, Fazel et al., 2004], and have recently gained in
popularity in the wake of the success of 1-norm techniques
for sparse optimization [Recht et al., 2010]. Much of the
recent work in this area has focused on the low-rank matrix
completion problem [Candès and Recht, 2009, Candès and
Plan, 2010, Candès and Tao, 2010, Mazumder et al., 2010],
i.e., the problem of identifying a low-rank matrix from
a subset of its entries. This problem has applications in
collaborative prediction [Srebro et al., 2005] and multi-task
learning [Pong et al., 2011]. Applications of nuclear norm
methods in system identification are discussed in [Liu and
Vandenberghe, 2009a, Grossmann et al., 2009, Mohan and
Fazel, 2010, Gebraad et al., 2011, Fazel et al., 2011].

The 1-norm and nuclear norm techniques can be extended
in several interesting ways. The two types of penalties can
be combined to promote sparse-plus-low-rank structure
in matrices [Candès et al., 2011, Chandrasekaran et al.,
2011]. Structured sparsity, such as group sparsity or hi-
erarchical sparsity, can be induced by extensions of the
1-norm penalty [Bach et al., 2012, Jenatton et al., 2011,
Bach et al., 2011]. Finally, Chandrasekaran et al. [2010]
and Bach [2010] describe systematic approaches for con-
structing convex penalties for different types of nonconvex
structural constraints.

In this tutorial paper we discuss a few applications of con-
vex methods for structured rank minimization and sparse
optimization, in combination with classical ideas from
system identification and signal processing. We focus on
subspace algorithms for system identification and topology
selection problems in graphical models. The second part of
the paper (section 4) provides a short survey of available
convex optimization algorithms.

2. SYSTEM IDENTIFICATION

Subspace methods in system identification and signal
processing rely on singular value decompositions (SVDs)
to make low-rank matrix approximations [Ljung, 1999].
The structure in the approximated matrices (for example,
Hankel structure) is therefore lost during the low-rank
approximation. A convex optimization formulation based
on the nuclear norm penalty offers an interesting alterna-
tive, because it promotes low rank while preserving linear
matrix structure. An additional benefit of an optimiza-
tion formulation is the possibility of adding other convex
regularization terms or constraints on the optimization
variables.

As an illustration, consider the input-output equation used
as starting point in many subspace identification methods:

Y = OX +HU.

The matrices U and Y are block Hankel matrices con-
structed from a sequence of inputs u(t) and outputs y(t)
of a state space model

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t),



and the columns of X form a sequence of states x(t).
The matrix H depends on the system matrices, and O is
an extended observability matrix [Verhaegen and Verdult,
2007, p.295] A simple subspace method consists in forming
the Hankel matrices U and Y and then projecting the
rows of Y on the nullspace of U . If the data are exact
and a persistence of excitation assumption holds, the rank
of the projected output matrix is equal to the system
order and from it a system realization is easily computed.
When the input-output data are not exact, one can use
a singular value decomposition of the projected output
Hankel matrix to estimate the order and compute a system
realization. However, as mentioned, this step destroys the
Hankel structure in Y and U . The nuclear norm penalty
on the other hand can be used as a convex heuristic
for indirectly reducing the rank, while preserving linear
structure. For example, if the inputs are exactly known
and the measured outputs ym(t) are subject to error, one
can solve the convex problem

minimize ‖Y Q‖∗ + ρ
∑

t

‖y(t)− ym(t)‖
2
2

where the columns of Q form a basis of the nullspace of
U and ρ is a positive weight. The optimization variables
are the model outputs y(t) and the matrix Y is a Hankel
matrix constructed from the model outputs y(t). This is
a convex optimization problem that can be solved via
semidefinite programming. We refer the reader to [Liu and
Vandenberghe, 2009a,b] for more details and numerical
results. As an important advantage, the optimization
formulation can be extended to include convex contraints
on the model outputs. Another promising application
is identification with missing data [Ding et al., 2007,
Grossmann et al., 2009].

3. GRAPHICAL MODELS

In a graphical model of a normal distribution x ∼ N (0,Σ)
the edges in the graph represent the conditional depen-
dence relations between the components of x. The vertices
in the graph correspond to the components of x; the
absence of an edge between vertices i and j indicates that
xi and xj are independent, conditional on the other entries
of x. Equivalently, vertices i and j are connected if there
is a nonzero in the i, j position of the inverse covariance
matrix Σ−1.

A key problem in the estimation of the graphical model
is the selection of the topology. Several authors have
addressed this problem by adding a 1-norm penalty to the
maximum likelihood estimation problem, and solving

minimize trCX − log detX + ρ‖X‖1. (1)

HereX denotes the inverse covariance Σ−1, the matrix C is
the sample covariance matrix, and ‖X‖1 =

∑

ij |Xij |. See

[Meinshausen and Bühlmann, 2006, Banerjee et al., 2008,
Ravikumar et al., 2008, Friedman et al., 2008, Lu, 2009,
Scheinberg and Rish, 2009, Yuan and Lin, 2007, Duchi
et al., 2008, Li and Toh, 2010, Scheinberg and Ma, 2012].

Graphical models of the conditional independence rela-
tions can be extended to Gaussian vector time series
[Brillinger, 1996, Dahlhaus, 2000]. In this extension the

topology of the graph is determined by the sparsity pattern
of the inverse spectral density matrix

S(ω) =

∞
∑

k=−∞

Rke
jkω,

with Rk = Ex(t + k)x(t)T . Using this characterization,
one can formulate extensions of the regularized maximum
likelihood problem (1) to vector time series. In [Songsiri
et al., 2010, Songsiri and Vandenberghe, 2010] autoregres-
sive models

x(t) = −

p
∑

k=1

Akx(t− k) + v(t), v(t) ∼ N (0,Σ),

were considered, and convex formulations were presented
for the problem of estimating the parameters Ak, Σ,
subject to conditional independence constraints, and of
estimating the topology via a 1-norm type regularization.
The topology selection problem leads to the following
extension of (1):

minimize tr(CX)− log detX00 + ρh(X)
subject to X � 0.

(2)

The variable X is a (p + 1) × (p + 1) block matrix with
blocks of size n × n (the length of the vector x(t)), and
X00 is the leading block of X. The penalty h is chosen to
encourage a common, symmetric sparsity pattern for the
diagonal sums

p−k
∑

i=0

Xi,i+k, k = 0, 1, . . . , p,

of the blocks in X.

An extension to ARMA processes is studied by Avventiy
et al. [2010].

4. ALGORITHMS

For small and medium sized problems the applications
discussed in the previous sections can be handled by
general-purpose convex optimization solvers, such as the
modeling packages CVX [Grant and Boyd, 2007] and
YALMIP [Löfberg, 2004], and general-purpose conic op-
timization packages. In this section we discuss algorithmic
approaches that are of interest for large problems that fall
outside the scope of the general-purpose solvers.

4.1 Interior-point algorithms

Interior-point algorithms are known to attain a high ac-
curacy in a small number of iterations, fairly independent
of problem data and dimensions. The main drawback is
the high linear algebra complexity per iteration associated
with solving the Newton equations that determine search
directions. However sometimes problem structure can be
exploited to devise dedicated interior-point implementa-
tions that are significantly more efficient than general-
purpose solvers.

A simple example is the 1-norm approximation problem

minimize ‖Ax− b‖1



with A of size m × n. This can be formulated as a linear
program (LP)

minimize
m
∑

i=1

yi

subject to

[

A −I
−A −I

] [

x
y

]

≤

[

b
−b

]

,

at the expense of introducingm auxiliary variables and 2m
linear inequality constraints. By taking advantage of the
structure in the inequalities, each iteration of an interior-
point method for the LP can be reduced to solving linear
systems ATDA∆x = r where D is a positive diagonal
matrix. As a result, the complexity of solving the 1-
norm approximation problem using a custom interior-
point solver is roughly the equivalent of a small number of
weighted least-squares problems.

A similar result holds for the nuclear norm approximation
problem

minimize ‖A(x)−B‖∗ (3)

where A(x) is a matrix valued function of size p×q and x is
an n-vector of variables. This problem can be formulated
as a semidefinite program (SDP)

minimize trU + trV

subject to

[

U (A(x)−B)T

A(x)−B V

]

� 0
(4)

with variables x, U , V . The very larger number of variables
(O(p2) if we assume p ≥ q) makes the nuclear norm
optimization problem very expensive to solve by general-
purpose SDP solvers. A specialized interior-point solver
for the SDP is described in [Liu and Vandenberghe,
2009a], with a linear algebra cost per iteration of O(n2pq)
if n ≥ max{p, q}. This is comparable to solving the
matrix approximation problem in Frobenius norm, i.e.,
minimizing ‖A(x) − B‖F , and the improvement makes it
possible to solve nuclear norm problems with p and q on
the order of several hundred by an interior-point method.

We refer the reader to the book chapter [Andersen et al.,
2012] for additional examples of special-purpose interior-
point algorithms.

4.2 Nonlinear optimization methods

Burer and Monteiro Burer and Monteiro [2003, 2005] have
developed a large-scale method for semidefinite program-
ming, based on substituting a low-rank factorization for
the matrix variable and solving the resulting nonconvex
problem by an augmented Lagrangian method. Adapted
to the SDP (4), the method amounts to reformulating the
problem as

minimize ‖L‖2F + ‖R‖2F
subject to A(x)−B = LRT (5)

with variables x, L ∈ Rp×r, R ∈ Rq×r, where r is a upper
bound on the rank of A(x) − b at optimum. Recht et al.
[2010] discuss in detail Burer and Monteiro’s method in
the context of nuclear norm optimization.

4.3 Proximal gradient algorithms

The proximal gradient algorithm is an extension of the
gradient algorithm to problems with simple constraints or
with simple nondifferentiable terms in the cost function.
It is less general than the subgradient algorithm, but it
is typically much faster and it handles many types of
nondifferentiable problems that occur in practice.

The proximal gradient algorithm applies to a convex
problem of the form

minimize f(x) = g(x) + h(x), (6)

in which the cost function f is split in two components g
and h, with g differentiable and h a ‘simple’ nondifferen-
tiable function. ‘Simple’ here means that the prox-operator
of h, defined as the mapping

proxth(x) = argmin
u

(

h(u) +
1

2t
‖u− x‖22

)

(with t > 0), is inexpensive to compute. It can be shown
that if h is closed and convex, then proxth(x) exists and
is unique for every x.

A typical example is h(x) = ‖x‖1. Its prox-operator is the
element-wise ‘soft-thresholding’

proxth(x)i =

{

xi − t if xi ≥ t
0 if −t ≤ xi ≤ t
xi + t if xi ≤ −t.

Constrained optimization problems

minimize g(x)
subject to x ∈ C

can be brought in the form (6) by defining h(x) = IC(x),
the indicator function of C (i.e., IC(x) = 0 if x ∈ C and
IC(x) = +∞ if x 6∈ C). The prox-operator for IC is the
Euclidean projection on C. Prox-operators share many of
the properties of Euclidean projections on closed convex
sets. For example, they are nonexpansive, i.e.,

‖proxth(x)− proxth(y)‖2 ≤ ‖x− y‖2

for all x, y. (See Moreau [1965].)

The proximal gradient method for minimizing (6) uses the
iteration

x+ = proxth (x− t∇g(x))

where t > 0 is a step size. The proximal gradient update
consists of a standard gradient step for the differentiable
term g, followed by an application of the prox-operator
associated with the non-differentiable term h. It can be
motivated by noting that x+ is the minimizer of the
function

h(y) + g(x) +∇g(x)T (y − x) +
1

2t
‖y − x‖22

over y, so x+ minimizes an approximation of f , obtained
by adding to h a simple local quadratic model of g.

It can be shown that if ∇g is Lipschitz continuous with
constant L, then the suboptimality f(x(k))− f⋆ decreases
to zero as O(1/k) [Nesterov, 2004, Beck and Teboulle,
2009]. Recently, faster variants of the proximal gradient



method with an 1/k2 rate convergence, under the same
assumptions and with the same complexity per step, have
been developed [Nesterov, 2004, 2005, Beck and Teboulle,
2009, Tseng, 2008, Becker et al., 2011].

The (accelerated) proximal gradient methods are well
suited for problems of the form

minimize g(x) + ‖x‖

where g is differentiable with a Lipschitz-continuous gra-
dient. Most common norms have easily computed prox-
operators, and the following property is useful when com-
puting the prox-operator of a norm h(x) = ‖x‖:

proxth(x) = x− tPB(x/t),

where PB is Euclidean projection on the unit ball in the
dual norm.

In other applications it is advantageous to apply the
proximal gradient method to the dual problem. Consider
for example an optimization problem

minimize f(x) + ‖Ax− b‖

with f strongly convex. Reformulating this problem as

minimize f(x) + ‖y‖
subject to y = Ax− b

(7)

and taking the Lagrange dual, gives

maximize bT z − f∗(AT z)
subject to ‖z‖d ≤ 1

where f∗(u) = supx(u
Tx−f(x)) is the conjugate of f and

‖ · ‖d is the dual norm of ‖ · ‖. It can be shown that if f is
strongly convex, then f∗ is differentiable with a Lipschitz
continuous gradient. If projection on the unit ball of the
dual norm is inexpensive, the dual problem is therefore
readily solved by a fast gradient projection method.

An extensive library of fast proximal-type algorithms
is available in the MATLAB software package TFOCS
[Becker et al., 2010].

4.4 ADMM

The Alternating Direction Method of Multipliers (ADMM)
was proposed in the 1970s as a simplified version of
the augmented Lagrangian method. It is a simple and
often very effective method for large-scale or distributed
optimization, and has recently been applied successfully
to the regularized covariance selection problem mentioned
above [Scheinberg et al., 2010, Scheinberg and Ma, 2012].
The recent survey by Boyd et al. [2011] gives an overview
of the theory and applications of ADMM. Here we limit
ourselves to a description of the method when applied to a
problem of the form (7). The ADMM iteration consists of
two alternating minimization steps (over x and y) of the
augmented Lagrangian

L(x, y, z) =

f(x) + ‖y‖+ zT (y −Ax+ b) +
t

2
‖y −Ax+ b‖22,

followed by an update

z := z + t(y −Ax− b)

of the dual variable z. The complexity of minimizing
over x depends on the properties of f . If f is quadratic,
for example, it reduces to a least-squares problem. The
minimization of the augmented Lagrangian over y reduces
to the evaluation of the prox-operator of the norm ‖ · ‖.

A numerical comparison of the ADMM and proximal
gradient algorithms for nuclear norm minimization can be
found in the recent paper by Fazel et al. [2011].

5. SUMMARY

Advances in algorithms for large-scale nondifferentiable
convex optimization are leading to a greater role of con-
vex optimization in system identification and time series
modeling. These techniques are based on formulations that
incorporate convex penalty functions that promote low-
dimensional model structure (such as sparsity or rank).
Similar techniques have been used extensively in signal
processing, image processing, and machine learning. While
at this point theoretical results that characterize the suc-
cess of these convex heuristics in system identification
are limited, the extensive theory that supports 1-norm
techniques in sparse optimization, gives hope that progress
can be made in our understanding of similar techniques for
system identification as well.
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