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Abstract
We consider the task of supervised learning while focusing on the impact that background knowl-
edge may have on the accuracy and robustness of learned classifiers. We consider three types
of background knowledge: causal domain knowledge, functional dependencies and logical con-
straints. Our findings are set in the context of an empirical study that compares two classes of
classifiers: Arithmetic Circuit (AC) classifiers compiled from Bayesian network models with vary-
ing degrees of background knowledge, and Convolutional Neural Network (CNN) classifiers. We
report on the accuracy and robustness of such classifiers on two tasks concerned with recognizing
synthesized shapes in noisy images. We show that classifiers that encode background knowledge
need much less data to attain certain accuracies and are more robust against noise level in the data
and also against mismatches between noise patterns in the training and testing data.
Keywords: Supervised learning; Bayesian networks, neural networks, arithmetic circuits; back-
ground knowledge.

1. Introduction

In recent years, supervised learning has become very influential and now stands behind most real-
world applications of AI. In supervised learning, one learns a function from labeled data, a practice
that is now dominated by the use of neural networks; see (Goodfellow et al., 2016; Hinton et al.,
2006; Bengio et al., 2006; Ranzato et al., 2006). Supervised learning can be applied in other con-
texts as well, such as causal models in the form of Bayesian networks (Pearl, 1988, 2000; Pearl and
Mackenzie, 2018; Schwalb, 1993; Friedman et al., 1997). For example, one can compile a Bayesian
network query into an Arithmetic Circuit (AC) that maps evidence (inputs) to the posterior distribu-
tion on the labels of interest (output) (Darwiche, 2003; Jaeger, 2004; Sanner and McAllester, 2005;
Chavira and Darwiche, 2007; Mateescu et al., 2008; Shen et al., 2016; Choi and Darwiche, 2017;
Darwiche, 2020). AC parameters, which correspond to Bayesian network parameters, can then be
learned from labeled data using gradient descent (Russell et al., 1995; Darwiche, 2003; Lowd and
Domingos, 2008). Hence, like a neural network, the AC is a circuit that computes a function whose
parameters can be learned from labeled data.

The use of ACs in this fashion can be viewed as model-based supervised learning, in contrast to
model-free supervised learning using neural networks. Model-based supervised learning is attractive
since it integrates background knowledge, which has a number of advantages: a reduced reliance
on data, improved robustness and the ability to provide data-independent guarantees on the learned
function. Despite these promises, this type of model-based supervised learning is not very common
today and, hence, the underlying promises rarely exhibit concretely through empirical studies or
real-world applications. There are a number of reasons for the missed opportunities. Some are
profound and pertain to the fact that circuits compiled from causal models may not be expressive
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enough to capture the data-generating function when the used causal model is incomplete (e.g.,
missing nodes or edges) (Shen et al., 2019; Suermondt, 1992; Kjærulff, 1994; van Engelen, 1997;
Elidan and Friedman, 2005). While an initial proposal has been extended recently to mitigate this
barrier (Choi et al., 2019; Choi and Darwiche, 2018), two major barriers remain even when the
causal model is complete. The first barrier pertains to the complexity of compiling ACs, which is
PP-hard and can be quite challenging even for causal models of moderate size. The second barrier
relates to the complexity of training circuits from large datasets Thiesson et al. (2001). This barrier
is shared with neural networks, except that significant advances have been made on that front. Such
advances have been applied to the training of ACs only very recently; see, e.g., Molina et al. (2019);
Peharz et al. (2020); Darwiche (2020). This particularly includes the use of tensor graphs which is
standard for neural networks and can lead to orders of magnitude savings in training time.

Motivated by recent advances on compiling and training ACs (Darwiche, 2020), we perform
an empirical study in which we compare classifiers based on neural networks with ones based on
ACs compiled from causal models.1We consider tasks for recognizing synthesized shapes in noisy
images, and causal models that include different types of background knowledge: independence,
functional dependencies, and logical constraints. We show that classifiers which integrate back-
ground knowledge need much less data to attain certain accuracies and are more robust against
noise level in the data and also against mismatches between noise patterns in the training and test-
ing data. While these results may appear intuitive and expected, the underlying experiments that
support these conclusions were only possible due to the recent advances we mentioned earlier.

We start with some background material in Section 2 and follow by a description of the con-
sidered classification tasks in Section 3. The Bayesian network models we use for these tasks and
corresponding AC classifiers are discussed in Section 4, with neural network classifiers discussed
in Section 5. We then discuss data generation and training in Section 6, followed by experimental
results in Sections 7 and 8. We finally close with a discussion and a future outlook in Section 9.

2. Background

A Bayesian Network (BN) is specified by a directed acyclic graph (DAG) and a set of Conditional
Probability Tables (CPTs). The CPT for variable X with parents U specifies conditional proba-
bilities θx|u = Pr(x|u), known as network parameters. If parameter θx|u = 0, the CPT contains
a logical constraint (instantiation xu is impossible). If all CPT parameters are in {0, 1}, the CPT
specifies a functional dependency (the state of X is determined by the state of U).

We consider Bayesian network and neural network classifiers in this paper. A classifier is a
function c that maps a feature vector x to a class label y. A Bayesian network classifier is induced
by designating some network variables X as features and some network variable Y as the class.
The corresponding classification function typically has the form: c(x) = argmaxy Pr(y|x), which
selects a class label that attains the highest conditional probability. A neural network classifier, in
contrast, tries to approximate the function c(x) directly by fitting a function to data.

The classification function of a Bayesian network can be represented using an AC (see Fig-
ure 1), which can be compiled from the Bayesian network; see, e.g., (Darwiche, 2003; Chavira
and Darwiche, 2007; Darwiche, 2020). The classification function of a neural network can also
be represented using a circuit with the addition of activation nodes. In particular, a neural net-
work is composed of neurons, where each neuron computes σ(

∑
iwixi). Here, wi is called a

1. Some preliminary results are reported in Darwiche (2020), with a narrower scope that did not include neural networks.
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(b) An AC that computes a Bayesian network query O =
Pr(y|x,w). Here, α = Pr(y, x, w) and β = Pr(ȳ, x, w)

Figure 1: The AC uses adders (+), multipliers (∗), inverters (◦), 1 − θ units (•), and normalizing units
(Σ = 1). Excluding the Σ unit (division), which is not strictly needed for classification, we
can emulate ◦ and • units using adders. The AC parameters θ1, . . . , θ4 correspond to Bayesian
network parameters (the AC implicitly integrates the 0/1 parameters of the Bayesian network).

neuron’s weight and σ is called an activation function. For example, a ReLU activation has the form
σ(x) = max(0, x) and is equal to 0 if x < 0 and is equal to x otherwise.

Both approaches can learn their classifier parameters from data. In a Bayesian network, the
learned parameters are conditional probabilities that populate the network CPTs. In a neural net-
work, the learned parameters are the weights of the neurons. A Bayesian network typically rep-
resents a model that can encode certain types of background knowledge such as cause-and-effect
relationships, functional dependencies between variables, and logical constraints. Moreover, when
compiling a Bayesian network into an AC, any background knowledge encoded in the network car-
ries over to the AC as well; see (Darwiche, 2009). In contrast, the neural network approach assumes
that the most salient relationships between the features and the label can be learned from the data.

3. Classification Tasks: Recognizing Shapes

We consider two classification tasks, images depicted below, for rectangles (left) and digits (right).

We first consider the task of detecting rectangles in 10×10 black-and-white noisy images. A rectan-
gle is characterized by the row and col of its upper-left corner, its width and height. A rectangle can
have a shape, which is either tall (height > width) or wide (height < width). Variables row and col
have integer values from 1 to 10 corresponding to the coordinate of the upper-left corner. Variables
width and height also have integer values from 1 to 10. We train classifiers that predict rectangle
properties in noisy images. Each classifier has 100 inputs corresponding to the image pixels, and
outputs for shape, row, col, width and height. Our second task is to classify a seven-segment digit
in a 10×10 black-and-white noisy image. A seven-segment digit is composed of a selection of three
horizontal segments and four vertical segments. For example, digit 8 is generated by selecting all
seven segments and digit 0 is generated by selecting all segments but the middle horizontal segment.
We train a classifier that predicts which digit is rendered in a noisy image. Each classifier has 100
inputs corresponding to the image pixels, and one output for each digit from 0 to 9.
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Figure 2: Generative models for rectangles and seven-segment digits.

4. AC Classifiers from Bayesian Network Models

Our first classifiers are based on generative models (Bayesian networks).

Rectangle Model We consider the generative model of rectangles shown in Figure 2.2 The value
of height is limited by the value of row, and the value of width is limited by the value of col.
Variable rowi indicates whether the rectangle will render in row i so it is determined by the values
of row and height. Similarly, each colj is determined by the values of col and width. Finally,
each variable pixelij is determined by rowi and colj where pixelij=on iff rowi=on and colj=on.
However, to generate noisy rectangle images, we would need a distribution for each variable pixelij
that is conditioned on the values of rowi and colj, where such distributions are learned from data. The
other distributions that get learned from data are the prior distributions for row and col (upper-left
corner of the rectangle) in addition to the conditional distributions for height and width.

Beyond the causal structure that connects variables, there are two types of background knowl-
edge that we can inject into the rectangle model. First, consider knowledge that manifests as logical
constraints. Given the row and column of the upper-left corner, we may be able to infer bounds on
the heights and widths of the rectangle. For example, if the upper-left corner of a rectangle is on
the third row, then its height is at most 8. We can thus fix the corresponding CPT parameters in the
model: P (height=9|row=3) = P (height=10|row=3) = 0. Similarly, we can fix some of the
CPT parameters for both P (width|col) and P (shape|width, height) to zero. Next, consider knowl-
edge that manifests as functional dependencies, where the value of a node is uniquely determined
by the values of its direct causes. If we consider the CPT parameter P (rowi|row, height), we find
that the value of the binary variable rowi is uniquely determined by the row of the upper-left corner
and the height of the rectangle. In particular, rowi=on iff row ≤ rowi < row+height and similarly
colj=on iff col ≤ colj < col + width so each variable colj is also a function of col and width.

Suppose now that we wish to build a classifier that predicts the rectangle shape. We will generate
an AC from the Bayesian network model, where variables pixelij are the AC inputs and variable
shape is its output as shown in (Darwiche, 2020). The AC parameters will correspond to Bayesian
network parameters: some parameters will be fixed due to background knowledge, others will be
learned from labeled data. Background knowledge reduces the number of learned parameters and
can be critical for successfully compiling and efficiently training ACs (Darwiche, 2020).

2. Haiying Huang proposed this particular rectangle model.
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Digits Model The generative model for seven-segment digits is a composition of the rectangle
model; see Figure 2 (Darwiche, 2020). If we treat each segment as a rectangle, a seven-segment
digit is a combination of seven rectangle models (called segment modules). If we know the row
& column of the digit’s upper-left corner in addition to its height & width, we can determine the
location of each segment. In our model, the height of a digit is always seven and its width is always
four. Hence, the row & column of the upper-left corner completely determine the bounding box
of the digit in the image, in addition to the location and size of each potential segment. Moreover,
once we know the digit’s identity we also know which of the seven segments are active. Hence,
each variable activek, k ∈ {1, . . . , 7}, is functionally determined by the variable digit. For each
segment module k, we build a sub-module with the same architecture as the rectangle model, except
that the values of segment pixels also depend on whether the segment is active; that is, a segment
variable pixelkij is turned on only if segment k is active. Finally, each variable pixelij for the image is a
disjunction of the pixel values for each segment module. That is, pixelij=on iff pixelkij=on for some
segment k. Again, when generating noisy images, the relation between pixelij and its direct causes
pixelkij is probabilistic and the corresponding conditional distributions are learned from data. The
other distributions learned from data are the priors on row, col and digit. Like the rectangle model,
the digit model encodes background knowledge in the form of logical constraints and functional
dependencies. The compiled AC has variables pixelij as its input and variable digit as its output.

5. Convolutional Neural Network (CNN) Classifiers

We next describe the CNN architectures for the rectangle and digits classifiers, which differ by the
type of outputs: 2 for rectangle shape (wide vs. tall), 10 each for rectangle height/width/row/column
(values), and 10 for digits (one for each digit). We set the padding mode to SAME, and use ReLU
activations. The input layer is a 10× 10 black-and-white image, then (1) a convolutional layer with
eight 4×4 filters with stride 1, followed by batch normalization, (2) a max-pooling layer with 2×2
filters with stride 2, followed by dropout (rate 20%), (3) a convolutional layer with sixteen 3 × 3
filters with stride 1, followed by batch normalization, (4) a max-pooling layer with 2×2 filters with
stride 2, followed by dropout (rate 20% for rectangles, 50% for digits), (5) a fully-connected layer.3

6. Classifiers, Data Generation & Training

We conduct experiments using three types of classifiers that we describe next.
• BN classifier: An AC compiled from a Bayesian network that does not include logical con-

straints or functional dependencies (i.e., no known parameters). We do exploit the existence of
functional dependencies but without incorporating the corresponding parameters into the AC.4

• BN+BK classifier: An AC compiled from a Bayesian network that encodes logical constraints
and functional dependencies (i.e., some of the network parameters are known). This AC has a
smaller number of trainable parameters compared to the AC described above.
• CNN classifier: A convolutional neural network as described in Section 5.

3. We tuned the dropout rate, the number/size of filters and the learning rate. But we don’t know of a way to guarantee
that this is the best performing neural network.

4. The AC compilation algorithm can computationally exploit that a node X is a function of its parents U, X = f(U),
even when the function f is not known; see (Darwiche, 2020). This is necessary to successfully compile the digits
model due to its very high treewidth. However, since our training algorithm does not guarantee that a functional
dependency will be learned, the resulting AC can be viewed as an approximate compilation.
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The ACs were represented using tensor graphs as described in Darwiche (2020). The sum of
tensor sizes in the graph is reported next as the AC size. The ACs for predicting rectangle shape had
the following sizes: 3, 540, 319 (BN) and 3, 522, 136 (BN+BK). The ACs for predicting digits had
the following sizes: 62, 185, 299 (BN) and 2, 256, 646 (BN+BK).5 For the rectangle classifiers, the
counts of trainable parameters are: 5, 220 (BN), 136 (BN+BK) and 1, 642 (CNN). For the digits
classifiers: 48, 141 (BN), 275 (BN+BK) and 2, 802 (CNN). One reason why BN+BK classifiers had
such a small number of parameters, beyond integrating background knowledge, is that we tied the
CPTs of pixels so they share trainable parameters.6

In what follows, a clean image is one generated from the model without adding noise, while a
noisy image is a clean image to which noise was added using one of the methods described below.

Generating Rectangle Data A rectangle in an image is defined by the row and column of its
upper-left corner, in addition to its width and height. Hence, we can generate all clean rectangle
images by considering all valid combinations of row, column, width and height (we omit squares).
We use a black color for pixels inside the rectangle and a white color for pixels outside the rectangle.

A noisy rectangle image is obtained by adding the following types of noise, in order. First, there
are three parameters x, y and z, in addition to the rectangle widthW , heightH and areaA = W ·H .
Removal noise (x): we choose a random number k from [0, x] and then flip k random black pixels
to white. Rectangle noise (y): We add at most y smaller black rectangles to the white background
(stop when no white pixels are left). We first select a random position for the upper-left corner. In
the available white space, we select a random width and height such that the resulting area is at
most A−k

2 . We further guarantee there is at least one pixel separating each rectangle. Pixel noise
(z): We flip z random white pixels to black. If no further valid perturbations become possible, we
stop early. We assume that x is at most min(W,H)− 1 and z is at most min(A− k− 1, R2 ), where
R is the count of white pixels left. The following table depicts seven levels of noise which result
from setting parameters x, y and z (we will use these noise categories later in Section 7).

noise level null ignorable easy medium moderate hard superhard
(removal,rectangle,pixel) (0,0,0) (0,2,2) (1,2,5) (1,5,5) (1,7,5) (2,7,7) (2,10,10)

While the noise generation model may appear complex, it is meant to avoid excessive distortion
of the original rectangle and to keep it as the largest rectangle in the noisy image. Otherwise, it
would be difficult even for a human to recognize these rectangles. Some example noisy rectangles
are depicted below (with increasing noise from left-to-right).

One special type of noise we use is paired noise: an adjacent pair of black pixels like in the
following examples (we will use paired noise when assessing classifier robustness in Section 8):

5. We employed value propagation and pruning techniques when compiling ACs with background knowledge. This is
quite effective on the digits model as we can infer that some pixels will never be turned on (the pruning lessens as the
image size gets larger). This explains the significant drop in the digits AC size when adding background knowledge
and why the digits AC is smaller than the rectangle AC on 10× 10 images (this changes for larger image sizes).

6. We ran comparisons between BN and BN+BK, with and without tying parameters (omitted for space). Incorporating
background knowledge improves accuracy, whether we tie parameters or not. Generally, tying parameters improves
computational performance, as well as accuracy, whether we incorporate background knowledge or not. However,
improvements in accuracy were more consistent when incorporating background knowledge rather than not.
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Table 1: Accuracy of detecting rectangle properties while varying training data size.

Data
25
50

100
250
500

1000
2000
4000
8000

BN Classifier
Shape Col Height
50.64 29.53 20.35
53.17 34.77 19.95
56.32 49.67 24.08
67.54 63.51 26.49
77.92 73.02 31.45
81.20 91.93 69.20
83.40 98.11 91.63
88.99 98.98 98.61
95.44 99.79 99.15

BN+BK Classifier
Shape Col Height
96.71 87.23 81.88
93.12 91.88 86.79
94.44 97.37 93.04
98.97 98.42 97.26
99.82 98.61 97.38
99.98 98.86 97.56
99.99 98.90 97.66

100.00 98.95 97.85
99.99 99.18 98.01

CNN Classifier
Shape Col Height
72.02 32.26 20.72
81.73 49.74 24.71
83.73 75.21 31.27
86.13 84.74 39.09
90.05 91.67 61.54
97.12 96.56 84.54
98.37 98.77 92.52
99.18 99.39 96.35
99.64 99.77 97.51

Table 2: Accuracy of classifying digits while varying the size of training data.
Training Data 25 50 100 250 500 1000 2000 4000 8000

BN 12.68 11.66 17.42 23.57 32.19 42.49 56.35 84.33 91.49
BN+BK 72.07 96.39 98.52 98.56 98.64 98.83 99.10 99.07 99.14
CNN 30.34 29.22 43.45 78.79 95.13 97.29 97.97 98.48 98.48

Generating Digits Data Generation of digit images is similar to the generation of rectangles. We
first create a clean image of a digit in a random position. We add noisy images by selecting some
number k ∈ {0, 2, . . . , 18} of random white pixels to flip to black.

Training We trained all classifiers using TensorFlow with cross-entropy loss and the Adam op-
timizer. For each training set, we set aside 20% of the instances for validation (we stop gradient
descent if validation loss does not improve enough). We evaluate classifier accuracy using a separate
testing set. We report the best test accuracy obtained from five different runs with random seeds.

For AC classifiers, we used the PYTAC system which compiles Bayesian networks into ACs,
using TensorFlow for training (Darwiche, 2020). We used early stopping, a learning rate with
polynomial decay over 100 steps and a batch size of 32 (we start at a rate of 0.05 and end at
0.005, using a polynomial power of 3). For neural network classifiers, we used a learning rate with
exponential decay, starting at 0.01 with a decay of 0.95 over the first 5,000 batches, using a batch
size of 64. Across 5,000 epochs, we saved the CNN with the best validation loss.

7. Sensitivity of Classifiers to Data Size and Quality

We next assess the impact of size/quality of training data on classifier performance. Our first exper-
iment examines how many labeled images we need to get certain prediction accuracies. Our second
experiment assesses the sensitivity of classifiers to the ratio of clean to noisy images in training data.

Dataset Size We first consider classifier performance as a function of training data size. For the
rectangle model, both training and testing images are 20% clean with a medium noise level for all
noisy images. We vary the training dataset size from 25 to 8,000 images and report the accuracy of
the learned classifiers on a separate testing dataset of size 10,000. We increase the size of training
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Table 3: Standard deviations of accuracy for rectangles (top) and digits (bottom), by training data.
Training Data 25 50 100 250 500 1000 2000 4000 8000

BN 0.92 1.26 1.73 3.10 3.78 2.22 2.46 1.78 2.19
BN+BK 10.93 16.93 5.75 1.19 0.89 0.23 0.32 0.03 0.03
CNN 5.73 6.01 2.65 2.34 0.29 0.98 0.41 0.19 0.09
BN 1.45 1.17 2.46 3.48 2.17 0.78 2.68 3.50 1.72

BN+BK 24.69 1.90 1.25 0.40 0.12 0.21 0.20 0.10 0.08
CNN 5.92 2.53 6.46 2.67 0.72 0.94 0.39 0.14 0.17

Table 4: Classifier accuracy for different percentages of noisy images in training data.

Noisy%
90
80
70
60
50
40
30
20
10

BN Classifier
Shape Col Height
85.37 95.07 89.03
85.57 97.84 91.02
84.15 93.84 88.76
84.42 95.21 90.58
84.37 88.99 88.88
84.11 85.61 85.97
80.97 79.00 84.50
81.69 84.68 79.48
78.41 77.45 74.88

BN+BK Classifier
Shape Col Height
99.94 98.89 97.93
99.97 98.95 97.67
99.96 98.83 97.76
99.89 99.06 97.55
99.99 98.87 97.76
99.91 98.65 97.55
99.95 98.81 97.62
99.79 99.02 97.42
99.95 98.81 97.38

CNN Classifier
Shape Col Height
98.71 99.04 91.59
98.29 98.74 89.72
98.10 98.37 90.31
97.61 97.52 89.37
97.75 96.80 89.04
96.58 96.25 87.68
95.53 95.43 87.57
94.11 91.54 81.26
93.04 88.69 74.88

data in the same way for the digits model. We use 1% clean images in both training and testing data
and inject 10 noisy pixels when producing noisy images (there is a limited number of distinct clean
images for digits on a 10× 10 grid). We report accuracy on a testing dataset of size 28,000.

The resulting accuracies are shown in Tables 1 and 2 (we omit results for Row and Width for
space). Accuracy increases when the size of training data increases for all classifiers. BN+BK
gives very accurate predictions compared to the other two classifiers: The presence of background
knowledge improves the accuracy significantly especially for small training data. For instance, for
a dataset of size 250, BN+BK significantly outperforms BN and CNN. The latter outperforms BN
in most cases and reaches an accuracy similar to BN+BK with enough training data.

In Table 3, we report some of the standard deviations for accuracies obtained in our experi-
ments. When the training dataset size is ≥ 1000, the standard deviations of BN+BK and CNN are
decreasing in general and smaller than the standard deviations of BN. Both BN+BK and CNN have
larger standard deviations than BN when the number of examples is small (≤ 100), despite their
potential to attain higher accuracies with a small dataset.

Data Quality We now consider how the percentage of noisy images in training data affects the
performance of rectangle classifiers. We fix the size of training data to 2,000 and the noise level
to medium but vary the percentage of noisy images. We test on 10,000 images that are 20% clean.
Table 4 depicts the results. Classification accuracy generally decreases as we decrease the number
of noisy images in training data. This is evident for the BN and CNN classifiers whose performance
rely non-trivially on having a good number of noisy images during training. However, the BN+BK
classifier exhibits much less sensitivity (almost insensitive) and continues to predict very accurately
even as we train it on a significantly reduced number of noisy images (10%).
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Table 5: Classifier accuracy while varying noise level in testing data.

Noise
Null

Ignorable
Easy

Medium
Moderate

Hard
Superhard

BN Classifier
Shape Col Height
93.16 100.00 99.08
88.25 98.74 96.61
87.30 97.99 95.30
85.28 96.15 92.51
83.61 94.81 89.83
83.40 93.87 90.09
82.22 91.80 88.24

BN+BK Classifier
Shape Col Height
100.00 100.00 100.00
99.98 99.91 99.84
99.98 98.97 98.27
99.98 98.97 97.65
99.98 98.57 97.72
99.89 98.42 97.15
99.89 98.30 96.56

CNN Classifier
Shape Col Height
100.00 100.00 99.16
99.02 99.48 96.21
99.12 99.35 95.67
98.37 98.53 93.39
98.07 97.95 91.48
97.92 98.03 90.82
97.17 97.30 87.93

Table 6: Accuracy of classifying digits while varying noise level in testing data.
# noisy pixels 0 2 4 6 8 10 12 14 16 18

BN 48.21 57.77 65.44 68.62 65.61 57.31 48.23 41.52 35.24 29.85
BN+BK 100.00 99.99 99.86 99.70 99.38 99.00 98.40 97.69 97.03 96.12
CNN 100.00 99.95 99.79 99.33 98.74 97.84 96.46 93.97 91.24 86.98

8. Robustness of Classifiers

We next assess the robustness of classifiers by varying the amount and type of noise in testing data.
Our first experiment investigates classifier performance on testing images with noise levels that are
different from those in the training data. Our second experiment keeps the noise level in testing data
similar to that in training data but changes its nature.

Noise Level in Testing Data For the rectangle model, we first train classifiers on 2,000 labeled
images that are 20% clean and use a medium noise level. We then test the classifiers on 2,000
labeled images that are 20% clean but with varying noise levels (see Section 6). Table 5 depicts the
obtained prediction accuracies. A similar experiment is conducted for the digits model in Table 6.
Here, we train using 2,000 labeled images that are 1% clean. All noisy images in the training
dataset contain 8 noisy pixels. We then generate 28,000 testing images that are also 1% clean while
increasing the amount of noise in testing images. Table 6 depicts the obtained accuracies.

In Table 5, we see that the accuracy for BN+BK and CNN is highest (close to 100%) when
little noise is present in the testing dataset. Among the three classifiers, BN has the fastest drop in
accuracy when more noise is injected in the testing data than in the training data. BN+BK is the
least affected as it has a slight drop in accuracy even when the testing data is much noisier than the
training data. In Table 6, we also observe that BN performs better when the level of noise seen in
testing is more comparable to the level of noise seen in training. In general, the experiments show
that background knowledge can significantly improve the robustness of a classifier.

Discrepancy Between Training and Testing Data In our second experiment, we use different
types of paired noise in training and testing data; see Section 6 for the definition of paired noise.
There are two combinations: train with horizontal paired noise and test with vertical paired noise,
or vice versa. We train and test all classifiers under these combinations, using 2,000 labeled images
that are 20% clean for rectangle classifiers and 2,000 labeled images that are 1% clean for digits
classifiers. We test the rectangle classifiers on 10,000 images that are 20% clean and the digits
classifiers on 28,000 images that are 1% clean. The results are shown in Table 7. BN+BK classifiers,
which encode background knowledge, have the best performance by a very large margin. The
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Table 7: Accuracy in rectangles (left) and digits (right) when train/test differ in levels of noise.

Classifier
horizontal-vertical

Shape Col Height
BN 89.95 84.67 86.68

BN+BK 99.81 100.00 99.06
CNN 66.60 83.77 67.83

vertical-horizontal
Shape Col Height
88.16 92.14 86.38
99.82 99.80 100.00
83.52 78.04 46.83

horizontal- vertical-
vertical horizontal
74.03 70.55
97.25 98.97
90.16 81.16

Table 8: Accuracy in (larger) rectangles when train/test have different types of noise; see Table 7.

Classifier
horizontal-vertical vertical-horizontal

Shape Col Height Shape Col Height

16x16
BN+BK 99.80 99.64 99.19 99.62 99.68 99.74
CNN 71.27 87.72 64.98 67.85 85.60 46.58

20x20
BN+BK 99.74 99.59 99.60 99.70 99.60 99.61
CNN 75.06 87.21 52.46 65.00 88.05 42.04

stark difference in robustness revealed by this simple experiment strongly highlights the promise of
supervised learning with background knowledge.

Even though we reported only on 10 × 10 images, we could compile ACs with background
knowledge for 30 × 30 rectangle images (900 AC inputs) and for 22 × 22 digits images (484 AC
inputs). But these ACs were too large to be trained consistently and effectively by a basic application
of gradient descent on a CPU (the first AC had 21,899 tensor operations and size 680.6M, and the
second AC had 77,702 tensor operations and size 2,552.5M). Moreover, ACs for these larger images
would not compile without background knowledge. For the experiment in this section though, we
managed to train ACs with background knowledge on 16×16 images (AC size is 58.8M) and on 20×
20 images (AC size is 224.2M). For comparison, we also ran experiments on CNN classifiers with
the same architecture discussed earlier with the corresponding image sizes. The results, reported in
Table 8, are similar to what we reported for 10×10 images in Table 7: AC classifiers maintained an
accuracy ≥ 99% but CNN classifiers basically failed with the accuracy dropping to as low as 42%
in some cases. For reference, the number of trainable parameters for 20×20 images were 466 (AC)
and 2,154 (CNN) for predicting rectangle shape. All of our experiments were run on a 2.60GHz
Intel Xeon E5-2670 CPU with 256 GB of memory.

Even though we reported only on 10 × 10 images, we could compile ACs with background
knowledge for 30 × 30 rectangle images (900 AC inputs) and for 22 × 22 digits images (484 AC
inputs). But these ACs were too large to be trained consistently and effectively by a basic application
of gradient descent on a CPU (the first AC had 21,899 tensor operations and size 680.6M, and the
second AC had 77,702 tensor operations and size 2,552.5M). Moreover, ACs for these larger images
would not compile without background knowledge. For the experiment in this section though, we
managed to train ACs with background knowledge for predicting the rectangle shape on 16 × 16
images (AC size is 58.8M) and on 20 × 20 images (AC size is 224.2M). The results were similar
to what we reported for 10 × 10 images in Table 8: AC classifiers predicted shape with ≥ 98.5%
and CNN classifiers basically failed with ≤ 75% accuracy. The number of trainable parameters for
20 × 20 images were 466 (AC) and 2,154 (CNN). Our experiments were run on a 2.60GHz Intel
Xeon E5-2670 CPU with 256 GB of memory.
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9. Challenges and Opportunities

The results we reported show the promise of model-based supervised learning: it can be signifi-
cantly less data hungry and can lead to much more robust classifiers. This is not surprising given
that model-based classifiers “understand” the objects they are classifying compared to model-free
classifiers which settle once they have captured the patterns in data well enough (a process that may
not lead to truly learning a task as we have seen particularly in the last experiment). What is per-
haps surprising is the extent of the gap sometimes revealed in the experiments we conducted. This
all, however, begs the question: Why is model-based supervised learning not as commonly used in
practice and why is model-free supervised learning so dominant despite its limitations?

As mentioned in the introduction, model-based supervised learning faces a number of barriers.
Some are profound and require further theoretical developments and some are less profound, re-
sulting from a lack of enough efforts in certain directions. Two of the profound barriers are: the
acquisition of accurate models and the compilation of models into circuits. The first barrier has been
discussed in (Shen et al., 2019) and an initial treatment has been proposed in (Choi et al., 2019; Choi
and Darwiche, 2018), which does not insist on obtaining a fully accurate model. One would need to
advance this or similar directions if model-based supervised learning is to become more practical.

The second profound barrier relates to the compilation of ACs from models. This is an inference
task at heart and as such requires fundamental algorithmic developments. Much progress has been
made on this front over the years, but more progress is needed. The two case studies we discussed
provide a concrete context for relaying this particular point. Despite the simplicity of the tasks,
and the relatively small size of images, the underlying models proved quite challenging to compile,
In fact, compiling and efficiently training these ACs was only possible due to the recent results
reported in (Darwiche, 2020).

Another barrier relates to the application of gradient descent to ACs that are compiled from
models, which tend to have structures and behaviors that are different from those of neural networks.
As a result, the know-how and common wisdom gathered through much research on training neural
networks is not immediately applicable to training such ACs. For example, for the considered tasks,
ACs are significantly larger in size, have many more layers (i.e., deeper), and have a much larger
compute-to-parameter ratio, all calling for a dedicated study of gradient descent algorithms in this
particular context.

To summarize and close: Advancing model-based supervised learning not only requires further
theoretical developments, but it also requires reducing the know-how gap with the model-free com-
munity as far as gradient descent and the exploitation of tensor-based technologies. This requires a
broad and sustained enough effort by the model-based community which we hope it will heed.
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