
On the Definition and Computation of Causal Treewidth

Yizuo Chen1 Adnan Darwiche1

1Computer Science Department, University of California, Los Angeles, USA

Abstract

Causal treewidth is a recently introduced notion
allowing one to speed up Bayesian network infer-
ence and to bound its complexity in the presence
of functional dependencies (causal mechanisms)
whose identities are unknown. Causal treewidth
is no greater than treewidth and can be bounded
even when treewidth is unbounded. The utility of
causal treewidth has been illustrated recently in the
context of causal inference and model-based su-
pervised learning. However, the current definition
of causal treewidth is descriptive rather than per-
spective, therefore limiting its full exploitation in
a practical setting. We provide an extensive study
of causal treewidth in this paper which moves us
closer to realizing the full computational potential
of this notion both theoretically and practically.

1 INTRODUCTION

Treewidth is one of the most influential notions for param-
eterizing the complexity of probabilistic inference. This
notion originated in the graph theory literature and can be
viewed as a measure of graph connectivity [Robertson and
Seymour, 1986]. It has also been used to parameterize the
complexity of many algorithmic tasks that transcend prob-
abilistic inference; see, e.g., [Bodlaender, 2006, Dechter,
2003]. For Bayesian networks, the time and space complex-
ity of computing marginals is bounded by O(n · exp(w))
where n is the number of nodes in the network and w is
its treewidth. For example, tree-structured networks have a
treewidth ≤ 1 so treewidth allows us to show that inference
on such networks can be done in linear time and space.

Treewidth captures the structural aspects of a model and is
independent of its parameters. Hence, one can use treewidth
to provide guarantees on the complexity of inference with-
out needing to know the model parameters. In the first few

decades of research on Bayesian network inference, the
perception was that high treewidth is a barrier since all in-
fluential algorithms at that time, particularly the jointree
and variable elimination algorithms [Jensen et al., 1990,
Zhang and Poole, 1996, Dechter, 1996], had a complexity
which was also lower bounded exponentially by treewidth.
Later developments showed that exploiting the parametric
structure of Bayesian networks can lead to tractable infer-
ence in some situations where the treewidth can be very
high; see, e.g., [Larkin and Dechter, 2003, Chavira and Dar-
wiche, 2005, Chavira et al., 2006, Chavira and Darwiche,
2008]. The parametric structure exploited was particularly
in the form of context-specific independence [Boutilier et al.,
1996] and logical constrains (i.e., parameters in {0, 1}).1

More recently, a new and more abstract type of parametric
structure has been identified and exploited computation-
ally: functional dependencies, also known as causal mecha-
nisms, which identities are unknown [Darwiche, 2020]. In
a Bayesian network, a node is functionally determined by
its parents if fixing the state of these parents also fixes the
state of the node (that is, the node distribution is determin-
istic given any state of its parents). We often know that
a node is functionally determined by its parents but with-
out knowing the identity of the underlying function. This
is prominent, for example, in causal inference where one
typically has a causal graph in which every internal node
is assumed to be functionally determined by its parents yet
without knowing the specific functions that relate nodes to
their parents [Pearl, 2000]. Classical techniques for exploit-
ing parametric structure are not applicable in this case since

1Among the most effective approaches for exploiting para-
metric structure are the ones based on compiling Bayesian net-
works into tractable circuits [Darwiche, 2003]. These approaches
allow one to conduct inference in time linear in the circuit size
while yielding circuits whose size is not necessarily exponential in
treewidth—see [Darwiche, 2021a] for a recent survey on circuit
representations and [Agrawal et al., 2021] for a recent empiri-
cal evaluation in which methods based on circuits ranked at the
forefront in terms of efficiency.

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), PMLR 180:368–377.

mailto:<yizuo.chen@ucla.edu>?Subject=Your UAI 2022 paper
mailto:<darwiche@cs.ucla.edu>?Subject=Your UAI 2022 paper

these methods require knowledge of the specific model pa-
rameters which imply knowledge of the specific functions
that determine the values of internal nodes. This also arises
when learning the parameters of a Bayesian network from
data where we may have background knowledge to the ef-
fect that some nodes are functionally determined by their
parents but without knowing the specific functions as we are
trying to learn them; see, e.g., [Chen et al., 2020]. Interest-
ingly enough, a recent finding showed that one can exploit
unknown causal mechanisms computationally, leading to
potentially exponential reduction in complexity [Darwiche,
2020]. This finding was based on two new theorems and
cast in the context of model-based supervised learning. It
particularly took the form of an algorithm that compiles
the structure of a Bayesian network into a tractable circuit
whose size is not necessarily exponential in treewidth. This
approach managed to efficiently compile circuits for net-
works with treewidth over 100 without needing to know the
network parameters, only that some nodes are functionally
determined by their parents. More recently, this finding was
cast in the context of causal inference while hinting that it
can lead to a new parameter for bounding complexity that
was called causal treewidth [Darwiche, 2021b].

Treewidth is classically defined for an undirected graph but
it can be extended to directed acyclic graphs (DAGs) by
computing the treewidth of the moralized DAG. This is an
undirected graph obtained from the DAG by connecting
every pair of parents by an edge and then removing the
directionality of edges; see, e.g., [Darwiche, 2009, Ch 9].
Causal treewidth applies only to DAGs in which some nodes
are declared as being functional. If no nodes are functional,
then the causal treewidth reduces to treewidth. While [Dar-
wiche, 2021b] suggested this more refined notion of causal
treewidth, it did not provide an operational definition of
causal treewidth and therefore it did not specify a method
for computing it. Moreover, while [Darwiche, 2020] showed
that inference can be sped up, exponentially in some cases,
by exploiting unknown causal mechanisms, it did not fully
exploit the two new theorems that enabled these techniques.

Our goal in this paper is to first review the two key theorems
in [Darwiche, 2020] that enabled the computational exploita-
tion of unknown causal mechanisms, and to then use them
as basis for formally defining the notion of causal treewidth
and how it can be computed. In the process of doing so, we
will prove some results about the algorithmic techniques
proposed in [Darwiche, 2020], showing that some are opti-
mal while others are not. In other words, we will show that
the algorithmic techniques proposed in [Darwiche, 2020]
do not fully exploit the two enabling theorems identified
in that work. Hence, the main contribution of this work is
that it brings us closer, both theoretically and practically,
towards the full exploitation of unknown causal mechanisms
during inference. At a more cognitive level, our contribution
may provide further hints as to why causal knowledge is so

A B C fC(ABC)
t t t 0.7
t t f 0.3
t f t 0.1
t f f 0.9
f t t 0.4
f t f 0.6
f f t 0.5
f f f 0.5

(a) CPT for C

A B C fC(ABC)
t t t 0
t t f 1
t f t 1
t f f 0
f t t 1
f t f 0
f f t 0
f f f 1

(b) Mechanism for C

Figure 1: Two CPTs for variable C with parents A,B. The second
CPT represents a mechanism for variable C.

central to human reasoning [Pearl and Mackenzie, 2018] as
we provide a formal account of how causal knowledge, even
in this abstract form, can be quite useful computationally.

We start next with some further motivation, technical pre-
liminaries and a review of the key results in [Darwiche,
2020]. We then study two key ingredients which are needed
to formally define causal treewidth: jointree thinning and
machanism replication. We finally define causal treewidth
and present some experimental results that shed more light
on this notion and its underlying ingredients. Proofs of all
results can be found in the appendix.

2 MOTIVATION AND PRELIMINARIES

Variables are discrete and denoted by uppercase letters (e.g.,
X) and their values are denoted by lowercase letters (e.g., x).
Sets of variables are denoted by boldface, uppercase letters
(e.g., X) and their instantiations are denoted by boldface,
lowercase letters (e.g., x). A factor f(X) is a mapping from
instantiations x to non-negative numbers. A Bayesian net-
work is a DAG G together with one conditional probability
table (CPT) for each node X and its parents P in the DAG. A
CPT specifies a conditional distribution Pr(X|P) and will
be represented by a factor f(XP) where f(xp) = Pr(x|p)
(hence,

∑
x f(xp) = 1). To indicate that factor f(XP) is

a CPT for variable X , we will usually notate it as f(X,P)
or fX(XP). Of particular interest are CPTs (factors) that
specify functions, also referred to as mechanisms.

Definition 1. A factor f(X,P) is a mechanism for X (or
X-mechanism) iff f(x,p) ∈ {0, 1} and

∑
x f(x,p) = 1.

A mechanism for variable X represents a function whose
inputs are parents P and whose output is X . Figure 1 depicts
two factors over binary variables {A,B,C}. The factor in
Figure 1a is a CPT for variable C but is not a mechanism.
The one in Figure 1b is also a CPT for C but is a mechanism
which corresponds to the function C = A⊕B.

The use of mechanisms is ubiquitous in causality [Pearl,
2000]. In this context, root nodes in the DAG are called
exogenous and internal nodes are called endogenous. A
common class of models known as functional Bayesian net-

369

U1

A B

CU2

A = Ū1

B = U1 ·A
C = U2 ⊕A

Figure 2: SCM with endogenous variables A,B,C and exogenous
variables U1, U2. All variables are binary. The mechanisms for
endogenous variables are specified by structural equations.

works or Structural Causal Models (SCMs) assume that
the CPTs of all endogenous variables are mechanisms. Fig-
ure 2 depicts an example SCM where the mechanisms for
endogenous variables (A,B,C) are specified using struc-
tural equations as is commonly done. For this model to
be complete, one also needs the CPTs for exogenous vari-
ables (U1, U2) which specify the distributions Pr(U1) and
Pr(U2), the only source of uncertainty in the model.

A classical setup in causal inference is to only have the graph
of an SCM while assuming that the mechanisms (structural
equations) are not known. In Figure 2, this would amount
to assuming that each endogenous variable (A,B,C) is a
function of its parents, yet without knowing what these
functions are. For example, we may not know whether the
function for variable C is C = U2 ⊕ A or C = U2 + Ā
or C = U2 · A or something else (there are 16 possible
mechanisms for a binary variable with two binary parents).
This situation may also arise in non-causality contexts where
the assumption of unknown mechanisms can be viewed as
background knowledge; see, e.g., [Chen et al., 2020].

In these situations, one typically has data in addition to the
graph of a Bayesian network and the goal is to perform
inference based on this available information; for example,
by first estimating model parameters as suggested in [Zaf-
falon et al., 2021, Darwiche, 2021b, Chen et al., 2020]. This
requires inference algorithms whose complexity is indepen-
dent of the model parameters. Until relatively recently, the
best complexity one could attain in this case is exponential
in the graph treewidth. This complexity has been improved
exponentially though due to the results in [Darwiche, 2020]
and one goal of our work is to improve and further formalize
these recent advances using the notion of causal treewidth.2

3 COMPUTING MARGINALS

There are two operations on factors, multiplication and sum-
out, which allow us to define the computational problem

2A reviewer suggested using the term functional treewidth
instead of causal treewidth. Our choice for the latter term is moti-
vated by the emphasis we wish to place on exploiting “unknown”
functions which are prevalent in causal inference, in contrast to the
more common and informed exploitation of “known” functions.

whose complexity we wish to bound using causal treewidth.
The product of factors f(X) and g(Y) is another factor
h(Z), where Z = X ∪ Y and h(z) = f(x)g(y) for the
unique instantiations x and y that are compatible with in-
stantiation z. Summing-out variables Y ⊆ X from factor
f(X) yields another factor g(Z), where Z = X \ Y and
g(z) =

∑
y f(yz). We will use

∑
Y f to denote the result-

ing factor g. We will also use
∑

=

Z f to denote summing
out all variables from factor f except for variables Z. That
is, for a factor f(X), we will write

∑
=

Z f to mean
∑

Y f
where Y = X \ Z.

The joint distribution of a Bayesian network
is the product of its CPTs. The network on
the right has CPTs fA(A), fB(AB), fC(AC),
fD(BCD) and fE(CE). Its joint distribution is
Pr(ABCDE) = fAfBfCfDfE . We can now
compute the marginal over any variables by suming out
all other variables from the joint distribution. For exam-
ple, the marginal over variable D is the factor Pr(D) =∑

ABCE fAfBfCfDfE =
∑

=

D fAfBfCfDfE . It is this
computation of marginals that we will be bounding using
causal treewidth. We are particularly interested in comput-
ing marginals over families, where a family is a variable and
its parents, since these marginals form the basis of parame-
ter estimation using algorithms such as gradient descent and
EM; see, e.g., [Darwiche, 2009, Ch 17].

Definition 2. Consider a DAG G with nodes X1, . . . , Xn

and let Pi be the parents of Xi. Given a set of factors
f(XiPi) for i = 1, . . . , n, the marginals problem is to com-
pute the factor

∑
=

F

∏n
i=1 f(XiPi) for each family F.

A factor f(XiPi) will be called a family factor. The
marginals problem does not place any restrictions on family
factors so it is quite general. When these factors are CPTs,
the marginals problem corresponds to the computation of
marginals in a Bayesian network.

As mentioned earlier, if the Bayesian network has n nodes
and treewidth w, marginals can be computed in O(n ·
exp(w)) time and space. The simplest proof of this result is
based on the algorithm of variable elimination (VE) which
applies more generally to the problem in Definition 2 [Zhang
and Poole, 1996, Dechter, 1996]. VE is based on two theo-
rems, the first allows us to sum out variables in any order.

Theorem 1.
∑

XY f =
∑

X

∑
Y f =

∑
Y

∑
X f .

The second theorem allows us to pull out factors from sums.

Theorem 2. If variables X appear in factor f but not in
factor g, then

∑
X f · g = g

∑
X f .

Consider the factor
∑

ABDE f(ACE)g(BCD). A direct
computation of this factor multiplies factors f and g to yield
the factor h(ABCDE) and then sums out variables ABDE

370

from g. Using Theorem 1, we can arrange the above sum into∑
AE

∑
BD f(ACE)g(BCD). Using Theorem 2, we can

arrange it further into
∑

AE f(ACE)
∑

BD f(BCD). This
is more efficient to compute as the largest factor constructed
in the process will be over 3 instead of 5 variables.

Suppose we eliminate variables according to order π when
computing a marginal and let w + 1 be the largest number
of variables appearing in a factor constructed in the process.
The time and space complexity of VE can then be bounded
by O(n · exp(w)) where n is the number of variables. The
number w is called the width of order π. If the DAG has
treewidth w then there must exist an elimination order of
width w. Moreover, no elimination order can have a width
less than w; see [Darwiche, 2009, Ch 6 & 9] for a detailed
exposition of these concepts and results.

4 EXPLOITING UNKNOWN
MECHANISMS

Two new theorems were added to VE by Darwiche [2020]
which enabled the exploitation of unknown causal mecha-
nisms. In the following three results, we will use F , G, H
to denote sets of factors, where each set is interpreted as a
product of its factors. For example, the set of factors F will
be interpreted as the factor

∏
f∈F f .

Theorem 3 ([Darwiche, 2020]). Let f be a mechanism for
variable X . If f ∈ G and f ∈ H, then G · H = G

∑
X H.

According to this result, if a mechanism for X appears in
both parts of a product, then variable X can be summed out
from one part without changing the value of the product.

Corollary 1 ([Darwiche, 2020]). If f is a mechanism for X ,
f ∈ G and f ∈ H, then

∑
X G · H = (

∑
X G) (

∑
X H).

That is, if a mechanism for X appears in both parts of a
product, we can sum out variable X from the product by in-
dependently summing it out from each part. Corollary 1 may
appear unusable as it is predicated on multiple occurrences
of a mechanism whereas the factors of a Bayesian network
contain a single mechanism for each variable. This is where
the second theorem comes in: replicating (i.e., duplicating)
mechanisms in a product does not change the product value.

Theorem 4 ([Darwiche, 2020]). For mechanism f , if f ∈ G,
then f · G = G.

Consider the factor α =
∑

X f(XY)g(XZ)h(XW). VE
has to multiply factors f , g and h before summing out
variable X , therefore constructing a factor over four vari-
ables XY ZW . However, if factor f is a mechanism for
variable X , then we can replicate it by Theorem 4: α =
f(XY)g(XZ)f(XY)h(XW). Corollary 1 then gives α =∑

X f(XY)g(XZ)
∑

X f(XY)h(XW). Hence, we can

Algorithm 1 Complete Replication
1: procedure REPLICATE(DAG G, Functional nodes Γ in G)
2: Σ← multi-set of family factors of G
3: for each node X in Γ (bottom-up traversal) do
4: if X is a leaf then continue
5: n← number of X-feeding factors in Σ
6: Σ← Σ ∪ {n− 1 copies of the family factor for X}
7: return Σ

now compute factor α without having to construct any fac-
tor over more than three variables. Moreover, we were able
to do this without needing to know the function represented
by factor f(XY): we only needed to know that this factor
represents a function from Y to X . As shown in [Darwiche,
2020], this technique can lead to exponential savings that
are attained without needing to know the identity of mecha-
nisms which is a major departure from earlier techniques.

As the above example shows, the exploitation of unknown
mechanisms requires their replication (duplication). A spe-
cific replication strategy was mentioned briefly and infor-
mally in [Darwiche, 2020] and referred to as a “heuristic.”
We shall call it the complete replication strategy for a reason
that will become apparent later. This strategy is described
formally in Algorithm 1 and uses the following definition.

Definition 3. A family factor f(X,P) is said to be
Y -feeding iff Y ∈ P.

Algorithm 1 works with a multi-set of factors Σ instead of a
set since Σ may contain multiple copies of the same factor.
It starts with Σ containing all family factors and traverses
the DAG G bottom up. When visiting a functional node X ,
it adds replicas of the mechanism for X to Σ. Algorithm 1
returns what is called a replication of family factors.

Definition 4. A replication of factors F is a multi-set F ′ ⊇
F obtained by replicating some of the mechanisms in F .

Consider the DAG in Figure 3(a) where nodes B and
C are functional. Calling Algorithm 1 on this DAG and
these functional nodes returns the following replication
fA(A), fB(AB), fB(AB), fB(AB), fC(BC), fC(BC),
fD(BCD), fE(CE), which contains three replicas of the
mechanism for B and two replicas of the mechanism for C.

Even though a replication is technically a multi-set, we
will simply refer to it as set for convenience. We will study
(complete) mechanism replication extensively later.

A popular mechanization of VE is based on the notion of a
jointree. We will review jointrees next as we shall use them
to mechanize the exploitation of Theorems 3 and 4 and to
formally define the notion of causal treewidth.

Definition 5. A jointree for factors F is a tree in which
every leaf node i is assigned a non-empty set of factors Fi

371

A

B

C D

E

(a) DAG (b) jointree for DAG factors (c) separators and clusters (d) jointree for a replication

Figure 3: A DAG with a jointree for its family factors (b,c) and a jointree for a replication of these factors (d).

where the sets {Fi}i form a partition of factors F . 3

When a factor appears in Fi, we will say that leaf node i
hosts the factor. We will use vars(i) to denote the vari-
ables of factors Fi. For a jointree edge (i, j), we will use
vars(i, j) to denote the union of vars(k) for every leaf
node k on the i-side of the edge. Figure 3(b) depcits a join-
tree for the family factors of the DAG in Figure 3(a). Each
leaf node of this jointree hosts exactly one factor.

A jointree induces edge and node labels as follows.

Definition 6. The separator Sij of jointree edge (i, j) is
defined as vars(i, j) ∩ vars(j, i). If node i is a leaf, its
cluster Ci is defined as vars(i), otherwise as

⋃
j Sij . The

width of a jointree is the size of its largest cluster minus one.

Figure 3(c) depicts the separators and clusters for the join-
tree in Figure 3(b). The width of this jointree is 2 since its
largest cluster has 3 variables.

Jointrees play at least two key roles. First, their structure
provides a specific recipe for when to multiply factors and
when to sum out variables when applying VE. Second, their
separators and clusters define the variables of factors con-
structed by VE so the sizes of these separators and clusters
can be used to precisely determine the complexity of VE.
We explain both roles next, starting with the following theo-
rem which shows how a jointree can be used to direct VE
towards the computation of marginals over separators.

Theorem 5. Consider a jointree for factors f1, . . . , fn. De-
fine the message from jointree node i to its neighbor j as:

Mij =

® ∑
=

Sij
Fi for leaf node i∑

=

Sij

∏
k 6=j Mki for internal node i

For all jointree edges (i, j), MijMji =
∑

=

Sij
f1, . . . , fn.4

3Standard jointrees allow factors to be assigned to any node.
Assigning factors to leaves, even one factor per leaf, does not
preclude jointrees with optimal width; see [Darwiche, 2009, Ch 9].

4To compute the marginal over the family of variable X ,

Each message corresponds to a factor over some separator
in the jointree. Hence, separators determine the space com-
plexity of the message-passing algorithm of Theorem 5. A
message Mij can be computed in O(exp(|Ci|) time and
space given messages Mki for k 6= j. Since |Ci| ≤ w + 1,
where w is the jointree width, all messages can be computed
in O(n · exp(w)) time and space where n is the number
of jointree factors. Given an elimination order of width w,
one can always construct a jointree of width ≤ w; see [Dar-
wiche, 2009, Ch 9]. Hence, the mechanization of VE using
jointrees preserves the treewidth complexity bound.

In our context, jointrees play a third key role as they provide
a direct method for exploiting Theorems 3 and 4 as shown
in [Darwiche, 2020]. Instead of computing a jointree for the
original set of factors F , one computes a jointree for a repli-
cation F ′ ⊇ F as licensed by Theorem 4; see Figure 3(d).
One can then remove variables from separators and clusters
in the expanded jointree based on Theorem 3 while preserv-
ing the soundness of the message passing algorithm. This
reduces the jointree width and can lead to an exponential
reduction in complexity. As in [Darwiche, 2021b], we refer
to the process of removing variables from separators and
clusters as the process of thinning a jointree.5 We will show
in the next section that the thinning procedure in [Darwiche,
2020] is not complete as it can miss opportunities that are
licensed by Theorem 3. We will also provide a complete
thinning procedure (with respect to Theorem 3) which paves
the way for the formal definition of causal treewidth.

5 THINNING JOINTREES

Suppose we have a replication F ′ ⊇ F of some factors F .
Given a jointree for the replication F ′, we will next define
the notion of a jointree thinning and show that it is optimal

choose a leaf node i in the jointree which hosts the family factor
for X and multiply this factor by message Mji where j is the
single neighbor of i; see [Darwiche, 2009, Ch 7].

5The term “thin jointree” was used earlier in the context of
approximate inference [Bach and Jordan, 2001].

372

(i.e., cannot be improved using Theorem 3). The replica-
tion F ′ may not be optimal though. Constructing optimal
replications will be discussed in the next section.

Definition 7. A jointree node i is said to be X-connected to
a factor f iff i hosts f or X appears in every separator on
the path between i and some leaf node j that hosts factor f .

Definition 8. A jointree thinning maps every edge (i, j)
in the jointree to a set of variables S?

ij ⊆ Sij , called a
thinned separator, and satisfies two properties. First, for
each functional variable X ∈ S?

ij , we have:

(a) Node i is not X-connected to any X-mechanism on
the i-side of edge (i, j), or node j is not X-connected
to any X-mechanism on the j-side of the edge.

(b) If node i is not a leaf, then X ∈ S?
ik for some k 6= j.

(c) If node j is not a leaf, then X ∈ S?
jk for some k 6= i.

Second, no other mapping from edges to supersets of S?
ij

satisfies the above property.

The separators Sij of a jointree are determined by the loca-
tions of factors (the leaf nodes they are hosted at). Hence, the
separators of a jointree are unique. However, a thinned sepa-
rator S?

ij depends on both the locations of factors and other
thinned separators. Hence, a jointree may have multiple
thinnings. We define next the quality of a jointree thinning.

Definition 9. A jointree thinning induces a thinned cluster
C?

i for each jointree node i: If i is a leaf, C?
i = vars(Fi);

otherwise, C?
i =

⋃
j S

?
ij . The width of a jointree thinning is

the size of its largest thinned cluster minus one.

A jointree thinning leads to the notion of a causal jointree.

Definition 10. A causal jointree is a jointree in which edges
are annotated with thinned separators and nodes are anno-
tated with thinned clusters. The causal width of a jointree
is the smallest width attained by any of its causal jointrees.

The width of a jointree can be determined by examining
its cluster sizes. However, determining the causal width
of a jointree is more involved as, in principle, it requires
examining all thinnings of the jointree (causal jointrees).

Theorem 6. The width of a jointree thinning and the causal
width of a jointree are no greater than the jointree width.

Figure 4 depicts a Bayesian network with two functional
nodes (B,C) and nine factors F = fA, fB , . . . , fI . Con-
sider now the replication F ′ ⊇ F which results from du-
plicating mechanisms fB and fC once (that is, F ′ has 11
factors). Figure 5 depicts a jointree for the replication F ′

and two of its thinnings according to Definition 8. The one in
Figure 5(a) has width 2. The one in Figure 5(b) has width 3.

Using thinned separators as given by Definition 8 preserves
the correctness of the message passing algorithm.

A

B C

D E

F

GH

I

Figure 4: A Bayesian network with functional nodes B and C.

(a) jointree thinning of width 2 (b) jointree thinning of width 3

Figure 5: Two jointree thinnings. Each edge (i, j) is marked by
separator Sij . Red variables are not in the thinned separator S?

ij .

Theorem 7. Theorem 5 continues to hold if we use thinned
separators S?

ij (as given by Definition 8) instead of classical
separators Sij (as given by Definition 6).

The following result shows that we cannot improve Defini-
tion 8 of jointree thinnings based only on Theorem 3.

Theorem 8. Consider a jointree thinning (Definition 8). If
we remove any functional variable from a thinned separator,
then Theorem 3 will no longer be sufficient to prove the
soundness of the message-passing algorithm (Theorem 5).

We next provide a characterization of jointree thinnings,
which is more suitable for verifying whether the removal of
variables from classical separators leads to a valid thinning.

Theorem 9. A mapping from each jointree edge (i, j) to
variable set S?

ij is a jointree thinning according to Defini-
tion 8 iff (1) for each non-functional variable X , X ∈ S?

ij

iff X ∈ vars(i, j) ∩ vars(j, i); (2) for each functional
variable X: (a) if X ∈ vars(i) for a leaf node i, then
i is X-connected to exactly one mechanism for X; (b) if
X ∈ S?

ij for some non-leaf i, then X ∈ S?
ik for some k 6= j.

Definition 8 tells us what a thinning is but it does not tell us
how to obtain one. We next provide a set of thinning rules
that will generate every thinning admitted by Definition 8.

Theorem 10. We can obtain a jointree thinning by starting
with S?

ij = Sij and then removing variables from S?
ij ac-

cording to the following rules, until no rules can be applied.
Remove functional variable X from S?

ij if either

373

(a) Node i is X-connected to some X-mechanism on the
i-side of edge (i, j) and node j is X-connected to some
X-mechanism on the j-side of the edge; or

(b) X /∈ S?
ki for all k 6= j when node i is not a leaf; or

(c) X /∈ S?
jk for all k 6= i when node j is not a leaf.

We will use Ra(i, j,X) to mean that Rule (a) is applicable to
variable X and edge (i, j) and call it a rule application. Sim-
ilarly for Rb(i, j,X) and Rc(i, j,X). A jointree thinning
can now be specified using a sequence of rule applications.
The thinning in Figure 5(b) corresponds to Ra(6, 15, C),
Rc(4, 6, C), Rc(3, 4, C), Rc(2, 3, C), Ra(6, 15, B). The
one in Figure 5(a) corresponds to Ra(6, 15, C), Rc(4, 6, C),
Rc(3, 4, C), Rc(2, 3, C), Ra(13, 15, B), Rc(11, 13, B),
Rc(10, 11, B), Rc(8, 10, B).

Definition 11. A thinning sequence is a list of rule applica-
tions R1, . . . , Rn where each rule is valid when it is applied
and no rules are applicable after the sequence terminates.

Theorem 10 says that the thinning rules are sound. The next
result says they are complete (with respect to Definition 8).

Theorem 11. Every causal jointree can be obtained using
some thinning sequence.

Two distinct thinning sequences may yield the same jointree
thinning since the order of applying rules may not matter in
some cases. The following result suggests a restriction on
thinning sequences that does not compromise their ability
to discover every possible jointree thinning.

Theorem 12. Every jointree thinning can be obtained by
a thinning sequence in which all applications of Rule (a)
come before the applications of Rules (b,c).

That is, we can first exhaust all applications of Rule (a)
and then apply Rules (b,c). In fact, once we exhaust all
applications of Rule (a), applying Rules (b,c) becomes de-
terministic. In other words, the jointree thinning obtained
by a thinning sequence is fully determined by its Rules (a).

Thinning sequences mechanize the thinning process but
finding an optimal thinning sequence remains a computa-
tionally challenging task given the large number of such
sequences (even under the above restriction). Hence, one
needs either sophisticated search algorithms or a heuristic to
decide which thinning rule to apply and when. One heuris-
tic that we found effective is to prefer Ra(i, j,X) with the
largest S?

ij , followed by X that is contained in the fewest
neighboring separators, followed by minimizing the number
of X-connected X-mechanisms on either side of edge (i, j).

[Darwiche, 2020] proposed three thinning rules that ap-
ply only to binary jointrees in which each node has one
or three neighbors [Shenoy, 1996]. The rules are not com-
plete though as they can miss thinnings admitted by Defini-
tion 8. As in the rules we defined above, one starts by setting

Figure 6: Comparing the thinning rules in Theorem 10 with the
ones in [Darwiche, 2020]. Functional nodes are restricted to be
internal (non-root) nodes. The average time for applying the new
thinning rules to networks with 150 variables and 100% func-
tional (hardest configuration) is 6.86 sec, with a min/max time of
0.8/28.8 sec.

thinned separators S?
ij to classical separators Sij and then

tries to remove variables from S?
ij using the rules. However,

these rules can only be applied when visiting the jointree
nodes in a particular order. A leaf node h is identified first
and then nodes are visited based on their distance from h,
where the closer nodes are visited first. Suppose we are vis-
iting a non-leaf node i. Let p be its neighbor that is closest
to leaf h and let c1 and c2 be its two other neighbors. The
first two rules require the following conditions: X ∈ S?

ic1
,

X ∈ S?
ic2

, an X-mechanism is hosted on the c1-side of edge
(c1, i) and an X-mechanism is hosted on the c2-side of edge
(c2, i). If we further have X ∈ S?

ip, the first rule licenses
the removal of X from either S?

ic1
or S?

ic2
. If X 6∈ S?

ip, the
second rule licenses the removal of X from both S?

ic1
and

S?
ic2

. The final rule applies to the single neighnor r of leaf
h, allowing us to remove variable X from S?

hr when an
X-mechanism is hosted at leaf h and also at some other
leaf in the jointree. The first rule involves a choice which is
made using a heuristic described in [Darwiche, 2020].

Consider now the Bayesian network in Figure 4 and its
thinned jointree in Figure 5(a) which has width 2. The best
thinning that can be obtained by the rules in [Darwiche,
2020] has width 3, regardless of which leaf node h we
choose and regardless of what choices we make when ap-
plying the first rule. Figure 6 depicts a comparison between
these rules and the ones in Theorem 10 on random (binary)
jointrees, for the factors of complete replications generated
by Algorithm 1. The plots in this figure vary the number of

374

Bayesian network nodes from 10 to 150 and consider dif-
ferent percentages of functional nodes (25, 50, 75 and 100)
which are restricted to be non-root nodes.6 They report the
mean of maximal cluster size (width+1) over 10 jointrees
for each data point. The plots are for the cluster sizes of (1)
a classical jointree (blue), (2) a causal jointree obtained by
the incomplete rules (red) and (3) a causal jointree obtained
by the proposed rules (yellow). Four patterns are clear: more
thinning takes place as we increase the number of functional
nodes; the proposed thinning rules are much more effective;
the gap between the two sets of rules grows as we increase
the number of Bayesian network nodes and the number of
functional nodes; the exploitation of unknown mechanisms
can lead to significant reduction in inference complexity.

6 MECHANISM REPLICATION

The definition of thinning that we developed in the previous
section was with respect to a particular replication F and
a particular jointree for the factors in F . Some replications
are better than others in that they lead to causal jointrees of
smaller width. We formalize this next.

Definition 12. The width of a replication F is defined as
the minimum width attained by any causal jointree for F .

Given a replication F , we need to examine two search
spaces before we can determine its width. First, we must
choose a jointree for the factors in F . Second, we must
choose a particular thinning of the jointree. Hence, determin-
ing the width of a replication is not a straightforward task.
Moreover, the width of a replication is not the only measure
of its quality as we need to also consider its size. This is
a critical issue that was not discussed in [Darwiche, 2020,
2021b] and that we need to explore carefully before we are
ready to provide the formal definition of causal treewidth.

The size of a replication is the number of factors it contains
(replicas are counted individually). To highlight the impor-
tance of a replication size, consider two replications F1 and
F2 with respective sizes n1 and n2. Suppose now that repli-
cation F1 has width w1 and replication F2 has width w2.
This means that there exists a causal jointree for replication
F1 of width w1 and no other causal jointree can have a
smaller width (and similarly for replication F2). If we use
these optimal causal jointrees, inference using these replica-
tions can be done in O(n1 · exp(w1)) and O(n2 · exp(w2))
time and space, respectively. One may be tempted to choose
the replication with smaller width since complexity is ex-
ponential in width but linear in size. However, the size of

6Our method for generating a Bayesian network with nodes
X1, . . . , Xn assumes that each node has at most five parents. We
visit nodes Xi from i = 1 to i = n. When visiting node Xi,
we randomly choose a number from {0, . . . ,min(5, i − 1)} to
represent the number of parents for Xi and then randomly choose
that many parents from X1, . . . , Xi−1.

C1

C2

X1

Y1

Z1

X2

Y2

Z2

X3 Xn

Yn

Zn

. . .

Figure 7: A DAG with an exponential complete replication.

a replication may also be exponential as we show next. In
fact, the key result of this section is that the replication strat-
egy proposed in [Darwiche, 2020], shown in Algorithm 1,
satisfies two interesting properties. First, it is optimal: no
other replication strategy will have a smaller width. Second,
it can lead to replications of exponential size. We will in
fact provide a bound on the size of replications produced by
this strategy and suggest how it can be improved to avoid a
blow up in replication size.

We start with the following result which shows that exces-
sive replication can never hurt width.

Theorem 13. Consider two replications F1 and F2 of some
factors F where F ⊆ F1 ⊆ F2. If the width of replication
F1 is w, then the width of replication F2 is ≤ w.

We next identify a class of replications that possess some
significant properties.

Definition 13. A replication F is complete iff it satisfies the
following property for each functional variable X and its
mechanism fX . If n is the number of X-feeding factors in
F and n > 0, then F contains n replicas of mechanism fX .
Otherwise, F contains only one replica of fX .

The first property of complete replications is uniqueness.

Theorem 14. The family factors of any DAG have a unique
complete replication. Moreover, the replications generated
by Algorithm 1 are complete.

The second property of complete replications is optimality.

Theorem 15. Let F and F ′ be two replications of the family
factors of a DAG. If replication F is complete, then its width
is no greater than the width of replication F ′.

The third property of complete replications is that their
size can be exponential. Consider the family of DAGs in
Figure 7 which have 3n+ 2 nodes for n ≥ 1. Algorithm 1,
which generates complete replications, starts with a set Σ
containing the 3n+2 family factors. It then visits functional
nodes bottom-up and replicates their mechanisms. One can
easily show that after visiting functional node Xi, the set Σ
will contain 2i replicas of the mechanism for Xi.

We next provide a bound on the number of factors in a com-
plete replication which suggests a method for controlling
the potential blow up in its size.

375

Definition 14. A functional chain of length k in a DAG is a
set of functional nodes n1, . . . , nk where node ni is a parent
of node ni+1 for i = 1, . . . , k − 1.

Theorem 16. Consider a DAG with n nodes. Let c be the
largest number of children for any node and let k be the
length of longest functional chain. The (unique) complete
replication of this DAG will contain at most nck factors.

This bound immediately provides a method for controlling
the number of replicas in a complete replication. If we treat
variable Xn/2 in Figure 7 as a non-functional variable, the
length of the largest functional chain will be cut by half.
Hence, by selectively ignoring some functional variables we
can bound the size of functional chains and therefore ensure
that Algorithm 1 will produce replications with size that is
polynomial in the number of DAG nodes.

We are now ready to define causal treewidth formally.

Definition 15. Consider a DAG G with n nodes, some of
which are declared as functional. The causal treewidth of
DAG G is the smallest width attained by any replication F
for G where the size of F is polynomial in n.

For the class of DAGs with bounded functional chains, one
can use the complete replication F to determine the causal
treewidth of the DAG. That is, determining causal treewidth
becomes a matter of finding an optimal causal jointree for
the factors in F . The situation is more intricate for DAGs
with unbounded functional chains. The complete replication
cannot be used in this case and one must search among repli-
cations of polynomial size. It remains to be seen whether the
space of replications to be explored can be restricted to sub-
sets of the complete replication as suggested earlier. This is a
subject of future work. We note here that [Darwiche, 2021b]
identified a family of DAGs with O(n2) nodes, bounded
depth and treewidth n+ 1, while constructing thinned join-
trees of width 2 for the family, assuming all internal nodes
are functional. This is an example where the treewidth is
unbounded while the causal treewidth is bounded, showing
that causal treewidth dominates treewidth.

The appendix contains an experiment that reveals the im-
portance of replication strategies and how such strategies
interact with jointree construction methods. The experiment
exhibited a number of patterns. First, the causal width was al-
ways smaller than the width, and quite substantially smaller,
even when using random replications. Next, complete repli-
cations always produced a smaller causal width compared
to random replications, particularly when the number of
functional nodes is largest (100%). Finally, increasing the
size of a random replication almost always correlated with
decreasing the causal width but up to a certain point after
which increasing the size of a replication did not help.

7 CONCLUSION

We provided a formal definition of the notion of causal
treewidth, which dominates the classical and influential
notion of treewidth. We also studied the three ingredients
needed to define causal treewidth: mechanism replication,
jointree construction and jointree thinning which yields
causal jointrees. On the first front, we presented a num-
ber of results about a replication strategy that we called
complete replication, showing that it is optimal while pro-
viding a bound on the size of replications it produces and
suggesting a technique for controlling their size. On the sec-
ond front, we highlighted the relevance (and irrelevance) of
classical jointree construction methods to the construction
of jointrees for replications. On the third front, we provided
a complete characterization of causal jointrees and provided
three thinning rules that are sound and complete for gener-
ating causal jointrees. We also proved some properties of
these rules which can be of practical significance. We finally
presented some experimental results to shed further light
on the developments in this paper, which also showed that
causal jointrees can lead to exponential improvements in the
complexity of inference in comparison to jointrees.

Acknowledgements

We wish to thank Yunqiu Han for useful feedback. This work
has been partially supported by NSF grant #ISS-1910317
and ONR grant #N00014-18-1-2561.

References

Durgesh Agrawal, Yash Pote, and Kuldeep S. Meel. Parti-
tion function estimation: A quantitative study. In IJCAI,
pages 4276–4285. ijcai.org, 2021.

Francis R. Bach and Michael I. Jordan. Thin junction trees.
In NIPS, pages 569–576. MIT Press, 2001.

Hans L. Bodlaender. Treewidth: Characterizations, applica-
tions, and computations. In WG, volume 4271 of Lecture
Notes in Computer Science, pages 1–14. Springer, 2006.

Craig Boutilier, Nir Friedman, Moisés Goldszmidt, and
Daphne Koller. Context-specific independence in
bayesian networks. In UAI, pages 115–123. Morgan
Kaufmann, 1996.

Mark Chavira and Adnan Darwiche. Compiling Bayesian
networks with local structure. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, IJCAI-05, Proceedings
of the Nineteenth International Joint Conference on Arti-
ficial Intelligence, Edinburgh, Scotland, UK, July 30 - Au-
gust 5, 2005, pages 1306–1312. Professional Book Center,
2005. URL http://ijcai.org/Proceedings/
05/Papers/0931.pdf.

376

http://ijcai.org/Proceedings/05/Papers/0931.pdf
http://ijcai.org/Proceedings/05/Papers/0931.pdf

Mark Chavira and Adnan Darwiche. On probabilis-
tic inference by weighted model counting. Artif. In-
tell., 172(6-7):772–799, 2008. doi: 10.1016/j.artint.
2007.11.002. URL https://doi.org/10.1016/
j.artint.2007.11.002.

Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Com-
piling relational Bayesian networks for exact inference.
Int. J. Approx. Reason., 42(1-2):4–20, 2006.

Yizuo Chen, Arthur Choi, and Adnan Darwiche. Supervised
learning with background knowledge. In PGM, volume
138 of Proceedings of Machine Learning Research, pages
89–100. PMLR, 2020.

Adnan Darwiche. A differential approach to inference in
Bayesian networks. J. ACM, 50(3):280–305, 2003.

Adnan Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

Adnan Darwiche. An advance on variable elimination with
applications to tensor-based computation. In ECAI, vol-
ume 325 of Frontiers in Artificial Intelligence and Appli-
cations, pages 2559–2568. IOS Press, 2020.

Adnan Darwiche. Tractable Boolean and arithmetic
circuits. In Pascal Hitzler and Md Kamruzzaman
Sarker, editors, Neuro-Symbolic Artificial Intelligence:
The State of the Art, volume 342 of Frontiers in Arti-
ficial Intelligence and Applications. IOS Press, 2021a.
https://arxiv.org/abs/2202.02942.

Adnan Darwiche. Causal inference with tractable
circuits. In Why-21 Workshop, NeurIPS, 2021b.
https://arxiv.org/abs/2202.02891.

Rina Dechter. Bucket elimination: A unifying framework
for probabilistic inference. In Proceedings of the Twelfth
Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 211–219, 1996.

Rina Dechter. Constraint processing. Elsevier Morgan
Kaufmann, 2003.

F. V. Jensen, S. Lauritzen, and K. Olesen. Bayesian updat-
ing in recursive graphical models by local computation.
Computational Statistics Quarterly, 4:269âĂŞ282, 1990.

David Larkin and Rina Dechter. Bayesian inference in the
presence of determinism. In Proceedings of the Ninth In-
ternational Workshop on Artificial Intelligence and Statis-
tics (AISTATS), 2003.

Judea Pearl. Causality. Cambridge University Press, 2000.

Judea Pearl and Dana Mackenzie. The Book of Why: The
New Science of Cause and Effect. Basic Books, 2018.

Neil Robertson and Paul D. Seymour. Graph minors. II.
algorithmic aspects of tree-width. J. Algorithms, 7(3):
309–322, 1986.

Prakash P. Shenoy. Binary join trees. In UAI, pages 492–499.
Morgan Kaufmann, 1996.

Marco Zaffalon, Alessandro Antonucci, and Rafael
CabaÃśas. Causal expectation-maximisation. In NIPS,
NeurIPS 2021 WHY-21 Workshop, 2021.

Nevin Lianwen Zhang and David Poole. Exploiting causal
independence in bayesian network inference. Journal of
Artificial Intelligence Research, 5:301–328, 1996.

377

https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1016/j.artint.2007.11.002

	Introduction
	Motivation and Preliminaries
	Computing Marginals
	Exploiting Unknown Mechanisms
	Thinning Jointrees
	Mechanism Replication
	Conclusion

