
On the Definition and Computation of Causal Treewidth
(Supplementary material)

Yizuo Chen1 Adnan Darwiche1

1Computer Science Department, University of California, Los Angeles, USA

1 PROOFS

Our proofs are ordered sightly differently than the corre-
sponding results in the paper as we need some results when
proving others. In the upcoming proofs, we will also use fX
to denote a mechanism for variable X . We will also say that
a leaf node i in a jointree contains variable X iff X appears
in a factor that is hosted at leaf node i.

1.1 PROOF OF THEOREM 5

See [Darwiche, 2009, Ch 7].

1.2 PROOF OF THEOREM 6

Follows directly from Definitions 9 and 10.

1.3 PROOF OF THEOREM 10

In this proof, we will assume we have a mapping from
jointree edges (i, j) to sets S′

ij ⊆ Sij that satisfy conditions
(a,b,c) of Definition 8 (that is, these sets satisfy only the first
part of this definition but not the second part so they are
not necessarily thinned separators). We will also say that
jointree nodes i and j are (X,S′)-connected iff i = j or
variable X appears in every set S′ that is attached to an edge
on the path between i and j. We will first state and prove
two lemmas which we need for the proof of this theorem.

Lemma 1. If X ∈ S′
ij , then node i is (X,S′)-connected to

some leaf node on the i-side of edge (i, j) which contains
variable X and node j is (X,S′)-connected to some leaf
node on the j-side of the edge which also contains X .

Proof. Suppose node i is not (X,S′)-connected to some
leaf node on the i-side of edge (i, j) which contains X .
Consider a longest path i, . . . , r, l on the i-side of the edge
such that X appears in S′ for each edge on the path. If l is
a leaf node, then it must contain variable X by definition

of separators, which is a contradiction. Suppose now that
l is not a leaf node. Then X ̸∈ S′

lk for k ̸= r, otherwise
the path would not be longest. This contradicts the assumed
condition (b) of Definition 8 on sets S′. Hence, node i must
be (X,S′)-connected to some leaf node that contains X on
the i-side of edge (i, j). We can similarly show the second
part of the lemma.

Lemma 2. Suppose sets S′
ij were obtained by exhaust-

ing thinning rules on separators Sij . If node k is (X,S′)-
connected to some leaf node that contains X , then node k
is (X,S′)-connected to exactly one leaf node that hosts fX .

Proof. Suppose node k is (X,S′)-connected to some leaf
node that contains X . Then node k cannot be (X,S′)-
connected to more than one leaf node hosting fX ; other-
wise, Rule (a) will apply. We next show that node k must be
(X,S′)-connected to at least one mechanism fX . We will
show this by induction on the number of rule applications.
We will use Sn to denote the state of separators after the
nth rule application. For the base case (before any thinning
rules are applied), node k must be (X,S0)-connected to
some fX by the definition of separators in a jointree. For
the inductive step, suppose node k is (X,Sn)-connected to
some leaf node that contains X only if node k is (X,Sn)-
connected to at least one leaf node that hosts fX . Suppose
now that node k is (X,Sn+1)-connected to some leaf node
that contains X . We will next show that node k must be
(X,Sn+1)-connected to at least one mechanism fX .

First, node k must be (X,Sn)-connected to some leaf node
that contains X . Hence, by the induction hypothesis, node
k must be (X,Sn)-connected to at least one mechanism
fX . We will consider an edge (i, j) such that X ∈ Sn

ij and
X ̸∈ Sn+1

ij (such an edge must exist) and do a case analysis
on which rule applied to this edge.

Case: Rule (a). We will show next that node k must be
(X,Sn+1)-connected to at least one mechanism fX while
assuming that node k is on the i-side of edge (i, j). A similar
argument will show the same if node k is on the j-side of

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<yizuo.chen@ucla.edu>?Subject=Your UAI 2022 paper
mailto:<darwiche@cs.ucla.edu>?Subject=Your UAI 2022 paper

the edge. Suppose node k is on the i-side of edge (i, j).
If node k is (X,Sn)-connected to some fX on the i-side,
then node k is (X,Sn+1)-connected to the same fX on
the i-side. If node k is (X,Sn)-connected to some fX on
the j-side, then node k is (X,Sn+1)-connected to node i.
By the definition of Rule (a), node i must be (X,Sn+1)-
connected to some fX on the i-side. Therefore, node k must
be (X,Sn+1)-connected to the same fX on the i-side.

Case: Rule (b). Then none of the neighboring separators
except Sn

ij contains X . If node k is on the i-side, then node
k must be (X,Sn) to some fX on the i-side and therefore
must be (X,Sn+1) to the same fX on the i-side. The same
argument applies if node k is on the j-side.

Case: Rule (c). Symmetric to the previous case.

Proof of Theorem 10. First note that conditions (a,b,c) of
Definition 8 hold when we exhaust thinning rules. Suppose
sets S′

ij were obtained by exhausting thinning rules on sep-
arators Sij (and hence satisfy the three conditions). We just
need to prove that no supersets of S′

ij satisfy these condi-
tions. Suppose by contradiction such supersets S′′

ij exist and
consider an edge (i, j) such that X ∈ S′′

ij and X ̸∈ S′
ij .

By Lemma 1 since sets S′′
ij satisfy the three conditions,

node i must (X,S′′)-connect to some leaf node k on the
i-side which contains X . Since leaf node k contains X , it
(X,S′)-connects to itself. By Lemma 2, the leaf node k is
(X,S′)-connected to some fX on the i-side since X ̸∈ S′

ij .
Hence, leaf node k is also (X,S′′)-connected to the same
fX on the i-side since sets S′′

ij are supersets of S′
ij . We

have shown that node i is (X,S′′)-connected to leaf node
k which is (X,S′′)-connected to some fX on the i-side,
therefore node i is (X,S′′)-connected to some fX on the
i-side. By a similar argument, node j is (X,S′′)-connected
to some fX on the j-side. However, this implies that the
supersets S′′

ij violate condition (a), which is a contradiction.
Hence, the supersets S′′

ij cannot exist.

1.4 PROOF OF THEOREM 11

We need the following lemma which states the same prop-
erty of Lemma 2 except under different conditions. The
proof of this lemma uses the notion of “a closest leaf k to
node i which hosts mechanism fX ." This is a leaf node that
hosts fX where the path i = p0, p1, . . . , pn−1, pn = k has
a minimal number of sets S⋆

pipi+1
that do not contain X .

Lemma 3. Consider thinned separators S⋆ according to
Definition 8 and let X be a functional variable. If node i is
(X,S⋆)-connected to some leaf node that contains X , then
node i is (X,S⋆)-connected to exactly one leaf node that
hosts mechanism fX .

Proof. Suppose node i is (X,S⋆)-connected to some leaf
node that contains X . Node i cannot be (X,S⋆)-connected

to two different leaves that host fX as this would vio-
late condition (a) of Definition 8. Suppose now that node
i is not (X,S⋆)-connected to any mechanism fX . We
will next show a contradiction. Consider the path i =
p0, p1, . . . , pn−1, pn = k where k is a closest leaf to node i
which hosts mechanism fX . We claim that adding X to all
sets S⋆

pipi+1
which do not contain X on the path results in a

jointree thinning that still satisfies conditions (a,b,c) of Defi-
nition 8. This would be a contradiction as it implies there is
a superset of thinning S⋆ that satisfies these conditions.

To show the above claim, note that conditions (b,c) will
immediately continue to be satisfied if we add variables to
sets S⋆

pipi+1
. We next show that condition (a) will continue

to be satisfied as well.

Suppose we are adding X to sets S⋆
pipi+1

which do not
contain variable X using the given order of these sets. Let
S′ be the separators after adding X to S⋆

pipi+1
when the first

violation to condition (a) takes place. Then node pi will be
(X,S′)-connected to a leaf node p′i that hosts mechanism
fX on the pi-side of edge (pi, pi+1). This contradicts with
the definition of k as p′i will be closer to i than k.

Proof of Theorem 11. Given a jointree thinning S⋆ that sat-
isfies Definition 8, we will next show how to construct a
thinning sequence that produces it.

A key observation is that rule applications for a variable X
are independent of rule applications for a variable Y ̸= X;
that is, we can always rearrange a thinning sequence so
rules that apply to the same variable are consecutive. Hence,
we will construct a thinning sequence that produces S⋆ by
constructing a set of rule applications for each variable and
then paste them together.

To construct the rule applications for variable X , we start
with some leaf node l which hosts mechanism fX and then
traverse nodes away from l. Suppose we are visiting node
i now which has a neighbor j that has not been visited. If
X ̸∈ S⋆

ij and X ∈ Sij , we consider two cases. If X ̸∈ S⋆
jk

for all k, we add Rc(i, j,X). Otherwise, we add Ra(i, j,X).
Every variable that has been thinned will now be accounted
for by a rule. Moreover, these rules will be applicable in
the reverse order in which they have been constructed. Each
Ra(i, j,X) will be applicable by Lemmas 1 and 3. Each
Rc(i, j,X) will be applicable by definition.

1.5 PROOF OF THEOREM 9

Proof. A jointree thinning according to Definition 8 satis-
fies the two properties of the theorem by Definition 8 and
Lemma 3. Suppose now the two properties hold for a map-
ping S⋆. We will show there exists a thinning sequence
that produces S⋆ from the classical separators S. We first
note that no thinning rules can be applied to a mapping S⋆

that satisfies the two properties of the theorem. To apply

thinning rules to separators S, we consider each functional
variable X , then locate all connected subtrees where X does
not appear in any separator of a subtree. Consider one such
connected subtree Γ and let B = {S⋆

u1t1 , . . . ,S
⋆
uktk

} be the
boundary separators of the subtree. WLG, assume ui are
at the subtree boundary. Observe that each ui can either be
a leaf node that hosts a mechanism fX or a non-leaf node
such that X ∈ S⋆

uiri for ri ̸= ti. Similar to the proof for
Lemma 1, we can show that each ui is (X,S⋆)-connected to
some fX . Let {Su1t1 , . . . ,Suktk} be the original classical
separators of the jointree, then the separators S⋆ for the con-
nected subtree Γ can be obtained by the following thinning
sequence. We first apply thinning Rule (a) to all boundary
separators Su1t1 , . . . ,Suktk but one. Suppose we apply the
rule to separators Su2t2 . . . ,Suktk . This is sound since u1

is (X,S)-connected to all u2, . . . , uk by the property of
classical separators. Starting from these thinned boundary
separators, we can then thin X from all separators in subtree
Γ using Rules (b,c).

1.6 PROOF OF THEOREM 8

Proof. Suppose S⋆ is a jointree thinning according to Def-
inition 8 and and let X be a functional variable such that
X ∈ S⋆

ij for some edge (i, j). By Theorem 9, we must have
some leaf node k with X ∈ vars(i) that is X-connected
to exactly one mechanism for X , fX , through edge (i, j).
WLG, suppose leaf k is on the i-side of the edge and mecha-
nism fX is on the j-side of the edge. Suppose further that we
remove variable X from S⋆

ij leading to new separators S′.
This will lead to a violation of Condition (2a) in Theorem 9.
In particular, leaf node k will no longer be X-connected to
any mechanism for X . Now let F be the factors on the i-side
of edge (i, j), G be the factors on the j-side of the edge and
m be the number of mechanisms fX in F ∪ G. Let M⋆ de-
note messages computed using separators S⋆ and M′ denote
the messages computed using the separators S′. The compu-
tation of messages M⋆

ij and M⋆
ji must involve at least m−1

distinct sum-outs of X . This follows because the mecha-
nisms fX cannot be X-connected. Since M′

ij =
∑

X M⋆
ij

and M′
ji =

∑
X M⋆

ji, computing the product M′
ij · M′

ji

involves (m− 1)+2 = m+1 distinct sum-outs of variable
X . If Pr(S′

ij) =
∑

=

S′
ij
F ·G = M′

ij ·M′
ji then M′

ij ·M′
ji

is a factorization of
∑

=

S′
ij
F · G that involves m+ 1 distinct

sum-outs of variable X . However, since factors F ∪ G con-
tain exactly m replicas of mechanism fX , any factorization
of

∑
=

S′
ij
F · G cannot include more than m distinct sum-

outs of variable X that are based on Theorems 2 and 3. This
follows because each sum-out of X based on Theorem 3
will consume a mechanism fX and the sum-outs based on
Theorem 2 do not consume mechanisms. Hence, the equal-
ity

∑
=

S′
ij
F · G = M′

ij ·M′
ji cannot be justified based only

on these two theorems. That is, Theorem 3 will no longer

be sufficient to imply the soundness of the message-passing
algorithm as stated in Theorem 5.

1.7 PROOF OF THEOREM 12

Lemma 4. Consider a thinning sequence R =
{X, Rk,Y, Rt,Z} where X = {R1, . . . , Rk−1}, Y =
{Rk+1, . . . , Rt−1} and Z = {Rt+1, . . . , Rn}. Suppose Rk

and Rt are applications of Rule (a) and no member of Y
is an application of Rule (a). Then the following is a valid
thinning sequence R′ = {X, Rk, Rt,Y,Z}.

Proof. When applying the thinning sequence R, we start
with S⋆

ij = Sij and reduce a set S⋆
ij after each rule appli-

cation. The key observation here is that if an application
of Rule (a) is valid at some state of the thinned separators,
it will be valid at any earlier state of these separators (be-
cause no thinned separator can be smaller at an earlier state).
Moreover, if an application of Rules (b,c) is valid at some
state of the thinned separators, it will be valid at any later
state of these separators.

Proof of Theorem 12. Consider a thinning sequence R. We
can apply Lemma 4 repeatedly to obtain a valid thinning
sequence R′ that has the same rule applications as R and in
which Rules (a) appear before Rules (b,c). The sequences
R and R′ generate the same jointree thinning since they
contain the exact same rule applications.

1.8 PROOF OF THEOREM 7

Our proof starts with the correctness of the message passing
algorithm using classical separators and then shows that
the algorithm continues to be sound after we apply a thin-
ning rule to remove a variable from some separator (recall
that every jointree thinning can be obtained by a sequence
of thinning rules). We will use S′ to indicate the state of
separators after some rule applications.

Our proof uses the following variant on Definition 7. We will
say that a jointree node i is strongly (X,S′)-connected to a
factor f iff i hosts f or vars(f) appears in every separator
S′
kl on the path between node i and some leaf node j that

hosts f . Similarly, we will say that jointree nodes i and j are
strongly (X,S′)-connected iff i = j or variables vars(fX)
appear in every separator S′

kl on the path between i and j.

The thinning rules for distinct variables do not interact with
one another. Hence, we will assume in this proof that all
thinning rules are applied according to a reverse topological
ordering π of the variables in the underlying DAG.

We will use two lemmas in this proof. The first says that
X-connection (Definition 7) and strong X-connection (de-
fined above) are equivalent when applying thinning rules
according to reverse topological ordering π.

Lemma 5. Suppose S′ is the state of separators after apply-
ing thinning rules to variables that do not follow variable
X in order π. For jointree edge (i, j), node i is (X,S′)-
connected to some fX on the i-side of the edge and node j
is (X,S′)-connected to some fX on the j-side of the edge iff
i is strongly (X,S′)-connected to some fX on the i-side and
j is strongly (X,S′)-connected to some fX on the j-side.

Proof. The if part follows from the fact that X ∈ vars(fX).
We next show the only-if part. Suppose node i is (X,S′)-
connected to node l that hosts fX on the i-side and node j
is (X,S′)-connected to node r that hosts fX on the j-side.
By the property of classical separators, vars(fX) ⊆ Sxy

for all edges (x, y) on the path between l and r. Since π
is a reverse topological ordering of the variables, none of
the parents of X (vars(fX) \ {X}) are thinned from the
separators. Therefore, vars(fX)\{X} ⊆ S′

xy for all edges
(x, y) on the path between l and r. Since node i is (X,S′)-
connected to l and node j is (X,S′)-connected to r, we
conclude that node i is strongly (X,S′)-connected to l and
node j is strongly (X,S′)-connected to r.

The second lemma extends Theorem 3 to a more general
setting. For factors f and F , we will write f ∈ F to mean
that F = f · g for some factor g.

Lemma 6. Consider factor G =
=∑

S1
γ1 · · ·

=∑
Sk
γk · H

where γ1, . . . , γk are arbitrary factors, fX ∈ H and
vars(fX) ⊆ S1, . . . , vars(fX) ⊆ Sk for some mecha-
nism fX of variable X . If fX ∈ F , then F · G = F · G′

where G′ =
=∑

S1
γ1 · · ·

=∑
Sk
γk ·

∑
X H.

Proof. Suppose fX ∈ F . Then F = fX ·F ′ for some factor
F ′. Moreover, F · G equals to

F ′ · fX ·
=∑

S1

γ1 · · ·
=∑

Sk

γk · H

= F ′ ·
=∑

S1

γ1 · · ·
=∑

Sk

γk · fX · H

= F ′ ·
=∑

S1

γ1 · · ·
=∑

Sk

γk · fX ·
∑
X

H (by Theorem 3)

= F ′ · fX ·
=∑

S1

γ1 · · ·
=∑

Sk

γk ·
∑
X

H

= F · G′.

We are now ready for the soundness proof. For jointree
edge (i, j), let M′

ij and M′
ji denote the messages be-

tween i and j under separators S′. We will next show
Pr(S′

ij) = M′
ijM′

ji for all edges (i, j) by induction on
rule applications. For each rule application, we will use S
to denote the separators before thinning by the rule and S′

to denote the separators after thinning by the rule. Initially,
Pr(Sij) = MijMji for all edges (i, j) by Theorem 5. We

next show that this equality holds after each rule application.
We consider three cases, one for each rule type.

(1) Rule (a) is applied to edge (i, j): X ∈ Sij and X /∈ S′
ij .

By definition of Rule (a) and Lemma 5, node i is strongly
(X,S)-connected to some mechanism fX hosted at leaf
node l on the i-side and node j is strongly (X,S)-connected
to some mechanism fX hosted at leaf node r on the j-side.

First, we have M′
ij · M′

ji = Mij · Mji by Corollary 1.
Consider now any edge (k, z) on the path l . . . k–z . . . r
between leaf nodes l and r and suppose WLG that edge (i, j)
is on the subpath z . . . r. Using Lemma 6 with F = Mkz ,
G = Mzk and H = Mji, we get Mkz · Mzk = M′

kz ·
M′

zk. That is, removing X from the separator of edge (i, j)
does not affect the product of messages for edge (k, z).
Finally, consider any edge (k, z) that is not on the path
between leaf nodes l and r. Let t be the node on this path
which is closest to edge (k, z). Let l′, r′, u be the neighbors
of t that are closest to l, r and edge (k, z), respectively.
To show Mkz · Mzk = M′

kz · M′
zk, it suffices to show

M′
tu = Mtu. WLG, suppose node j is closer to t than node

i. Since Mtu =
=∑

Stu
γ ·Ml′t ·Mr′t, where γ denotes the

product of other invariant messages, we can use Lemma 6
again with F = Ml′t, G = Mr′t and H = Mij to get
M′

l′t · M′
r′t = Ml′t · Mr′t. Hence, applying Rule (a)

preserves the product of messages for all jointree edges.

(2) Rule (b) is applied to edge (i, j): X ∈ Sij and X /∈
S′
ij . By definition of Rule (b), node i is not a leaf and

X /∈ Ski for k ̸= j. Then M′
ij =

∑
X Mij = Mij since

messages Mki do not contain X . Moreover, Pr(S′
ij) =∑

X Pr(Sij) =
∑

X Mij · Mji = Mij · (
∑

X Mji) =
M′

ij · M′
ji. We next consider edges other than (i, j).

Since M′
ij = Mij , all messages outgoing from node j are

invariant. Hence, the product of messages is invariant for
any edge on the j-side of edge (i, j). We next show that
all message outgoing from i to neighbors k ̸= j are also
invariant. This shows that the product of messages is also
invariant for all edges on the k-side of any edge (k, i).

Mik =

=∑
Sik

Mji ·
∏

t̸=k,t ̸=j

Mti

=

=∑
Sik

(
∑
X

Mji) ·
∏

t̸=k,t ̸=j

Mti

=

=∑
Sik

M′
ji ·

∏
t̸=k,t ̸=j

M′
ti

= M′
ik.

The second step follows since X ̸∈ Ski and also X ̸∈ Sti.
The third step follows since messages Mti are invariant to
thinning variable X from separator Sij .

(3) Rule (c) is applied to edge (i, j). Similar to case (2).

1.9 PROOF OF THEOREM 13

Proof. Suppose replication F1 has width w. Then it must
have a causal jointree T1 of width w. We can turn T1 into
a causal jointree T2 for replication F2 by assigning more
factors to leaf nodes in T1. In particular, for each replica
fX ∈ F2 \F1, assign this replica to a leaf node in T1 which
hosts a mechanism fX . This guarantees that T2 will also
have width w. Since replication F2 has a causal jointree of
width w, its width must be ≤ w.

1.10 PROOF OF THEOREM 14

Proof. The fact that Algorithm 1 computes a complete repli-
cation follows directly from the statement of the algorithm.
Suppose there exists another complete replication F ′ that
is different from the complete replication F computed by
Algorithm 1. Then F ′ and F must differ on the number of
mechanisms fX for some functional variable X . Suppose
X is the first variable visited by Algorithm 1 on which this
disagreement takes place. Then F and F ′ must have the
same number of X-feedings factors; otherwise, they will
have a different number of mechanisms for some descendant
of variable X . Since F and F ′ both satisfy Definition 13
and they have the same number of X-feeding factors, they
must have the same number of mechanisms fX . This con-
tradicts the assumption that F ′ and F differ on the number
of mechanisms for variable X . Hence, F = F ′.

1.11 PROOF OF THEOREM 15

Lemma 7. Consider a replication F that contains n > 1
mechanisms for variable X and mX-feeding factors where
n > m. Let F ′ be the result of removing one mechanism for
X from F (hence, |F ′| = |F| − 1). The width of F ′ is no
greater than the width of F .

Proof. Let T be a causal jointree for F . We can turn T
into a causal jointree T ′ for F ′ with no greater width as
follows. Suppose there exists a leaf node in T that hosts
two mechanisms fX . We can then remove one of these
mechanisms from the leaf without increasing the width.
Suppose now that each leaf node in T hosts at most one
mechanism fX . The edges of T which contain variable
X in their (thinned) separators form a set of connected
subtrees. Each one of these subtrees will contain at most
one mechanism fX (otherwise thinning Rule (a) will apply).
By the pigeonhole principle, at least one of these subtrees
must contain a mechanism fX but no X-feeding factors.
We can show that removing this mechanism fX from the
subtree would not increase the causal width of resulting tree.
Hence, if F has a causal jointree of width w, then F ′ has
a causal jointree of no greater width. This implies that the
width of F ′ is no greater than the width of F .

Proof of Theorem 15. We first construct a new replication
G = F ∪ F ′. By Theorem 13, the width of G is no greater
than the width of F ′. We then go through the functional
variables in reverse-topological order (as visited by Al-
gorithm 1). For each variable X , we compare if the X-
mechanisms in F and G are equal. If so, we proceed to
the next functional variable in the order. Otherwise, G con-
tains more mechanisms than F and thus there are more
X-mechanisms than X-feeding factors in G. By Lemma 7,
we are licensed to remove the excess X-mechanisms from
G without increasing its width. By the end of this process,
G will become equal to complete replication F . Hence, the
width of F is no greater than the width of F ′.

1.12 PROOF OF THEOREM 16

Proof. In a complete replication, the number of mecha-
nisms for a functional variable is upper-bounded by the
total number of mechanisms of its children. Let X be a
functional variable and f(X) be the number of mechanisms
in the complete replication, then f(X) =

∑
Ci

f(Ci) ≤
c ·maxCi

f(Ci) where Ci are the children of X in the DAG.
Hence, we can recursively bound the number of mechanisms
for all the functional nodes in a functional chain. Since the
longest functional chain has a length of k, we can recur-
sively apply the above bound for at most k steps. When the
recursion terminates, maxCif(Ci) = 1 since all f(Ci) will
be non-functional variables. Therefore, f(X) ≤ ck for each
functional variable X in the replication. The inequality also
holds for non-functional variables, f(X) = 1 = c0 ≤ ck.
Given a total of n nodes in the DAG, we have at most
O(nck) factors in the complete replication.

2 FURTHER EXPERIMENTS

We report here an additional experiment that reveals the
importance of replication strategies and how such strategies
interact with jointree construction methods.

We first note that classical methods for constructing jointrees
do not directly apply to the construction of jointrees for
replications. To see why, consider a set of factors F with
no replicas. The classical method for constructing a jointree
for such factors is to first construct a primal graph. This is a
graph with nodes corresponding to the variables in factors
F and which includes an edge between two variables iff
they appear in the same factor.1 Consider now a replication
F ′ of factors F . It follows immediately that the primal
graph of F ′ is precisely the primal graph of F . Hence,
a classical jointree construction method will produce the

1There are various methods for constructing a jointree based
on a primal graph; see [Darwiche, 2009, Ch 9]. One of the popular
methods is to construct a low-width elimination order for the
primal graph using the minfill heuristic and to then convert the
order into a jointree of no greater width. This is what we used.

% func replication type
c 5c 10c 15c 20c 25c 30c complete

25% 126.2 334.1 594.6 854.3 1114.1 1373.6 1634.2 181.1
50% 151.2 561.4 1076.0 1588.9 2104.1 2618.3 3132.3 513.4
75% 178.7 799.3 1575.6 2352.9 3128.2 3907.0 4682.3 2564.3
100% 187.0 867.7 1721.0 2573.5 3429.6 4280.1 5132.8 4448.0

Table 1: Average size of replications. Replication nc means: the
number of replicas for a node X is between (n−1)c and nc where
c is the number of children for node X .

Figure 1: Illustrating the impact of replication strategies.

same jointree for factors F and for all their replications.
[Darwiche, 2020] proposed a jointree construction method
that targets complete replications. For a non-leaf functional
variable X , the method uses a distinct name for X in each
of its n replicas and these distinct names are also used in
the X-feeding factors whose count is also n. A jointree is
then constructed using a classical technique followed by a
reversal of the renaming process. While this method proved
generally effective, it applies only to complete replications.

The experiment we conducted compared the complete repli-
cation strategy with random replications of increasing size,
while varying the percentage of functional, non-root nodes
in a Bayesian network (25, 50, 75, 100). The comparison
was based on constructing jointrees using the minfill heuris-
tic (see Footnote 1). We used the method of [Darwiche,
2020] for complete replications, and adapted it somewhat
arbitrarily for random replications. In particular, when the
number of X-feeding factors did not match the number of
X-mechanisms, we renamed variables in the X-feeding fac-
tors distinctly to the extent possible and randomly thereafter.

Table 1 shows the size of random and complete replications,
with some random replications being larger than complete
replications. Figure 1 shows the mean maximal cluster size
(width+1) for jointrees and causal jointrees where each data
point is an average over 100 random Bayesian networks,
each containing 100 nodes. A few patterns are clear. First,
the causal width is always smaller than the width, and quite

substantially smaller, even when using random replications.
Second, complete replications always produced a smaller
causal width compared to random replications, particularly
when the number of functional nodes is largest (100%).
Third, increasing the size of a random replication almost al-
ways correlated with decreasing the causal width but up to a
certain point after which increasing the size of a replication
did not help. The few exceptions to this pattern highlight
the suboptimality of the jointree construction method we
used (see Theorem 13) and the suboptimality of the heuris-
tic for applying thinning rules. Beyond emphasizing some
of the theoretical results we presented earlier, this experi-
ment further highlights the practical significance of causal
treewidth and causal jointrees as they can lead to an expo-
nential reduction in inference complexity. The experiment
also highlights the need for developing principled jointree
construction methods that target replications which are not
complete, and highlight the need for further heuristics to
guide the application of thinning rules.

	Proofs
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 9
	Proof of Theorem 8
	Proof of Theorem 12
	Proof of Theorem 7
	Proof of Theorem 13
	Proof of Theorem 14
	Proof of Theorem 15
	Proof of Theorem 16

	Further Experiments

