Experimental Facilities at UCLA

David F. Chichka

Mechanical and Aerospace Engineering Department
University of California, Los Angeles

Cooperative Control of Distributed Autonomous Vehicles in Adversarial Environments
Kickoff Meeting
14 May 2001
Background

- Much of our current capability comes from our formation flight programs.
 - UCLA developed flight control computer for investigations of aircraft formation flight for drag reduction.
 - Currently developing formation flight instrumentation system for use on test flights with F-18 research aircraft, in partnership with Boeing and NASA DFRC.
 - Facilities have expanded to include extensive bench testing and hardware in the loop testing.
 - Vehicle testing facilities on automobiles and in UAVs.

- Currently attempting coordinated autonomous flight of a pair of UAVs.
 - Vehicles are the “Mule” at UCLA and the “Frog” from Naval Postgraduate School.
Formation Flight Instrumentation System

- Designed to provide highly accurate relative position, velocity, and attitude between aircraft.

- Primary purpose is formation flight for drag reduction.
 * Requires very accurate relative information, with less emphasis on inertial information.

- Uses integrated GPS/IMU system.
 * GPS provides common inertial and timing reference for all vehicles
 * IMU provides measurements of high frequency motion and angular motion.
 * Differential Carrier Phase GPS provides extremely accurate relative range measurements.
FFIS Functional Description

- The radio modem provides communication with the second aircraft
 * Can also provide communication with external equipment.

- The basic functioning of the FFIS is independent of the airframe interface.
FFCC Hardware Architecture

- FFCC is FFIS with control capability included.
 - Control for Mule is done through pulse-width-modulation output to standard R/C (hobby) actuators.
 - Control law is implemented in main CPU.

- The GPS requires a serial connection. A single-board computer allows communication without complicated software additions to main CPU.

Shown is current architecture; the dashed box includes additions for F-18 flight and upgrades to new IMU.
Hardware-in-Loop Simulation Facility

- Currently configured for F-18 simulations.
 * Aerodynamic simulation will be replaced with Mule simulation.
- For Mule simulation will be extended to include actuator hardware, rather than simulated actuators.
- Can (easily?) be extended to other aircraft and other vehicle dynamics.
Satellite Constellation Simulator

- 24 channels, divided between two RF outputs.
 - Configured to provide L_1 and L_2 signals from six satellites on each RF port.
 - RF ports feed directly to antenna ports on GPS receivers.

- Position, orientation, and rates of change delivered via ethernet from vehicle model workstations.

- SCS provides the 1 pulse-per-second signal to synchronize all parts of the simulation.
Aircraft Simulation Workstations

- Dual-processor Xeon workstations.

- Linux operating system.
 - Free, fast, flexible, runs in many flavors on a great deal of hardware.
 - Allows full control of background processes and direct access to hardware.
 - Sometimes difficult to get drivers for add-on cards.

- Synchronized every second to 1PPS signal from SCS.

- IMU signals simulated using D/A card in A/C workstations.
 - When IMU is upgraded to Litton LN-200, IMU simulation will be done using external device.
The Mule

- Remotely piloted aircraft, originally purchased for another program.
 * Aerodynamics designed to mimic ultra-light solar-powered aircraft.

- Physical characteristics
 * 17-foot wingspan, inverted V-tail.
 * Two-cylinder, 200-cc (approximately 13 hp) engine.
 * Current takeoff weight: 155 lb. (includes 10-lb payload)
 * Total payload: Greater than 30 lb.

- Used in flight tests on Formation Flight program since 1996.
 * Autonomous flight using previous flight control computer in 1997.
UAV Test Facilities

• Conducted at the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIR-PAS)
 * Center run by Naval Postgraduate School
 * Flights take place at McMillan Airfield on Camp Roberts, near Paso Robles, California

• Several very convenient features:
 * Airspace management
 * Frequency management
 * Physical infrastructure: power, hangar, paved runway.

• UAV’s operated by professional R/C pilots.
HYBRID TEST FACILITIES

• Essential tradeoff in a testbed is to include sufficient complexity to rigorously test algorithms without bringing in difficulty in analysing results.
 * A very simple hardware device may not provide sufficient flexibility.
 * A more complex hardware device introduces difficulties of modeling, construction, actuation, maintenance, et cetera.

• We desire vehicles of military interest – this is not feasible in a manageable testbed.

• Our major “hardware” restriction is likely to be communication.
 * Vehicle modeling can be done well, given sufficient time and incentive.
 * Communication is very environment dependent, and subject to bandwidth constraints, interference, power limitations, and other difficulties.

• We attempt to create a testbed that allows us to test our algorithms, rather than our mechanical abilities.
Proposed Facility — “Pseudo-Vehicles”

- Use computation to simulate vehicles; use hardware to implement communications.
 * Single-board computers are inexpensive and sufficiently powerful to model fairly complex vehicles.
 * Each “vehicle” will maintain its own state information, sensor models, and some local environment modeling.
 * SBCs will communicate with each other using wireless. Uncertainty can be allowed to arise naturally, and can be imposed through software or physically.

- Such an approach allows for complex, high-capability vehicles and includes necessary hardware uncertainty.
Proposed Facility – Environment

- One or more powerful coordinating computers will handle the environment and tell each machine if it has been damaged, what its sensors should see, et cetera.

- Coordinating machines will communicate with the SBCs via hardline ethernet. Given current network capacity, it is feasible to update environment variables within a reasonable control time frame.

- Existing hardware in the loop capability can be incorporated to create a “truth model” against which the performance of the pseudo-vehicles can be evaluated.