A Rate-Compatible Sphere-Packing Analysis of Feedback Coding with Limited Retransmissions

Adam Williamson, Tsung-Yi Chen, and Rick Wesel

UCLA Communication Systems Laboratory
arXiv: 1202.1458

July 6, 2012
Variable-length feedback with termination (VLFT) codes [Polyanskiy et al. 2011]:

⇒ Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.

⇒ Transmission may terminate after each symbol.

⇒ (Rate-compatible) random coding.

⇒ General results with numerical examples for BSC and BEC.
This Talk

- **This talk:** Still the basic VLFT framework.
 - Transmitter sees all channel outputs and tells the receiver when to terminate through a separate control channel.
 - Transmission may only terminate at the end of a “packet”.
 - Incremental packet lengths will be optimized.
 - Rate-compatible sphere-packing (RCSP) [Chen et al. 2011].
 - Rate-compatible tail-biting convolutional code.
 - Focused on the AWGN channel.
Forward channel is AWGN with known SNR, η.

The receiver attempts to decode after each incremental transmission, based on all received symbols.
Transmission Scheme Details (1st transmission)

- $k = \log_2 M = \text{information bits.}$

1st transmission:
- Send I_1, decode with $N_1 = I_1$.
- $R_1 = k / N_1 = \text{initial code rate.}$
Transmission Scheme Details (2nd transmission)

- $k = \log_2 M = \text{information bits.}$

2nd transmission:
- Send I_2, decode with $N_2 = I_1 + I_2$.
- $R_2 = k/N_2 = \text{code rate.}$
Transmission Scheme Details (ith transmission)

- $k = \log_2 M = \text{information bits.}$

- **ith transmission**: ($i = 2, \ldots, m$)
 - Send I_i, decode with $N_i = N_{i-1} + I_i$.
 - $I_i = \text{incremental step size}$, $N_i = \text{block length at ith transmission}$.
 - $R_i = k/N_i = \text{code rate at ith transmission}$.

- $m = \text{maximum number of transmissions (before repetition)}$.
If decoding is unsuccessful after m transmissions, start over by sending I_1 bits, then I_2 bits, etc. (similar to ARQ).

This is a practical limitation.

Simplifies analysis.
Decoding Error Probability for Sphere-Packing

- \(P[\text{error with block length } N_i] = P(\zeta_i) = P \left(\sum_{\ell=1}^{N_i} z_{\ell}^2 > r_i^2 \right) = 1 - F_{\chi_{N_i}^2} (r_i^2) \),

- \(r_i^2 = \frac{N_i(1+\eta)}{2^{2k/N_i}} \) is the sphere-packing radius (squared),
- \(z_{\ell} \sim \mathcal{N}(0, 1) \) are the noise samples.
An ideal sphere-packing codebook is mythical.

⇒ Upper bound on packing density ϕ in n dimensions:

$$\phi \leq \left(\frac{n}{e}\right) 2^{-n/2}.$$

... but we will see that a convolutional code can achieve sphere-packing performance.
Marginal vs. Joint Decoding Error Probability

- $\Pr[\text{error with block length } N_i] = \Pr(\zeta_i)$ (marginal)

 \[= \Pr\left(\sum_{\ell=1}^{N_i} z_\ell^2 > r_i^2 \right) = 1 - F_{\chi_{N_i}^2}(r_i^2), \]

- $\Pr[\text{error after } j \text{ transmissions}] = \Pr(\zeta_1, \zeta_2, \ldots, \zeta_j)$ (joint)

 \[= \Pr\left(\sum_{\ell=1}^{N_1} z_\ell^2 > r_1^2, \sum_{\ell=1}^{N_2} z_\ell^2 > r_2^2, \ldots, \sum_{\ell=1}^{N_j} z_\ell^2 > r_j^2 \right) \]

 \[= \int_{r_1^2}^{\infty} \int_{r_2^2-t_1}^{\infty} \cdots \int_{r_{j-1}^2-\sum_{i=1}^{j-2} t_i}^{\infty} f_{\chi_{I_1}^2}(t_1) \cdots f_{\chi_{I_{j-1}}^2}(t_{j-1}) \times \]

 \[\left(1 - F_{\chi_{I_j}^2}\left(r_j^2 - \sum_{i=1}^{j-1} t_i \right) \right) dt_{j-1} \cdots dt_1. \]
Latency and Throughput (for \(m = 1 \), the ARQ Case)

- \(\lambda = \text{latency} = \) expected number of forward channel uses.

\[
\lambda = I_1 \left(1 + P(\zeta_1) + P(\zeta_1)^2 + P(\zeta_1)^3 + \ldots \right) \\
= \frac{I_1}{1 - P(\zeta_1)} \\
= \frac{I_1}{F_{\chi^2_{N_1}}(r_{1}^2)}
\]

- \(R_t = \text{throughput} = k/\lambda \).

- Select \(I_1 \) to maximize \(R_t \).
What About $m > 1$?

- **Latency**

 \[
 \lambda = \frac{I_1 + \sum_{i=2}^{m} I_i P \left(\bigcap_{j=1}^{i-1} \zeta_j \right)}{1 - P \left(\bigcap_{j=1}^{m} \zeta_j \right)}
 \]

- **Throughput**

 \[
 R_t = \frac{k}{\lambda}
 \]

- Select \(\{I_1, I_2, \ldots, I_m\}\) to maximize \(R_t\).
RCSP: Latency vs. Throughput for $m = 1$ (ARQ) Using Optimal Step Size I_1

SNR = 2.0 dB, Capacity = 0.6851

Latency λ

Throughput R_t

$k = 16$

$k = 32$

$k = 64$

$k = 128$

$k = 256$

Capacity

$m = 1$ analysis
RCSP: Latency vs. Throughput for $m = 1$ to $m = 6$, Using Optimal Step Sizes I_i

SNR = 2.0 dB, Capacity = 0.6851

Throughput R_t vs. Latency λ for $m=1$ to $m=6$, with optimal step sizes I_i. The plot shows the throughput capacity for different values of k and m.
RCSP: Latency vs. Throughput for $m = 5$, Using Optimal Step Sizes I_i

SNR = 2.0 dB, Capacity = 0.6851
Comparison with [Polyanskiy et al. 2011]
Convolutional Code Simulations for $m = 5$

- Mother codes are rate $1/3$, 64-state and 1024-state convolutional codes from [Lin and Costello 2004].

- Use transmission lengths $\{I^m_1\}$ identified in RCSP optimization for $m = 5$.

- High-rate codes obtained by pseudo-random puncturing of mother codes.

- **Maximum likelihood (ML) decoding.**
 - ML decoding regions completely fill the power constraint sphere.

- Tail-biting implementations used for throughput efficiency.
Convolutional Code Achievability, $m = 5$

SNR = 2.0 dB, Capacity = 0.6851

- 90% of AWGN capacity in ~100 symbols.
Decoding Error Trajectory

SNR = 2.0 dB, Capacity = 0.6851, $k = 64$

$m = 5$ RCSP analysis
Decoding Error Trajectory

SNR = 2.0 dB, Capacity = 0.6851, $k = 64$

$m = 5$ RCSP analysis
$m = 5$ 64-state conv. code
Decoding Error Trajectory

SNR = 2.0 dB, Capacity = 0.6851, \(k = 64 \)

- \(m = 5 \) RCSP analysis
- \(m = 5 \) 64-state conv. code
- \(m = 5 \) 1024-state conv. code
Decoding Error Trajectory

SNR = 2.0 dB, Capacity = 0.6851, $k = 64$

- $m = 5$ RCSP analysis
- $m = 5$ 64-state conv. code
- $m = 5$ 1024-state conv. code
- VLFT code ($m=5$ block lengths)
Decoding Error Trajectory

SNR = 2.0 dB, Capacity = 0.6851, $k = 64$

- $m = 1$ RCSP analysis
- $m = 2$ RCSP analysis
- $m = 3$ RCSP analysis
- $m = 4$ RCSP analysis
- $m = 5$ RCSP analysis
- $m = 6$ RCSP analysis
- $m = 5$ 64-state conv. code
- $m = 5$ 1024-state conv. code
- VLFT code ($m=5$ block lengths)
SNR = 2.0 dB, Capacity = 0.6851, \(k = 64 \)

Marginal \(P(\zeta) = 1 - F_{\chi^2_N} (r^2) \)

- \(m = 1 \) RCSP analysis
- \(m = 2 \) RCSP analysis
- \(m = 3 \) RCSP analysis
- \(m = 4 \) RCSP analysis
- \(m = 5 \) RCSP analysis
- \(m = 6 \) RCSP analysis
- \(m = 5 \) 64-state conv. code
- \(m = 5 \) 1024-state conv. code
SNR = 2.0 dB, Capacity = 0.6851, $m = 5$

$R_1 > C$
Concluding Thoughts

- Feedback improves achievable rate for finite block lengths.
 - Feedback after every bit is best.
 - When transmissions must be grouped, pick the sizes wisely.
- Find good codes by matching RCSP error trajectories.
- Questions?