8. Least squares

- least squares problem
- solution of a least squares problem
- solving least squares problems
Least squares problem

given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, find vector $x \in \mathbb{R}^n$ that minimizes

$$
\|Ax - b\|^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij}x_j - b_i \right)^2
$$

- ‘least squares’ because we minimize a sum of squares of affine functions:

$$
\|Ax - b\|^2 = \sum_{i=1}^{m} r_i(x)^2, \quad r_i(x) = \sum_{j=1}^{n} A_{ij}x_j - b_i
$$

- the problem is also called the linear least squares problem
Example

\[
A = \begin{bmatrix}
2 & 0 \\
-1 & 1 \\
0 & 2 \\
\end{bmatrix}, \quad b = \begin{bmatrix}
1 \\
0 \\
-1 \\
\end{bmatrix}
\]

- the least squares solution \(\hat{x} \) minimizes

\[
f(x) = \|Ax - b\|^2 = (2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2
\]

- to find \(\hat{x} \), set derivatives with respect to \(x_1 \) and \(x_2 \) equal to zero:

\[
10x_1 - 2x_2 - 4 = 0, \quad -2x_1 + 10x_2 + 4 = 0
\]

solution is \(\hat{x}_1 = 1/3, \hat{x}_2 = -1/3 \)
Least squares and linear equations

minimize $\|Ax - b\|^2$

- solution of the least squares problem: any \hat{x} that satisfies

$\|A\hat{x} - b\| \leq \|Ax - b\|$ for all x

- $\hat{r} = A\hat{x} - b$ is the residual vector

- if $\hat{r} = 0$, then \hat{x} solves the linear equation $Ax = b$

- if $\hat{r} \neq 0$, then \hat{x} is a least squares approximate solution of the equation

- in most least squares applications, $m > n$ and $Ax = b$ has no solution
least squares problem in terms of columns a_1, a_2, \ldots, a_n of A:

$$\text{minimize } \|Ax - b\|^2 = \| \sum_{j=1}^{n} a_j x_j - b \|^2$$

- $A\hat{x}$ is the vector in $\text{range } A = \text{span}(a_1, a_2, \ldots, a_n)$ closest to b

- geometric intuition suggests that $\hat{r} = A\hat{x} - b$ is orthogonal to $\text{range}(A)$
Row interpretation

least squares problem in terms of rows \(\tilde{a}_1^T, \tilde{a}_2^T, \ldots, \tilde{a}_m^T \) of \(A \)

\[
\text{minimize} \quad \| Ax - b \|^2 = (\tilde{a}_1^T x - b_1)^2 + \cdots + (\tilde{a}_m^T x - b_m)^2
\]

• if \(\tilde{a}_i \neq 0 \), distance of \(x \) to hyperplane \(H_i = \{ y \mid \tilde{a}_i^T y = b_i \} \) is

\[
d_i(x) = \frac{|\tilde{a}_i^T x - b_i|}{\|\tilde{a}_i\|}
\]

• least squares solution minimizes weighted sum of squared distances

\[
\| Ax - b \|^2 = \sum_{i=1}^{m} w_i d_i(x)^2 \quad \text{with weights} \quad w_i = \|\tilde{a}_i\|^2
\]

• if row norms are equal, LS solution minimizes sum of squared distances
Example

\[
A = \begin{bmatrix}
2 & 0 \\
1 & -1 \\
0 & -1
\end{bmatrix}
\]

\[
b = \begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}
\]

\[
\|Ax - b\|^2 = 4d_1(x)^2 + 2d_2(x)^2 + d_3(x)^2
\]

\(d_1(x)\) is distance to \(H_1\), \(d_2(x)\) is distance to \(H_2\), \(d_3(x)\) is distance to \(H_3\)
Example: advertising purchases

- \(m \) demographic groups; \(n \) advertising channels
- \(A_{ij} \) is \# impressions (views) in group \(i \) per dollar spent on ads in channel \(j \)
- \(x_j \) is amount of advertising purchased in channel \(j \)
- \((Ax)_i \) is number of impressions in group \(i \)
- \(b_i \) is target number of impressions in group \(i \)

Example: \(m = 10, n = 3, b = 10^3 \cdot 1 \)
Example: illumination

- n lamps at given positions above an area divided in m regions
- A_{ij} is illumination in region i if lamp j is on with power 1 and other lamps are off
- x_j is power of lamp j
- $(Ax)_i$ is illumination level at region i
- b_i is target illumination level at region i

Example: $m = 25 \times 25$, $n = 10$; figure shows position and height of each lamp
Example: illumination

- left: illumination pattern for equal lamp powers \(x = 1 \)
- right: illumination pattern for least squares solution \(\hat{x} \), with \(b = 1 \)
Outline

• least squares problem

• solution of a least squares problem

• solving least squares problems
Solution of a least squares problem

if A has linearly independent columns (is left invertible), then the vector

$$\hat{x} = (A^T A)^{-1} A^T b$$

$$= A^\dagger b$$

is the unique solution of the least squares problem

$$\text{minimize} \quad \|Ax - b\|^2$$

• in other words, if $x \neq \hat{x}$, then $\|Ax - b\|^2 > \|A\hat{x} - b\|^2$

• recall from page 4-23 that

$$A^\dagger = (A^T A)^{-1} A^T$$

is the pseudo-inverse of a left invertible matrix
Proof

we show that $\|Ax - b\|^2 > \|A\hat{x} - b\|^2$ for $x \neq \hat{x}$:

\[
\|Ax - b\|^2 = \|A(x - \hat{x}) + (A\hat{x} - b)\|^2 \\
= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 \\
> \|A\hat{x} - b\|^2
\]

• 2nd step follows from $A(x - \hat{x}) \perp (A\hat{x} - b)$:

\[
(A(x - \hat{x}))^T (A\hat{x} - b) = (x - \hat{x})^T (A^T A\hat{x} - A^T b) = 0
\]

• 3rd step follows from linear independence of columns of A:

\[
A(x - \hat{x}) \neq 0 \text{ if } x \neq \hat{x}
\]
Derivation from calculus

\[f(x) = \|Ax - b\|^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_j - b_i \right)^2 \]

- partial derivative of \(f \) with respect to \(x_k \)

\[\frac{\partial f}{\partial x_k}(x) = 2 \sum_{i=1}^{m} A_{ik} \left(\sum_{j=1}^{n} A_{ij} x_j - b_i \right) = 2(A^T(Ax - b))_k \]

- gradient of \(f \) is

\[\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right) = 2A^T(Ax - b) \]

- minimizer \(\hat{x} \) of \(f(x) \) satisfies \(\nabla f(\hat{x}) = 2A^T(A\hat{x} - b) = 0 \)
Geometric interpretation

Residual vector $\hat{r} = A\hat{x} - b$ satisfies $A^T\hat{r} = A^T(A\hat{x} - b) = 0$

$\begin{align*}
 b - A\hat{x} &= -\hat{r} \\
 \text{range}(A) &= \text{span}(a_1, \ldots, a_n)
\end{align*}$

- Residual vector is orthogonal to every column of A; hence, to $\text{range}(A)$
- Projection on $\text{range}(A)$ is a matrix-vector multiplication with the matrix

$$A(A^TA)^{-1}A^T = AA^\dagger$$
Outline

• least squares problem

• solution of a least squares problem

• solving least squares problems
Normal equations

\[A^T A x = A^T b \]

- these equations are called the *normal equations* of the least squares problem
- coefficient matrix \(A^T A \) is the Gram matrix of \(A \)
- equivalent to \(\nabla f(x) = 0 \) where \(f(x) = \|Ax - b\|^2 \)
- all solutions of the least squares problem satisfy the normal equations

If \(A \) has linearly independent columns, then:

- \(A^T A \) is nonsingular
- normal equations have a unique solution \(\hat{x} = (A^T A)^{-1} A^T b \)
QR factorization method

rewrite least squares solution using QR factorization $A = QR$

$$
\hat{x} = (A^T A)^{-1} A^T b = ((QR)^T (QR))^{-1} (QR)^T b
= (R^T Q^T Q R)^{-1} R^T Q^T b
= (R^T R)^{-1} R^T Q^T b
= R^{-1} R^{-T} R^T Q^T b
= R^{-1} Q^T b
$$

Algorithm

1. compute QR factorization $A = QR$ (2mn^2 flops if A is $m \times n$)
2. matrix-vector product $d = Q^T b$ (2mn flops)
3. solve $Rx = d$ by back substitution (n^2 flops)

complexity: 2mn^2 flops
Example

\[A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix} \]

1. QR factorization: \(A = QR \) with

\[Q = \begin{bmatrix} 3/5 & 0 \\ 4/5 & 0 \\ 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix} \]

2. calculate \(d = Q^T b = (5, 2) \)

3. solve \(Rx = d \)

\[
\begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}
\]

solution is \(x_1 = 5, \ x_2 = 2 \)
Solving the normal equations

why not solve the normal equations

\[A^T Ax = A^T b \]

as a set of linear equations?

Example: a 3×2 matrix with ‘almost linearly dependent’ columns

\[
A = \begin{bmatrix}
1 & -1 \\
0 & 10^{-5} \\
0 & 0 \\
\end{bmatrix}, \quad b = \begin{bmatrix}
0 \\
10^{-5} \\
1 \\
\end{bmatrix},
\]

we round intermediate results to 8 significant decimal digits
Solving the normal equations

Method 1: form Gram matrix $A^T A$ and solve normal equations

$$A^T A = \begin{bmatrix} 1 & -1 \\ -1 & 1 + 10^{-10} \end{bmatrix} \approx \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad A^T b = \begin{bmatrix} 0 \\ 10^{-10} \end{bmatrix}$$

after rounding, the Gram matrix is singular; hence method fails

Method 2: QR factorization of A is

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \end{bmatrix}$$

rounding does not change any values (in this example)

- problem with method 1 occurs when forming Gram matrix $A^T A$
- QR factorization method is more stable because it avoids forming $A^T A$