
www.elsevier.com/locate/tsf
Thin Solid Films 496
Effective optical properties of non-absorbing nanoporous thin films

Matthew M. Braun *, Laurent Pilon

Mechanical and Aerospace Engineering Department, Henri Samueli School of Engineering and Applied Science, University of California,

420 Westwood Plaza, 37-132 Eng. IV, Los Angeles, CA 90095, USA

Received 15 December 2004; received in revised form 25 July 2005; accepted 12 August 2005

Available online 15 September 2005
Abstract

Numerous effective medium models have been proposed for the effective optical properties of nanoporous media. However, validations of

these models against experimental data are often contradictory and inconclusive. This issue was numerically investigated by solving the two-

dimensional Maxwell’s equations in non-absorbing nanoporous thin films with various morphologies. It was found that below a certain

critical film thickness, the effective index of refraction depends on the porosity and on the pore size, shape and spatial distribution. For thick

enough films the effective index of refraction depends solely on porosity and on the indices of refraction of the two constitutive phases. The

numerical results agree very well with a recent model obtained by applying the Volume Averaging Theory to the Maxwell’s equations.

However, commonly used models systematically and sometimes significantly underpredict the numerical results.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Nanoporous materials consist of nanosize air pockets

embedded in a solid matrix. The pores can assume different

shapes and sizes and can be closed or open (i.e. connected).

Nanoporous media are characterized by their bubble size

distribution and porosity which can significantly affect their

electrical, thermal, radiation, and optical properties. Pro-

gress in synthesizing, characterizing, and modelling such

materials would enable technological innovations in various

applications ranging from microelectronics to optical

devices and biosensors.

As integrated circuit process technology progresses, the

device density increases and chip performance improves

continuously [1]. The signal propagation is delayed by the

resistance–capacitance time constant RC. The resistance R

has been reduced by replacing Al–Cu alloy by Cu metal

lines. Further reduction can be achieved via minimizing the

capacitance C. This can be accomplished by replacing the
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current circuit interconnect material, silicon dioxide (er =3.9

at 1 MHz), with new low-k dielectric materials having

dielectric constant er less than 2.0. Unfortunately, there are

no known dense materials that meet the semiconductor

manufacturing requirements and have a dielectric constant

less than 2. During the last decade, however, nanoporous

media made of polymer [2,3] and SiO2 [4–9] have been

identified as potential solutions. In this approach, nano-size

air bubbles (er =1.0) are incorporated into a continuous

matrix thus, reducing the effective dielectric constant of the

nanoporous material. Then, the specific effective dielectric

constant is tailored by varying the porosity.

In a similar manner, nanoporous silicon and SiO2 have

been used to manufacture waveguides [9–11], Bragg

reflectors [12–18], Fabry-Perot filters [12,14,16,17,19],

and antireflection coatings [20,21]. For example, in order

to confine and propagate electromagnetic (EM) radiation

within a waveguide, the guide region itself must have a

higher index of refraction than the surrounding cladding

[22]. Moreover, Bragg reflectors and Fabry-Perot filters are

built by generating alternating layers with prescribed thick-

ness and index of refraction. This geometry takes advantage
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of constructive and destructive interferences to selectively

reflect or transmit at desired wavelengths. Destructive

interferences are also used by simple quarter-wave antire-

flection coatings to reduce or eliminate reflection from a

surface. The effect is optimized by utilizing a coating

material with index of refraction equal to the geometric

mean of the two surrounding indices [22]. In all of these

optical applications, the use of nanoporous media enables

tuning of the index of refraction by simply controlling the

morphology and porosity of the nanosize voids.

In order to design a material with the desired properties

one needs to understand and predict the effect of the pores

(shape, size, and concentration) on the properties of the host

medium. This paper aims at understanding and quantifying

these effects. First, the various models commonly used in

the literature are reviewed. Then, numerical simulations of

EM wave transport in non-absorbing nanoporous media are

presented. Finally, comparisons with effective property

models are discussed.
2. Current state of knowledge

Effective medium models treat heterogeneous media as

homogeneous media with some effective properties. How-

ever, there are no explicit criteria as for when this approach

is valid. The rule of thumb stating that the overall

characteristic length L of the system should be much larger

than the average pore diameter D has been used extensively.

Typically, one uses the criteria L�10D. Unfortunately, this

rule seems to be arbitrary and is not supported by any

rigorous analysis. Moreover, numerous effective media

models have been suggested including (1) the Maxwell-

Garnett Theory, (2) the Bruggeman effective medium

approximation, (3) the parallel and (4) series models, (5)

the reciprocity model, and (6) the models recently derived

from the volume averaging method.

The Maxwell-Garnett Theory (MGT) [23] was first

developed to model the effective electric permittivity of

heterogeneous media consisting of monodispersed spheres

arranged in a cubic lattice structure within a continuous

matrix and of diameter much smaller than the wavelength of

the incident EM wave. Then, the effective dielectric

constant er,eff is expressed as,

er;eff ¼ er;c 1�
3/ er;c � er;d

� �
2er;c þ er;d þ / er;c � er;d

� �
" #

ð1Þ

where er,c and er,d are the dielectric constant of the

continuous and dispersed phases, respectively, while / is

the porosity. The MGT is not valid over the entire range

of porosities since the spheres start overlapping for

porosity values of p/6˚52% for a 3D cubic lattice

arrangement.

To address this issue, Bruggeman [24] considered a

similar situation of polydispersed spheres distributed in a
continuous medium. The effective dielectric constant er,eff is

obtained by solving the following implicit equation,

1� / ¼

er;eff

er;c
� er;d

er;c

� �
er;eff

er;c

� �1=3

1� er;d

er;c

� �" # ð2Þ

Despite applicability to the full range of porosity

(0�/�1), the Bruggeman model is not used as often as

the MGT in the literature [25].

Other commonly encountered models are the parallel and

series models which have been used, for example, for the

effective dielectric constant, index of refraction, as well as

thermal and electrical conductivities. The parallel model

gives the effective property weff as a linear function of the

properties of the continuous and dispersed phases, i.e.,

weff ¼ 1� /ð Þwc þ /wd ð3Þ

The series model on the other hand, gives

1

weff

¼ 1� /
wc

þ /
wd

ð4Þ

Alternatively, del Rio et al. [26] suggested the following

effective model for electrical conductivity based on the

reciprocity theorem,

reff ¼ rc

1þ /
ffiffiffiffiffiffiffiffiffiffiffiffi
rc=rd

p
� 1

	 

1þ /

ffiffiffiffiffiffiffiffiffiffiffiffi
rd=rc

p
� 1

	 
 ð5Þ

The authors successfully validated this model against

experimental data for the electrical conductivity of several

binary metallic mixtures.

A more rigorous approach, albeit more mathematically

involved, was recently derived [27–29] by applying the

volume averaging theory (VAT) to the Maxwell’s equa-

tions. Models were proposed for the effective dielectric

constant er,eff and relative permeability lr,eff of a two-phase

mixture as,

er;eff ¼ 1� /ð Þer;c þ /er;d and

1=lr;eff ¼ 1� /ð Þ=lr;c þ /=lr;d: ð6Þ

The range of validity of these expressions was discussed

in depth, and a set of inequalities to be satisfied was

developed. The authors conclude that ‘‘the constraints [posed

by these inequalities] are very severe and are not satisfied for

many processes’’. Note also that Eq. (6) does not satisfy the

reciprocity theorem [26,30]. This can be attributed to the fact

that the reciprocity theorem applies to irrotational vector

fields [30]. However, in electromagnetic wave propagation,

the curl of the electric and magnetic fields are non-zero as the

time-dependent fields are coupled through Faraday’s law of

induction and Ampere’s law.

Moreover, all the above models disregard the shape, the

size distribution, and the spatial distribution of the pores.
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However, these characteristics were stated to affect the

effective properties of the heterogeneous medium [2,3].

Attempts have been made to account for non-spherical cell

geometry by modifying the Maxwell-Garnett [31] and the

Bruggeman [32,33] models. For example, Schultz [33]

generalized the Bruggeman model for dispersions of

randomly oriented spheroids. This model also accounts for

the orientation of the cells by incorporating the angle

between the revolution axis of the spheroid and the incident

energy direction. Similarly, Robles et al. [30] proposed a

model for randomly distributed and oriented elliptical

inclusions using the reciprocity theorem and accounting

for possible overlapping. Models such as these are difficult

to use in practice because they are involved and/or require

specific knowledge of the shape and orientation of the cells.

Finally, note that the above models have been used to

predict properties for which they were not necessarily

derived. For example, the MGT developed for the electric

permittivity has been used for the index of refraction

[34,35]. Overall, it is not always clear to the user which

model is the most appropriate in any particular situation.

Experimental data could be used to evaluate the various

models, however the conclusions drawn can be contra-

dictory [36]. For example, Si et al. [7] concluded that the

series model best describes the dielectric constant of

nanoporous silica thin films with uniformly distributed

closed voids. Krause et al. [3], on the other hand, concluded

that the Maxwell-Garnett model is more appropriate for

polymeric closed-cell nanofoam. This apparent contradic-

tion may be attributed to the difficulties and uncertainties in

measuring the film porosity, the pore size and shape, and

also the optical properties of a nanoporous thin film. To

address this issue, the present study aims at numerically

simulating EM wave transport in non-absorbing nanoporous

media in order to determine (1) the range of validity of the

effective medium approach and (2) the most appropriate

effective property model for the dielectric constant and for

the index of refraction of non-absorbing nanoporous media.
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Fig. 1. Schematic of two-dimensional (a) dense and (b) closed-cell

nanoporous thin-film exposed to a linearly polarized plane wave.
3. Analysis

3.1. Index of refraction from the volume averaging theory

A dielectric but non-magnetic material is characterized

by its real dielectric constant er and its real index of

refraction n such that n ¼ ffiffiffiffi
er

p
. Then, recasting the dielectric

constants of the continuous and dispersed phases in terms of

their indices of refraction, i.e. er;c ¼ n2c and er;d ¼ n2d, the

VAT model for er,eff given by Eq. (6) can be rewritten for the

effective index of refraction as,

neff ¼
ffiffiffiffiffiffiffiffiffi
er;eff

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /ð Þn2c þ /n2d

q
: ð7Þ

This relationship can be extended to semi-conductor

materials at wavelengths at which they do not absorb.
3.2. Governing equations and numerical implementation

In order to develop the numerical model, let us first

consider a surrounding environment (medium 1, n1) and a

non-absorbing dense thin film (medium 2, n2) deposited

onto a non-absorbing dense substrate (medium 3, n3). A

linearly polarized plane wave in transverse electric mode

(TE mode) is incident normal to the film top surface and

propagates through the two-dimensional thin film along the

x-direction (see Fig. 1). As the wave propagates in the x–y

plane, it has only one electric field component in the z-

direction, while the magnetic field has two components in

the x –y plane (i.e. perpendicularly polarized), such that in a

general time-harmonic form,

E
Y

x; y; tð Þ ¼ Ez x; yð ÞeixteYz ð8Þ

and

H
Y

x; y; tð Þ ¼ Hx x; yð ÞeYx þ Hy x; yð ÞeYy
h i

eixt: ð9Þ

Here, E
Y

is the electric field vector, H
Y

is the magnetic field

vector, and x =2pc0/k is the angular frequency of the wave.
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The unit vectors for the Cartesian coordinate system are eYx ,

eYy and eYz . For general time-varying fields in a non-

conducting medium, Maxwell’s equations can be written as

1

lrl0

3	 3	 E
Y

x; y; tð Þ
h i

� x2ere0E
Y

x; y; tð Þ ¼ 0 ð10Þ

1

ere0
3	 3	 H

Y
x; y; tð Þ

h i
� x2lrl0H

Y
x; y; tð Þ ¼ 0 ð11Þ

where l0 and lr are the magnetic permeability of vacuum

and the relative magnetic permeability, respectively. The

associated boundary conditions are

nY	 H
Y

1 � H
Y

2

	 

¼ 0

Y
at the surroundings� film interface

ð12Þ

n
Y 	 H

Y ¼ 0
Y

at the symmetry boundaries ð13Þ

l1=2
0 nY 	 H

Y
	 


þ n2e
1=2
0 E

Y
¼ 0

Y

at the film � subtrate interface ð14Þ

l1=2
1 n

Y 	 H
Y

	 

þ n1e

1=2
0 E

Y ¼ 2n1e
1=2
0 E0

Y

at the source surface ð15Þ

where n
Y

is the normal vector to the appropriate interface.

Eq. (14) corresponds to a semi-infinite substrate while Eq.

(15) models the source surface from which the incident EM

wave E0

Y
is emitted, but that will be transparent to the

reflected waves.

Moreover, the Poynting vector pY is defined as the cross

product of the electric and magnetic field vectors, i.e.

p
Y ¼ E

Y 	 H
Y
. Its magnitude corresponds to the energy flux

carried by the propagating EM wave. Solving Maxwell’s

equations for the nonzero component of the electric field

vector Ez, and relating it to the magnetic field gives

Hy ¼
n

lrl0c0
Ez: ð16Þ

Averaging the Poynting vector over an appropriate time

interval yields [22],

jpjavg ¼
n

2lrl0c0
E2
z : ð17Þ

The incident electric field Ez and therefore the incident

time-averaged Poynting vector |p0|avg are imposed at all

locations along the source surface. The values of the

Poynting vector along the film-substrate interface are then

calculated numerically and averaged along the boundary to

yield |pt|avg. The transmittance of the thin film is then

recovered by taking the ratio of the transmitted to incident

values, Tfilm= |pt|avg/|p0|avg. Similarly, the magnitude of the

reflected time-averaged Poynting vector |pr|avg is computed

numerically, and the reflectance of the film is computed

according to Rfilm= |pr|avg/|p0|avg. Finally, the above equa-
tions were solved numerically using a commercially

available finite element solver applying the Galerkin finite

element method on unstructured meshes. The two-dimen-

sional Maxwell’s equations are solved in the frequency

domain using a 2D transverse electric (TE) wave formu-

lation as described by Eq. (8). In particular, discretization

uses second order elements to solve for the electric field. In

order to validate the numerical implementation of the

equations and boundary conditions, the interference pattern

of a dense and non-absorbing thin film of SiO2 with

thickness L and index of refraction n2 deposited on a

silicon substrate with index of refraction n3 and subject to

normal incident light of variable wavelength k was

simulated. Numerical results fall within rounding error on

the sixth recorded significant digit of the well-known

analytical solution expressing the transmissivity and reflec-

tivity as a function of the product n2L/k [22, p. 140].

3.3. Simulations of nanoporous thin films

Fig. 1b shows a schematic of a nanoporous thin film on a

semi-infinite substrate. The heterogeneous medium is

assumed to be axisymmetric and isotropic with randomly

distributed pores which can be modelled as a two-dimen-

sional structure. Moreover, all interfaces were treated as

optically smooth. As the EM wave travels through the

nanoporous thin film, interferences and scattering take

place. However, scattering can be neglected if the size of

the individual inhomogeneities dispersed in an otherwise

homogeneous matrix is much smaller than the wavelength

of the incident radiation [28,37]. A quantitative criteria

requires that the size parameter v =pD/k be much smaller

than unity, where D is the pore diameter (or an equivalent)

and k is the incident wavelength [38]. In the present study v
varies between 0.0023 and 0.23, and the fraction of energy

scattered by pores of various shape and size was neglected

relative to that transmitted and reflected by the film in the

incident direction. This assumption was confirmed numeri-

cally by comparing the magnitude of the y-component of the

Poynting vector perpendicular to the incident directions with

its x-component at all locations in the x–y plane. For

v =0.23, the maximum value of the y-component of the

Poynting vector was conservatively estimated to be less than

0.5% of the minimum x-component. For the smaller pore

sizes this value was several orders of magnitude smaller

(0.05% for v =0.023 and negligibly small for v =0.0023).
Similarly, polarization effects are disregarded since (1) the

incident EM wave is normal to the surface, i.e., the plane of

incidence is not defined and the components of the

polarization cannot be distinguished [22], (2) scattering is

neglected, and (3) we assume the heterogeneous medium to

be axisymmetric and isotropic. In addition, non-linear

optical effects are neglected. Finally, surface phonon and

plasmon polaritons are not observed in the current situation

as resonance modes were not excited for the materials and

wavelengths considered.
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The geometry was further simplified for numerical

simulations by building a simple 2D unit cell consisting of

domains of dispersed phase embedded in a matrix as

shown in Fig. 2. Multiple cells were then added on top of

each other to simulate nanoporous thin films of various

thicknesses but identical porosities. This results in a

regular periodic structure similar to those used in

simulations of photonic band gap crystals. However, all

cases in the current study are outside of the zero

transmission bands for the wavelengths considered [39].

The surrounding environment and the dispersed phase

were treated as vacuum (n1=nd=1). Silicon dioxide was

used as the thin film continuous phase characterized by a

real index of refraction equal to nc=1.4442 at 1.55 Am
[40]. The silicon substrate is weakly absorbing about this

wavelength with an absorption index k3 less than

1.5	10�6 [22]. Therefore, as a first order approximation,

the silicon substrate was modelled as non-absorbing with

an index of refraction n3=3.48. Moreover, the wavelength

of 1.55 Am was chosen because of its predominant use in

the telecommunication industry, and ready production by

AlGaAs semiconductor laser diodes.

The Maxwell’s equations are solved numerically to

simulate the EM wave transport in each phase of the

nanoporous thin films. Eq. (12) is used as the boundary

condition not only at the vacuum-film interface but also at

the SiO2–pore interfaces. It is important to note that
Maxwell’s equations are generally applied to macroscopic

averages of the fields which can vary widely in the vicinity

of individual atoms where they undergo quantum mechan-

ical effects. These effects are neglected in the present study

and all phases are treated as homogeneous and isotropic

media for which dielectric constants er and indices of

refraction n are defined. This is a reasonable assumption for

length scales on the order of ten lattice constants, or about 5

nm [41, p. 387].

Fig. 3 is a schematic representation of a model

consisting of three unit cells with / =19.63%. It indicates

material properties of the various domains and the

locations at which each of the boundary conditions are

applied. To ensure proper application of the symmetry

boundary condition, a 10	10 and a 10	1 unit cell

arrangement were modelled. In both cases, the average

transmittance and reflectance were identical. Thus, one-

unit-cell-wide models are used in all other cases so as to

reduce computational time.

Finally, the computed local transmitted Poynting vector

is averaged along the film-substrate interface for calculating

the film transmittance, Tfilm. The local transmitted energy

flux varies slightly as a function of position for the

nanoporous geometries considered in this study. For

example, the relative difference between the local and

averaged transmittance along the nanoporous film/substrate

interface for several film thicknesses and constant porosity

/ =19.63% is less than 1% in the case of spherical pores

100 nm in diameter, 0.01% for 10 nm, and negligibly small

for 1 nm.



1.11 1.2 1.3 1.4

1

0

Iterated value of neff

F
T

10

10

10-2

10-3

10-1

10-4

10-5

10-6

Fig. 4. Error as calculated according to Eq. (22) versus effective index of

refraction neff.

1.34
1 10

1.35

1.36

1.37

1.38

1.39

1.4

100 1000

L/D

n
ef

f

100nm
D =
D =

D =
10nm

 1nm

Lcr/D,1nm
Lcr/D,10nm

Lcr/D,100nm

Fig. 5. Evolution of effective index of refraction as a function of L/D for

films with 19.63% porosity and three different pore diameters.

M.M. Braun, L. Pilon / Thin Solid Films 496 (2006) 505–514510
3.4. Recovery of the effective index of refraction

Numerous methods have been proposed for determining

the film thickness and the real and imaginary components of

the complex index of refraction from reflectance and

transmittance data [42–48]. In the present study, this

process is greatly simplified because the absorption coef-

ficient vanishes for both phases and the film thickness is

known. Then, the system of equations valid for a non-

absorbing homogeneous media on a substrate under normal

incidence and accounting for interferences is [22],

Tfilm ¼ n3t
2
12t

2
23

1þ r212r
2
23 þ 2r12r23cos2b

ð18Þ

Rfilm ¼ r212 þ r223 þ 2r12r23cos2b

1þ r212r
2
23 þ 2r12r23cos2b

ð19Þ

where

r12 ¼
1� neff

1þ neff
; t12 ¼

2

1þ neff
;

r23 ¼
neff � n3

neff þ n3
; t23 ¼

2neff

neff þ n3
ð20Þ

and

b ¼ 2pneffL
k

ð21Þ

Here, neff is the effective index of refraction of the

nanoporous film, n3 is the index of refraction of the silicon

substrate, and Tfilm and Rfilm are the transmittance and

reflectance, respectively. Eq. (20) gives the Fresnel coef-

ficients for non-absorbing media where medium 1 has index

of refraction n1 equal to 1. Finally, b is the phase difference

in the wave of incident wavelength k after one pass through

the film of thickness L.

In the present study, the Maxwell’s equations are solved

numerically and the transmittance Tfilm computed for 201
values of k in the spectral interval from 1.05 to 2.05 Am.

The analytical solution for the transmittance Tfilm is also

calculated using Eqs. (18)–(21) for an arbitrary value of

neff. The quadratic relative differences between the numer-

ical and analytical values of the transmittance are then

computed at each wavelength and summed according to

FT ¼ ~
201

i¼1

Tfilm;A;i � Tfilm;N;i

� �2 ð22Þ

where the subscripts N and A denote numerical and

analytical values, respectively. Then, an iterative procedure

is followed so as to identify the value of neff that minimizes

the difference FT. Fig. 4 shows the evolution of FT as a

function of the guessed value neff for a 400-nm-thick SiO2

thin film with 10 nm pores and 19.63% porosity. It clearly

shows that the error reaches a minimum in the interval of

possible solutions bounded by the indices of refraction of

the dispersed and continuous phase, since a priori neff
should fall between nd=1 and nc=1.4442.
4. Results and discussion

The numerical simulations performed explore (i) the

effect of the film thickness and the validity of the effective

medium approach, (ii) the effect of pore shape, (iii) the

effect of the pore spatial distribution, and (iv) the effect of

the overall film porosity on the refraction index of non-

absorbing nanoporous thin films.

4.1. Effect of film thickness

Fig. 5 shows the evolution of the retrieved index of

refraction as a function of the ratio of the film thickness L to

the diameter of the spherical pores D for a film with 19.63%
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porosity and three different pore diameters equal to 1, 10,

and 100 nm. For each data set, only the film thickness L is

varied by varying the number of unit cells stacked in the

layer. Then, several conclusions can be drawn:

(1) For any given pore diameter D and small values of

film thickness L, the effective index of refraction is a

function of L and D. Therefore the effective medium

approach is not valid.

(2) Beyond a critical thickness Lcr, the effective medium

approach is valid and an effective index of refraction

can be defined as a function of porosity / and of the

constituent phase indices of refraction nc and nd only.

(3) The magnitude of the critical film thickness Lcr is a

function of the pore diameter and the incident

radiation wavelength k. In Fig. 5, the Lcr/D values

are arbitrarily defined so that all subsequent values of

neff fall within 0.05% of the converged solution. In the

present case, Lcr is found to be up to 50 times the pore

diameter for 100 nm pores.

4.2. Effect of pore shape

Several experimental studies of nanoporous media have

concluded that flattened cells affect the effective dielectric

constant and index of refraction of the medium [2,3]. To

explore this question, simulations were performed for

various pore shapes including elliptical pores, overlapping

spherical pores, and columnar pores. Also, this resulted in

simulations of both open and closed-cell nanoporous

structures.

First, elliptical pores characterized by thickness b and

width a, as depicted in Fig. 2b, are considered. The porosity

was varied by changing the length and width of the unit cell.

The degree of scattering was found to be negligible in most

cases by comparing the magnitude of the x- and y-

components of the Poynting vector at all locations in the

computational domain. When it was not deemed negligible,

the uncertainty due to scattering was calculated and

considered when determining the critical thickness Lcr.

First, two values (1 and 10 nm) of the parameter b were

considered while maintaining a constant ratio a/b =2 and

porosity / =19.63%. As in the case of spherical pores,

variations in the effective properties are observed for low

values of L/b, and a single value is reached for larger values

of L/b, as shown in Fig. 6. Additionally, cases were

computed this time with b=10 nm, and a/b =1/6, 2, 6,

and 12 at various porosities (not shown). In all cases, the

converged effective properties were equal to those found

using spherical pores (a/b =1) with the same porosity.

Moreover, in order to simulate porous silicon, which

features open-cell morphology, simulations were performed

for geometries consisting of columnar pores, as shown in

Fig. 2c. The same value of the index of refraction was

retrieved for all film thicknesses, i.e., the effective medium

approximation is valid for all film thicknesses. In addition,
the retrieved value of neff was identical to that for

nanoporous thin film of equal porosity but containing

spherical or elliptical pores.

An open-cell morphology intended to represent over-

lapping spherical pores, such as those found in aerogels, was

also simulated (see Fig. 2d). The same effective index of

refraction was retrieved for all thicknesses; its value was

equal to that found for all other pore shapes and nanoporous

thin films of identical porosity.

Another simulated pore geometry included two staggered

spherical pores per unit cell as illustrated in Fig. 2e. Once

again, it was found that the effective index of refraction

converged to the same value as that of the previously

considered morphologies with identical porosity.

Finally, fluctuations in the value of neff for small values

of L/D are caused by interferences due to reflections off the

interfaces perpendicularly oriented to the direction of wave

propagation. Beyond Lcr this effect averages out, and a

constant value of neff is displayed. This is first demonstrated

by the lack of variation seen in neff for the simulations of

open-cell geometries depicted in Fig. 2c and d. These

geometries have no internal surfaces from which waves can

reflect, thus inhibiting the interference effect. As a result, the

retrieved neff is constant for all film thicknesses. For closed

pores, however, the fluctuation in the retrieved index of

refraction as a function of film thickness increases signifi-

cantly as the pore diameter increases. This phenomenon can

be explained simply by considering the length scales of the

films relative to the wavelength of the incident radiation.

For example, for spherical pores with D =1, 10, and 100 nm,

Lcr can be found to be approximately 10 nm, 600 nm, and

30 Am, respectively, for an incident radiation wavelength of

1.55 Am (Fig. 5). In the case of 1 nm pore size, the phase

difference b between interfering waves is negligibly small.

In the case of the 100-nm pore size, however, the phase
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difference is larger and responsible for the large fluctuations

in neff versus L/D as illustrated in Fig. 5. Thus, the critical

thickness Lcr, beyond which the effective medium approach

is valid, depends also on the wavelength k.

4.3. Effect of pore spatial arrangement

Thus far, all simulations were performed on models built

from basic unit cells. To explore a situation where the pores

are not arranged in a regular cubic distribution, several

simulations were performed on films of varying thickness

with pores distributed at random locations between 0 and L

along the x-axis. Values that would have resulted in

overlapping pores were eliminated so as to maintain a

closed-cell structure. Cases with pores’ diameters of 1 and

10 nm were simulated. Fig. 7 compares the evolution of the

effective index of refraction as a function of L/D for

randomly located pores and that for regular cubic pore

distribution while maintaining constant porosity (/ =

19.63%). Larger values of Lcr are obtained for each pore

diameter in the cases of randomly distributed pores.

However, beyond Lcr the retrieved effective index of

refraction is the same as that found using previously

discussed pore morphologies of equal porosity. The 1 nm

pore case is fully converged to this value at Lcr/D =100, and

the 10 nm case is within 0.5% at L/D =200.

4.4. Effect of porosity

From the above analysis, one can conclude that beyond a

critical thickness, the effective medium approach is valid

and the effective index of refraction depends only on the

porosity and index of refraction of each of the two

constituent phases, but not on the pore shape, size

distribution, or spatial distribution. This confirms the

general form of commonly used effective medium models

such that neff= f(/, nc, nd) (see Eqs. (1)–(6)).
To assess the validity of the commonly used models,

simulations were run for silicon dioxide with 10 nm

spherical closed pores, and for porous silicon with columnar

pores. For silicon, the incident wavelength was chosen to be

k =2.71 Am at which the complex index of refraction is

mSi=3.44� i2.5	10� 9 [22]. Thus, the absorption coeffi-

cient can also safely be neglected. Fig. 8 shows the

converged values of the effective index of refraction plotted

versus porosity along with predictions of the above-

discussed models. The Bruggeman model differed from

the MGT model by a maximum of only 2.3% for silicon,

and by only 0.1% for SiO2. Thus, the Bruggeman model

will not be discussed further.

The numerical values retrieved for neff match those

predicted by the volume averaging technique [Eq. (7)]
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within rounding error. The relative difference between the

parallel, Maxwell-Garnett, reciprocity, and series models

and the numerical results for nanoporous SiO2 was up to

1.7%, 2.6%, 3.3%, and 4.9%, respectively. In the case of

porous silicon, these differences are larger and can reach up

to 16.4%, 22.4%, 29.3%, and 39.5%, respectively. There-

fore, as the index of refraction of the continuous phase

material increases, the percent difference between the

various effective medium models and the numerically

predicted value of neff increases.

Moreover, simulations were also conducted to investigate

a hypothetical medium in which the dispersed phase has a

larger index of refraction than the continuous phase.

Specifically, the supposed case of spherical silicon particles

(nd=3.44) distributed in an otherwise continuous SiO2

matrix (nc=1.426) was considered. The incident wavelength

was chosen as 2.71 Am such that both phases could be

considered as non-absorbing. As in the previous cases, the

effective index of refraction initially varied for relatively

thin films before converging to a value equal to that

predicted by the VAT model. Note that here, the effective

index of refraction increases with porosity since nd>nc.

Finally, the conditions for the validity of the VAT model

proposed by del Rio and Whitaker [27,28] based on order of

magnitude estimates seem to be too stringent [36]. Indeed,

even though these conditions are not satisfied, the predic-

tions of the VAT model for the effective properties compare

very well with those computed from numerical results.
5. Conclusions

Numerous effective medium models have been proposed

and used in the literature. However, it remained unclear

which model is applicable to a specific situation. In order to

address this issue, numerical solutions of the Maxwell’s

equations for axisymmetric nanoporous thin films of various

porosity and with open and closed pores of various shape,

size, and spatial distribution have been presented and

discussed. Several conclusions can be drawn.

First, there exists a critical nanoporous film thickness Lcr

below which the effective index of refraction is a function of

(i) the film thickness, (ii) the pore shape, (iii) their size, (iv)

their spatial distribution, and (v) the wavelength considered.

For film thickness less than Lcr, the effective medium

approach is not applicable and the heterogeneous nature of

the medium should be taken into account.

For films thicker than the critical thickness Lcr, the

effective medium approach is valid and an effective index of

refraction can be defined only as a function of porosity /
and of the indices of refraction of the constituent phases, nc
and nd. In other words, the pore shape, size, and spatial

distribution have no effect on the effective index of

refraction of the nanoporous medium.

Unfortunately, it was not possible to find a simple

correlation between the critical thickness Lcr and the pore
shape, size, spatial distribution, or the wavelength consid-

ered. Qualitatively, for randomly distributed pores, Lcr

increases as the pore size increases.

Finally, the models obtained from the VAT are recom-

mended for calculating the effective index of refraction and

the effective dielectric constant of the two-phase non-

absorbing nanoporous media when the effective medium

approximation is valid (L >Lcr). Then,

neff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /ð Þn2c þ /n2d

q
er;eff ¼ 1� /ð Þer;c þ /er;d: ð23Þ

Practically, models other than the VAT model give

acceptable predictions when the continuous and dispersed

phases have similar indices of refraction. However, the

predictions can be significantly erroneous for nanoporous

media when one of the constituting phases features an index

of refraction significantly different from the other.

The discrepancies between the different models and

reported experimental data for er,eff and neff can be attributed

to (1) the fact that the film thickness was smaller than Lcr

such that the effective medium approach is not valid, and (2)

experimental uncertainty associated with the porosity / and

with the properties of the continuous phase. Uncertainty in

these values could result in significant error in the model

predictions. Together, these effects could lead to erroneous

and often contradictory conclusions about the effect of the

size and shape of the pores on the effective optical

properties of nanoporous media.

Nomenclature

a ellipse dimension parallel to incident radiation

b ellipse dimension perpendicular to incident

radiation

C electrical capacitance

c speed of light

D pore diameter

E
Y

electric field vector

H
Y

magnetic field vector

k absorption index

L thickness of a thin film

m complex index of refraction

n real part of the complex index of refraction

n
Y

normal vector to interface

r Fresnel reflection coefficient

R electrical resistance or reflectance

t Fresnel transmission coefficient

T transmittance

Greek symbols

b phase difference between interfering waves

v scattering size parameter

e electric permittivity

/ porosity

k wavelength of the electromagnetic wave

l magnetic permeability
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pY Poynting vector

x angular frequency of electromagnetic wave

w general property

Subscripts

0 refers to vacuum, or an incident property

1, 2, 3 refers to surrounding air, thin film, and substrate,

respectively

A refers to analytically attained value

avg refers to time-averaged value

c refers to continuous phase

cr refers to critical value of L

d refers to dispersed phase

eff refers to effective properties

film refers to thin film

N refers to numerically attained value

r refers to relative property, e.g. relative permittivity

(dielectric constant)

r refers to reflected Poynting vector

t refers to transmitted Poynting vector

x refers to x-direction

y refers to y-direction

z refers to z-direction

Acknowledgements

The authors would like to thank the Femlab support team

for their valuable support in performing the numerical

simulations. Thanks are also extended to Dr. Stéphane
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