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Abstract—The maximum tolerable clock jitter for high-speed
ADCs is pessimistically predicted by Nyquist-rate input sinu-
soidal tests. We prove that the jitter can be greatly relaxed in
the presence of lossy channels in wireline systems. We derive
compact expressions that allow PLL designers to decide how
much jitter can be tolerated for a given channel loss and symbol
rate.

I. INTRODUCTION

Wireline PAM4 receivers operating at tens of gigabits per
second and targeting high-loss links typically employ an
analog-to-digital converter (ADC) in their front end. The ADC
resolution ranges from 6 to 7 bits [1]–[3], signifying a signal-
to-noise ratio (SNR) of 38 to 44 dB in the ideal case. It is
desirable that the Nyquist-rate ADC clock jitter minimally
degrade the SNR, hence the need for low-noise phase-locked
loops (PLLs).

In this paper, we first show that a common method of
computing the jitter-induced noise (JIN) is far too pessimistic
and demands excessively low clock jitter values. We then
derive expressions for the SNR degradation in the presence
of lossy channels. The objective is to provide system and
circuit designers with simple equations that readily predict the
tolerable clock jitter for a given SNR penalty. The analysis
yields results that are generally applicable and specifically
relevant to NRZ, PAM4, and PAM6 signaling.

Section II describes the results obtained in the prior art and
their shortcomings. Section III presents our analysis frame-
work and Section IV the general derivations. Comparisons
with simulations are provided in Section V.

II. PRIOR RESULTS

The most straightforward - and the most pessimistic - com-
putation of jitter-induced noise assumes a full-scale sinusoidal
input at the Nyquist rate in the form VR(t) = Ain cos(2πfint)
[4]. Since an ADC’s sample-and-hold circuit and quantizer
equivalently operate as an impulse sampler followed by a
quantizer, we observe from Fig. 1 that each sample displaced
by jitter can be viewed as one at the ideal sampling point but
incurring an amplitude error. Assuming that the jitter has a
variance of σ2

j and noting that the noise due to jitter is given
by the power of dVR/dt, one can show that the JIN power
and the SNR are given by [4]
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Fig. 1. Ideal samples (red dots) and jittery samples (black dots) of a sinusoid.

This result is pessimistic because it condenses the entire input
signal power in an impulse at the upper end of the input band.
Nonetheless, this type of characterization is the most practical
from the view point of ADC simulations and measurements.

We expect a more realistic JIN estimate if we assume a flat
band-limited white-noise spectrum for the input signal [Fig.
2(a)]. As Eq. (1) suggests, components with lower frequencies
experience less corruption. To obtain the total JIN power, we
draw upon Rice’s method of approximating the spectrum by
n equally-spaced impulses [5][Fig. 2(b)], and recognize that
each carries a power of βfin/n and hence corresponds to a
sinusoid whose peak amplitude is given by A2/2 = βfin/n.
The sinusoids incur noise according to (1), yielding a total
power of
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This expression agrees with the alternate derivation in [6] and
reveals a threefold increase in the SNR compared to Eq. (2).
While more realistic, this result still poses a pessimistic upper
bound on jitter for links with lossy channels.

III. ANALYSIS FRAMEWORK

Figure 3 depicts the framework for our analysis. A trans-
mitter (TX) generates PRBS-9 PAM data, which then travels
through a channel having a certain frequency response. The
receiver (RX) performs sampling at the symbol rate by im-
pulses such that their position can be modulated according to
a given phase noise profile. The result is then digitized by a
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Fig. 2. (a) Input with band-limited, white spectrum, and (b) approximation
of the spectrum with n equally-spaced impulses.

6- or 7-bit quantizer. In addition, we subject the received data
to jitterless sampling and quantization (as shown in the lower
part of Fig. 3). The channel is represented by a scalable RLC
model [7] whose loss can be adjusted by cascading more or
fewer stages. We wish to determine the SNR degradation for
a given amount of jitter.
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Fig. 3. Analysis framework.

We should make two remarks. First, denoting the ADC’s
analog LSB by ∆, we express the ”jittery” SNR in Fig. 3 as
SNRJ = Psig/(∆

2/12 + Pj), where Psig is the total received
signal power. The ”ideal” SNR, on the other hand, is equal to
SNRI = Psig/(∆

2/12). The ratio of these two quantities can
be viewed as the SNR penalty.

Second, the transmitted data exhibits a sinc2 spectrum of
the form [8]

STX(f) =
k
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)2
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where fR is the symbol rate, and k is a constant
whose value depends on the signaling levels. We have
assumed the following levels for the three formats:
{−1,+1} for NRZ, {−1,−1/3,+1/3,+1} for PAM4, and
{−1,−3/5,−1/5,+1/5,+3/5,+1} for PAM6. Also, k =
1, 5/9, and 7/15, respectively.

IV. PROPOSED ANALYSIS

A. High-Loss Channels

For losses greater than roughly 20 dB at the Nyquist fre-
quency, it is possible to approximate the TX/channel cascade
by a white-noise generator followed by a first-order low-pass
filter (LPF). The received signal spectrum is then viewed as

shown in Fig. 4(a), where the power beyond fNyq = fR/2
is neglected. Note that the filter 3-dB bandwidth is uniquely
specified by the loss at fNyq . We have

SR(f) =
β

1 + (f/fP )2
, (6)

where fP is the 3-dB bandwidth. The total signal power is
approximately equal to (π/2)βfP if fNyq ≫ fP . Following
the impulse approximations of Section II, we construct the
spectrum depicted in Fig. 4(b), and neglect the JIN for
frequency components below fP . We decompose the spectrum
from fP to fNyq into n impulses and express the power of
the m-th one as
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With the aid of (1), the total corresponding JIN power is now
given by
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The SNR for high-loss channels thus emerges as
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(π/2)βfP
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The remarkable point here is that, in comparison to the SNR
in Eq. (2), this result replaces f2

in with fP fR: the greater the
channel loss is, the lower fP is and hence the higher the SNR
will be. The difference between the two SNRs (in dB) can be
written as

∆SNRH = 10 log
πfR
4fP

. (10)

This is the amount by which the jitter can be relaxed, ∆σj .
To arrive at a simple rule of thumb, we assume a channel loss
of γ dB at fNyq , and use γ ≈ −20 log(2fP /fR) to obtain

∆SNR = ∆σj =
γ + 3.92

2
dB. (11)

This result allows us to still characterize RX ADCs by
Nyquist-rate sinusoids and then simply apply a correction
factor to ease the PLL jitter. For example, a loss of γ = 30
dB allows a 17-dB (sevenfold) increase in the rms jitter.
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Fig. 4. (a) Spectrum of channel output, and (b) approximation of the spectrum
with n equally-spaced impulses.



B. Low-Loss Channels
For channel losses below roughly 20 dB, two of our previous

approximations begin to fail. First, fP is no longer much
less than fNyq . Second, our previous computation of the
received signal power and noise loses it accuracy because
the signal amplitude and slope at the ideal sampling points
differ markedly from the overall average of these quantities
(calculated using the spectrum).

As shown in the Appendix, the high-loss SNR can be
revised for low-loss channels as follows:
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The term in parentheses in Eq. (12) serves as a simple yet
accurate correction factor. In this case, Eq. (11) is rewritten as

∆SNR = 10 log10
f2
R × e4πfP /fR

8f2
P
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For example, a loss of 10 dB yields ∆σj = 15.6 dB, suggesting
that the PLL rms jitter can be relaxed by a factor of 6 compared
to the bound dictated by (2).

C. General Channel
The compact and intuitive results expressed by (11) and

(14) prove sufficient in most cases. Nonetheless, we can
also develop more complete (and, inevitably, less intuitive)
SNR equations. Denoting the received voltage by VR(t), we
recognize that the jitter-induced noise power is given by

Pj = lim
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which, from Parseval’s theorem, reduces to

Pj = 4π2σ2
j
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−∞
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The received signal spectrum, SR(f), can be obtained by
subjecting Eq. (5) to the channel’s transfer function, H(f),
leading to

Pj =
4kπ2σ2

j

fR

∫ +∞

−∞
f2|H(f)|2

[
sin(πf/fR)

πf/fR

]2
df. (17)

Similarly, the received signal power is written as
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For a given H(f), these integrals can be evaluated numerically.
For the high-loss approximation described in Section IV.A.,
this general result reduces to that in Eq. (9). Note that σ2

j

appears outside the integrals, implying that Pj does not depend
on the shape of the clock’s phase noise profile. This has been
confirmed by simulations and also by [6].

A key point arising from our work is that the jitter-induced
noise is independent of the modulation scheme, and it should
be compared only to the ADC’s quantization noise. The results
therefore apply to NRZ, PAM4, and PAM6 signaling.

D. Effect of CTLE

Since the RX ADC is often preceded by a CTLE, we wish
to revise our previous results accordingly. Suppose the CTLE
provides a boost factor of B at fNyq . We surmise that the
lower overall loss translates to a proportionally greater fP in
the RX input spectrum. That is, we can simply scale fP in
(10) and (14) by a factor of B, arriving at
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where B is expressed in dB. Even though the channel/CTLE
cascade response may not behave as a first-order system
and exhibit ripple, these approximations provide a reasonable
accuracy (Section V.C.).

V. SIMULATION RESULTS

The framework of Fig. 3 serves as our simulation envi-
ronment as well. The physical channel model is realized in
Cadence and the RX processing in Python. The difference
between Y1(t) and Y2(t) yields the jitter-induced noise and
hence the SNR.

A. Maximum Tolerable Jitter

Circuit and system designers are primarily interested in the
maximum tolerable clock jitter, σj,max, for a given ADC SNR
penalty. Assuming an N-bit ADC and a 2-dB penalty, we use
(8) to derive

σj,max =
0.248× 10(γ/40)

2NfR
. (22)

We assume N=7 and compare the σj,max values thus obtained
with simulations. Figure 5 plots the results vs the symbol rate
for PAM4 signals. The sine-wave plot assumes a frequency
equal to the Nyquist rate.

Two key points emerge here. First, for a symbol rate of,
e.g., 56 Gbaud (112 Gb/s), σj,max must be as low as 28 fs
according to the sine-wave model whereas it can be relaxed to
194 fs for a loss of 30-dB. Second, our model and simulation
results display a discrepancy of at most 2-3 dB.
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B. General Results

We wish to examine the accuracy of our models in several
other scenarios. To this end, we compare the ∆SNR values
predicted by (11) and (14) to those observed in simulations.
We use these two equations for channel losses greater or less
than 20 dB, respectively.

Three sets of simulations are performed with different
losses, data rates, and modulation schemes. Figure 6(a) plots
the first set vs the clock jitter for a PAM4 data rate of 112 Gb/s
and losses ranging from from 10 dB to 50 dB. We observe that
our equations incur a maximum error of 3.7 dB. Figure 6(b)
repeats the results for data rates ranging from 10 Gb/s to 112
Gb/s and a loss of 40 dB at 28 GHz, revealing a maximum
error of about 2 dB. Figure 7 presents the results for NRZ,
PAM4, and PAM6 signaling for a loss of 30 dB and 56 Gbaud
symbol rate. As expected, the effect of jitter on the SNR is
fairly independent of the modulation scheme.

Fig. 6. ∆SNR vs jitter for (a) different channel losses for 112-Gb/s PAM4
data, (b) different data rates for PAM4 data and a loss of 40 dB at 28 GHz.
(dashed lines: proposed models, solid lines: simulations)

C. Effect of Notches and CTLE

The notches in the channel’s frequency response arise from
impedance mismatches and translate to reflections. From our
simulations, we find that the ∆σj predictions of (11) and (14)
are relatively accurate for notches with a depth up to about 4
dB. For deeper notches, Eq. (17) can be used.

Figure 8 plots ∆SNR for a CTLE boost of 8 dB and a
PAM4 data rate of 112 Gb/s. It is noted that the estimates
provided by (19) and (20) are fairly accurate.

VI. CONCLUSION

This paper analyzes the effect of ADC clock jitter on
wireline receivers in the presence of lossy channels. Compact,
intuitive equations are derived that prescribe the SNR and
its penalty for a given loss, demonstrating that the ADC
can tolerate a significantly higher jitter than previous models
suggest.

200 400 600 800

RMS Jitter (fs)

16.5

17

17.5

18

18.5

19

 S
N

R
 (

d
B

)

NRZ

PAM4

PAM6

Model

Fig. 7. ∆SNR vs jitter with a symbol rate of 56 Gbaud and channel loss of
30 dB.

Fig. 8. ∆SNR vs jitter with a CTLE preceding the ADC for 112-Gb/s PAM4
data. (dashed lines: proposed models, solid lines: simulations)

APPENDIX: CASE OF LOW-LOSS CHANNEL

Approximating the channel by a one-pole system and denot-
ing the symbol period by TS , we examine the pulse response,
y(t), and express it as [1 − e−t/τ ] for 0 ≤ t ≤ TS and
as (1 − e−TS/τ )e−(t−TS)/τ for t ≥ TS . If y(t) is sampled
at t = TS , its average power is given by E[|y(nTS)|2] =(
1− e−TS/τ

)2
. This value is about unity if τ ≪ TS . On the

other hand, the entire (continuous-time) power of y(t) between
TS/2 and 3TS/2 (the effect of ISI is neglected in this time
window) is approximately half of this value.

To compute the jitter-induced noise power, we first write

E

[(
dy

dt
|nTS

)2
]
=

1

τ2
e−2TS/τ (23)

for the sampled signal and

E

[(
dy

dt

)2
]
=

1

2τTS
(24)

for the continuous-time counterpart. The high-loss SNR is now
corrected by the two factors found above, namely, the factor
of 2 for the signal power and the factor of [1/(2τTS)]e

2TS/τ

for the slope. It follows that

SNRL =

(
fR

2πfP
e2πfP /fR

)
SNRH, (25)

where τ is replaced with 1/(2πfP ).
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